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Abstract: I have computed the matching polynomials of a number of isomers of fullerenes of various
sizes with the objective of developing molecular descriptors and similarity measures for isomers
of fullerenes on the basis of their matching polynomials. Two novel matching polynomial-based
topological descriptors are developed, and they are demonstrated to have the discriminating power
to contrast a number of closely related isomers of fullerenes. The number of ways to place up to seven
disjoint dimers on fullerene isomers are shown to be identical, as they are not structure-dependent.
Moreover, similarity matrices that provide quantitative similarity measures among a given set of
isomers of fullerenes are developed from their matching polynomials and are shown to provide
robust quantitative measures of similarity.
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1. Introduction

Fullerene cages, their isomers, stabilities, structures, aromaticities, electronic and mag-
netic properties, and spectra have been the subject of intense scrutiny over the years [1–7]
ever since the pioneering work of Smalley and coworkers [1] that resulted in the discovery
of another state of carbon with a dome-shaped icosahedral structure of C60, named buck-
minsterfullerene. Subsequent discovery of carbon nanotubes [8] further fueled a plethora
of research papers related to fullerenes and carbon nanomaterials. Fullerenes are cage-like
closed structures that contain 12 pentagons and a varied number of hexagons. Numerous
isomers are possible for a fullerene with a given molecular formula; for example, there are
1812 isomers for C60 while there are 8149 isomers for the C70 fullerene.

Fullerenes and related polycyclic aromatic compounds of various kinds have attracted
several theoretical and mathematical studies due to the subject matter of aromaticity, local
aromaticity, global aromaticity, ring currents, electronic and magnetic properties, and so
forth [9–23]. Due to a large number of isomers for larger fullerenes, it is quite challenging to
carry out ab initio computations on each one of them to gain insights into their structures,
properties, similarities, and stabilities. Consequently, mathematical techniques primarily
derived from combinatorics and graph theory such as the conjugated circuits, enumeration
of Kekulé structures, sextet polynomials, matching polynomials, etc., of fullerenes and
related polycyclic aromatic compounds have been studied over the decades [9–23]. Fur-
thermore, giant fullerenes pose even more computational challenges for ab initio quantum
chemical studies. The existence of multiple low-lying isomers and minima in their potential
energy surfaces has caused further complexity in such high-level quantum chemical studies
which can be computationally quite intensive. Quantum chemical studies have been made
on some of the fullerenes including their vibrational spectra [24–27]. Although fullerenes
that exhibit isolated pentagon structures have been generally attributed to be more stable,
recent studies have revealed the existence of stable non-isolated pentagon structures, for
example, the C72(C2v)-11188 isomer [28]. Consequently, there is a clear and compelling
need for the topological or graph theoretical characterization of fullerene cages, as such
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studies cumulatively can provide viable alternatives for gaining insights into their struc-
tures, properties, stabilities, and spectra. Although there is no direct correlation between
the number of Kekulé structures and the stabilities of fullerene isomers, there appears to
be a very good correlation between the overall topological resonance energies, conjugated
circuits, and sextet polynomials with stabilities. Another application of graph theory is
the enumeration of isomerization or rearrangement pathways that convert one isomer
to the other as demonstrated in Stone–Wales rearrangement graphs [27] and the internal
rotation isomerization graphs of isomers of alkanes [29] as well as water clusters and other
fluxional molecules.

Topological characterization of fullerenes through the development of topological in-
dices of various kinds has been the topic of several studies [30–37]. A number of structural
invariants such as the Wiener indices, Mostar indices, and several other vertex-degree and
distance-based indices have been developed to characterize the isomers of fullerenes so
that they can be employed in QSPR/QSAR relations. Several graph theoretical polynomials
and their spectra such as characteristic polynomials, graph spectra, matching polynomials,
distance polynomials, enumeration of walks, spanning trees, Laplacians, graph automor-
phisms, and combinatorial enumerations of isomers of polysubstituted fullerenes, etc., have
been considered over the years [38–52]. Among these matching polynomials of fullerenes,
lattices and various other graphs and related graph polynomials have been the subject
matter of several studies [40,44–64]. Various graph polynomials, Laplacians, and the enu-
meration of spanning trees have been considered for the isomers of fullerenes [65–67]
and holey nanographenes [68]. Furthermore, such graph theoretical techniques including
the enumeration of matchings have been stimulated by applications to phase-transition
phenomena and statistical mechanics [69–73].

The present study is stimulated by several applications of combinatorial and graph
theoretical techniques for the characterization of fullerene cages. In the present study, I
propose topological invariants based on matching polynomials inspired by the pioneer-
ing studies of Hosoya and coworkers [55–61]. In the current study, while analyzing the
coefficients of matching polynomials of fullerene isomers that contain only pentagons and
hexagons, it was discovered that the first several coefficients were identical for the isomers
and, hence, a reduced Z-index was developed to compare the isomers. A new similarity
matrix was developed to provide quantitative similarity measures among a given set of
isomers of fullerenes.

2. Preliminaries and Computational Methods

The adjacency matrix of a graph is defined as:

Aij =

{
1 i f vertices i and j are connected

0 otherwise
(1)

The characteristic polynomial of the graph, PG, is given by the secular determinant of
the adjacency matrix A:

PG(x) =
∣∣A− xI

∣∣ = Cnxn + Cn−1xn−1 + . . . + C1x + C0 (2)

where the coefficient Ck in the characteristic polynomial of a graph yields several combina-
torial quantities pertinent to the structure as per Sach’s theorem:

Ck = ∑
g∈Gi

(−1)c(g)2r(g) (3)

where Gis are Sach’s subgraphs of G containing k vertices, c(g) is the disjoint components
in g, and r(g) is the number of cycles in the subgraph. For example, for a fullerene, the
coefficient of x10 term would be comprised of 5 disjoint dimers, 1 6-membered ring and
2 disjoint dimers not contained in the ring, 2 isolated pentagons, a 10-membered ring
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arising from 2 fused hexagons, and so forth. The matching polynomial, which is also
referred to as the acyclic polynomial of a graph G, is defined as

MG(x) =
[ n

2 ]

∑
k=0

(−1)k p(G, k)xn−2k (4)

where p(G, k) enumerates the number of ways to place k disjoint dimers on the graph,
and n is the number of vertices while [n/2] is the greatest integer contained in n/2. For
fullerenes, as n is even, it can be readily seen that the upper limit is n/2 for any fullerene Cn.
The characteristic and matching polynomials of trees are completely equivalent. Likewise,
the matching polynomials of monocyclic rings as well as rings with pending bonds are all
readily obtained. The constant coefficient or Cn/2 of the matching polynomials enumerates
the number of perfect matchings. Consequently, the constant coefficient in the matching
polynomial enumerates the number of Kekulé structures for a fullerene. We note that the
number of Kekulé structures alone does not provide a direct measure of the relative stability
of a fullerene, although it could be used as a preliminary indicator for further perusal.

While it is well known that the computation of the matching polynomial of a highly
clustered graph is both CPU and disk intensive, several techniques have been developed
specific to computing the matching polynomials and perfect matchings of fullerenes over
the years [74,75]. One of the important outcomes is that the labeling of the graph or
alternatively the order in which the edges of the graph are to be deleted in recursive
reduction is critical to the intensity of the required computations. Although the matching
polynomials are invariant to the labeling of the vertices, the order in which the edges are to
be chosen for recursive pruning influences the evolution and dynamics of the recursive
process and, hence, the overall computational time. In another investigation, Salvador
et al. [50] made use of computer linguistic tools comprising theses, lines, and grammar to
compute the matching polynomials of fullerenes, although their coefficients are limited
to double precision or less than 15 digits. In the present study, I employ a combination of
optimal vertex labeling and recursive reduction in conjunction with quadruple precision
arithmetic. Furthermore, the characteristic polynomials of all line graphs up to the needed
orders, monocyclic graphs, and other recurring fragments are computed upfront and stored
in a data file so that they need not be repeatedly computed to generate the polynomials.
The characteristic polynomials are computed using the author’s previously developed
codes enhanced further for efficiency and quadruple precision arithmetic. Hence, all the
polynomial coefficients are accurate to 33–35 digits.

3. Results and Discussion
3.1. Matching Polynomials of Fullerenes

I have chosen a variety of isomers of fullerenes of varied sizes. In order to consider
a contrasting case, I also included a relatively stable fullerene isomer of C58 with Cs
symmetry that contains 1 heptagon and 13 pentagons. This isomer, denoted as C58(Cs)-
hept, is although strictly not a fullerene, several workers [74,75] have considered this as an
energetically viable low-lying isomer compared to the C58(C3v)-1 fullerene. Consequently,
I have included this isomer also for the derivation of our matching polynomial-based
similarity matrices. The fullerene isomers that are included in the present study are shown
in Figure 1. I designate each fullerene by the number of carbon atoms, its symmetry, and
a standard label as per fullerene library designations. Although there are several more
isomers for each fullerene compared to the ones shown in Figure 1, I chose the isomers on
the basis of their stabilities, differing symmetries, or shapes so that the similarity analysis
would be meaningful and provide contrasting comparisons in order to assess the efficacy
of the matching-based similarity analysis of these isomers of fullerenes. I have computed
the matching polynomials of all of the fullerenes shown in Figure 1. As mentioned in the
previous section, I employed a combination of recursive techniques and a binary database
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of previously computed and stored polynomials of the common fragments generated
during the pruning process.
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Tables 1–12 show the matching polynomials of the various isomers of fullerenes or-
ganized according to their formula. In each table, the various columns provide the match-
ing polynomials of the isomers of a given constitution. The tables are constructed in the 
same order as the structures appear in Figure 1. All the results shown in Tables 1–12 were 
computed with quadruple precision accuracy and, hence, every digit in these tables is 
valid. Consider Table 1, which shows the matching polynomials of two isomers of C28, 
namely C28(D2) and C28(Td). They have different symmetries but their shapes are some-
what similar (see, Figure 1). The Td structure has less strain compared to the D2 structure. 
As a result of the close similarity between the Td and D2 isomers of C28, their matching 
polynomials are also quite similar, as can be seen in Table 1. The identical nature of the 
first eight coefficients of the matching polynomials of the isomers of fullerenes has nothing 
to do with the symmetry of the structure of C28. This arises from the fact that the first 8 
coefficients of all fullerenes, that is, for the cage structures with 12 pentagons and any 
number of hexagons, do not depend on the structures but only on the number of carbon 
atoms. I shall discuss this in depth subsequently. However, it is noted that other coeffi-
cients for the C28(D2) versus C28(Td) structures also differ very little, consistent with the 
similarity of the shapes and other structural features, as seen from Figure 1. 

Table 1. Matching polynomials of two isomers of C28 fullerene. 

k C28(D2) C28(Td) 
0 1 1 
1 −42 −42 
2 777 777 
3 −8344 −8344 
4 57,708 57,708 
5 −269,628 −269,628 
6 868,440 868,440 
7 −1,932,444 −1,932,444 
8 2,932,010 2,932,008 
9 −2,944,736 −2,944,708 

10 1,859,796 1,859,652 
11 −678,656 −678,312 
12 123,782 123,387 
13 −8492 −8274 
14 90 75 

Figure 1. Structures of fullerene isomers C28-C72 considered in this study for similarity matrices.

Tables 1–12 show the matching polynomials of the various isomers of fullerenes
organized according to their formula. In each table, the various columns provide the
matching polynomials of the isomers of a given constitution. The tables are constructed in
the same order as the structures appear in Figure 1. All the results shown in Tables 1–12
were computed with quadruple precision accuracy and, hence, every digit in these tables
is valid. Consider Table 1, which shows the matching polynomials of two isomers of
C28, namely C28(D2) and C28(Td). They have different symmetries but their shapes are
somewhat similar (see, Figure 1). The Td structure has less strain compared to the D2
structure. As a result of the close similarity between the Td and D2 isomers of C28, their
matching polynomials are also quite similar, as can be seen in Table 1. The identical nature
of the first eight coefficients of the matching polynomials of the isomers of fullerenes has
nothing to do with the symmetry of the structure of C28. This arises from the fact that
the first 8 coefficients of all fullerenes, that is, for the cage structures with 12 pentagons
and any number of hexagons, do not depend on the structures but only on the number of
carbon atoms. I shall discuss this in depth subsequently. However, it is noted that other
coefficients for the C28(D2) versus C28(Td) structures also differ very little, consistent with
the similarity of the shapes and other structural features, as seen from Figure 1.

Table 1. Matching polynomials of two isomers of C28 fullerene.

k C28(D2) C28(Td)

0 1 1

1 −42 −42

2 777 777

3 −8344 −8344

4 57,708 57,708

5 −269,628 −269,628

6 868,440 868,440

7 −1,932,444 −1,932,444

8 2,932,010 2,932,008

9 −2,944,736 −2,944,708

10 1,859,796 1,859,652

11 −678,656 −678,312

12 123,782 123,387

13 −8492 −8274

14 90 75
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Table 2. Matching polynomials of isomers of C30 fullerene.

k C30(D5h)-1 C30(C2v)-2 C30(C2v)-3

0 1 1 1

1 −45 −45 −45

2 900 900 900

3 −10,560 −10,560 −10,560

4 80,820 80,820 80,820

5 −424,392 −424,392 −424,392

6 1,566,065 1,566,065 1,566,065

7 −4,091,265 −4,091,265 −4,091,265

8 7,524,770 7,524,768 7,524,767

9 −9,568,000 −9,567,966 −9,567,949

10 8,137,551 8,137,327 8,137,216

11 −4,388,255 −4,387,529 −4,387,172

12 1,377,420 1,376,198 1,375,602

13 −217,960 −216,930 −216,418

14 13,265 12,867 12,661

15 −151 −117 −107

Table 3. Matching polynomials of isomers of C36 fullerene.

k C36(C2)-12 C36(C2v)-9 C36(D2d)-14 C36(D3h)-13 C36(D6h)-15

0 1 1 1 1 1

1 −54 −54 −54 −54 −54

2 1323 1323 1323 1323 1323

3 −19,476 −19,476 −19,476 −19,476 −19,476

4 192,321 192,321 192,321 192,321 192,321

5 −1,346,910 −1,346,910 −1,346,910 −1,346,910 −1,346,910

6 6,898,019 6,898,019 6,898,019 6,898,019 6,898,019

7 −26,255,052 −26,255,052 −26,255,052 −26,255,052 −26,255,052

8 74,743,468 74,743,468 74,743,467 74,743,470 74,743,467

9 −158,920,900 −158,920,900 −158,920,874 −158,920,952 −158,920,874

10 250,185,492 250,185,493 250,185,213 250,186,053 250,185,213

11 −286,863,270 −286,863,284 −286,861,644 −286,866,564 −286,861,644

12 233,454,871 233,454,925 233,449,143 233,466,479 233,449,135

13 −129,759,156 −129,759,130 −129,746,290 −129,784,686 −129,746,178

14 46,513,097 46,512,605 46,494,509 46,548,279 46,494,021

15 −9,838,170 −9,837,524 −9,822,212 −9,867,396 −9,821,428

16 1,057,103 1,057,253 1,050,796 1,070,007 1,050,468

17 −43,008 −43,278 −42,320 −45,186 −42,288

18 289 312 288 364 272
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Table 4. Matching polynomials of isomers of C38 fullerene.

k C38(C2)-13 C38(C2)-17 C38(C2)-6 C38(C3v)-16
0 1 1 1 1
1 −57 −57 −57 −57
2 1482 1482 1482 1482
3 −23,294 −23,294 −23,294 −23,294
4 247,323 247,323 247,323 247,323
5 −1,877,511 −1,877,511 −1,877,511 −1,877,511
6 10,521,461 10,521,461 10,521,461 10,521,461
7 −44,311,485 −44,311,485 −44,311,485 −44,311,485
8 141,457,329 141,457,328 141,457,331 141,457,329
9 −342,789,923 −342,789,894 −342,789,983 −342,789,924

10 627,517,764 627,517,410 627,518,522 627,517,788
11 −858,202,534 −858,200,138 −858,207,810 −858,202,755
12 860,996,587 860,986,593 861,018,781 860,997,544
13 −616,691,139 −616,664,107 −616,749,327 −616,692,840
14 303,148,423 303,100,171 303,243,068 303,147,594
15 −96,506,463 −96,451,021 −96,598,748 −96,498,792
16 18,197,166 18,159,923 18,247,447 18,186,867
17 −1,750,486 −1,738,799 −1,763,805 −1,745,700
18 64,190 63,204 65,385 63,675
19 −386 −382 −385 −378

Table 5. Matching polynomials of isomers of C40 fullerene.

k C40(C2)-35 C40(C2)-36 C40(C2v)-37 C40(D2)-38 C40(D5d)-39
0 1 1 1 1 1
1 −60 −60 −60 −60 −60
2 1650 1650 1650 1650 1650
3 −27,580 −27,580 −27,580 −27,580 −27,580
4 313,335 313,335 313,335 313,335 313,335
5 −2,563,260 −2,563,260 −2,563,260 −2,563,260 −2,563,260
6 15,606,390 15,606,390 15,606,390 15,606,390 15,606,390
7 −72,094,680 −72,094,680 −72,094,680 −72,094,680 −72,094,680
8 255,308,426 255,308,426 255,308,426 255,308,425 255,308,425
9 −695,619,674 −695,619,674 −695,619,674 −695,619,640 −695,619,640
10 1,455,391,494 1,455,391,494 1,455,391,494 1,455,391,002 1,455,391,002
11 −2,321,341,062 −2,321,341,062 −2,321,341,066 −2,321,337,096 −2,321,337,100
12 2,786,393,230 2,786,393,242 2,786,393,329 2,786,373,686 2,786,373,750
13 −2,468,240,914 −2,468,241,118 −2,468,241,896 −2,468,180,232 −2,468,180,640
14 1,568,689,230 1,568,690,574 1,568,694,249 1,568,571,626 1,568,572,975
15 −687,082,056 −687,086,328 −687,096,074 −686,946,860 −686,949,378
16 195,552,995 195,559,583 195,573,824 195,471,357 195,473,975
17 −33,038,938 −33,043,186 −33,053,906 −33,020,784 −33,022,120
18 2,846,500 2,847,204 2,851,269 2,848,766 2,849,295
19 −93,008 −92,940 −93,740 −94,080 −94,470
20 493 473 513 518 562
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Table 6. Matching polynomials of isomers of C44 fullerene.

k C44(C2)-1 C44(D2)-2 C44(D3d)-3

0 1 1 1

1 −66 −66 −66

2 2013 2013 2013

3 −37,664 −37,664 −37,664

4 483,978 483,978 483,978

5 −4,531,152 −4,531,152 −4,531,152

6 32,000,462 32,000,462 32,000,462

7 −174,145,908 −174,145,908 −174,145,908

8 739,662,349 739,662,351 739,662,351

9 −2,468,621,824 −2,468,621,902 −2,468,621,902

10 6,487,128,811 6,487,130,145 6,487,130,145

11 −13,393,750,298 −13,393,763,496 −13,393,763,496

12 21,594,289,606 21,594,373,489 21,594,373,484

13 −26,906,332,278 −26,906,691,854 −26,906,691,732

14 25,516,302,649 25,517,364,447 25,517,363,112

15 −18,028,774,350 −18,030,941,516 −18,030,933,108

16 9,216,119,461 9,219,142,472 9,219,110,019

17 −3,272,339,730 −3,275,146,364 −3,275,069,730

18 761,369,684 763,026,684 762,920,396

19 −106,313,844 −106,892,800 −106,813,188

20 7,699,388 7,807,279 7,780,449

21 −215,950 −225,134 −222,470

22 892 1091 1170

Table 7. Matching Polynomials of Isomers of C48 Fullerene.

k C48(C2)-1 C48(D2)-2

0 1 1

1 −72 −72

2 2412 2412

3 −49,944 −49,944

4 716,238 716,238

5 −7,554,444 −7,554,444

6 60,745,322 60,745,322

7 −380,928,456 −380,928,456

8 1,890,083,485 1,890,083,487

9 −7,486,060,102 −7,486,060,192

10 23,775,570,460 23,775,572,268

11 −60,611,207,684 −60,611,229,132

12 123,760,350,554 123,760,518,011

13 −201,341,648,072 −201,342,555,836

14 258,764,778,060 258,768,290,312

15 −259,526,848,576 −259,536,667,008

16 199,760,333,462 199,780,185,175

17 −115,384,812,402 −115,413,591,260

18 48,529,535,471 48,558,888,146

19 −14,261,258,162 −14,281,668,112

20 2,761,839,268 2,771,056,042

21 −322,801,582 −325,317,240

22 19,673,191 20,047,888

23 −465,508 −491,272

24 1,532 2,024
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Table 8. Matching polynomials of isomers of C50 fullerene.

k C50(C2)-269 C50(C2v)-13 C50(D3)-270 C50(D5h)-271 C50(D3h)-3

0 1 1 1 1 1

1 −75 −75 −75 −75 −75

2 2625 2625 2625 2625 2625

3 −56,975 −56,975 −56,975 −56,975 −56,975

4 859,575 859,575 859,575 859,575 859,575

5 −9,576,453 −9,576,453 −9,576,453 −9,576,453 −9,576,453

6 81,704,030 81,704,030 81,704,030 81,704,030 81,704,030

7 −546,377,070 −546,377,070 −546,377,070 −546,377,070 −546,377,070

8 2,907,494,483 2,907,494,489 2,907,494,481 2,907,494,480 2,907,494,493

9 −12,430,405,477 −12,430,405,765 −12,430,405,379 −12,430,405,330 −12,430,405,959

10 42,930,480,510 42,930,486,724 42,930,478,356 42,930,477,279 42,930,490,950

11 −120,030,365,482 −120,030,445,280 −120,030,337,392 −120,030,323,355 −120,030,500,010

12 271,475,360,667 271,476,041,210 271,475,118,473 271,474,997,635 271,476,511,246

13 −494,947,493,439 −494,951,565,536 −494,946,037,473 −494,945,313,135 −494,954,392,290

14 722,829,954,436 722,847,560,835 722,823,685,011 722,820,579,630 722,859,812,505

15 −837,705,092,102 −837,760,905,963 −837,685,538,979 −837,675,911,840 −837,799,701,683

16 760,514,520,422 760,644,785,556 760,470,388,059 760,448,826,260 760,734,797,436

17 −531,573,181,792 −531,795,993,434 −531,501,952,881 −531,467,488,160 −531,948,041,766

18 279,547,624,962 279,823,262,630 279,467,433,844 279,429,116,630 280,007,334,171

19 −107,244,065,832 −107,485,053,846 −107,183,756,466 −107,155,471,120 −107,640,515,031

20 28,768,905,085 28,912,538,934 28,740,833,451 28,728,154,280 29,000,371,557

21 −5,080,606,155 −5,135,852,304 −5,073,704,083 −5,070,966,660 −5,166,984,589

22 539,267,259 551,856,582 538,762,086 538,792,490 558,135,165

23 −29,582,483 −31,053,612 −29,652,450 −29,762,020 −31,680,375

24 623,747 690,021 630,684 642,645 717,746

25 −2099 −2719 −2136 −2343 −3276

Table 9. Matching polynomials of isomers of C52 fullerene.

K C52(D2)-433 C52(C2)-434 C52(C1)-436 C52(T)-437

0 1 1 1 1

1 −78 −78 −78 −78

2 2847 2847 2847 2847

3 −64,636 −64,636 −64,636 −64,636

4 1,023,399 1,023,399 1,023,399 1,023,399

5 −12,009,570 −12,009,570 −12,009,570 −12,009,570

6 108,366,033 108,366,033 108,366,033 108,366,033

7 −769,906,260 −769,906,260 −769,906,260 −769,906,260

8 4,374,890,420 4,374,890,419 4,374,890,418 4,374,890,418

9 −20,087,482,056 −20,087,482,004 −20,087,481,952 −20,087,481,952

10 74,993,403,696 74,993,402,475 74,993,401,254 74,993,401,254
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Table 9. Cont.

K C52(D2)-433 C52(C2)-434 C52(C1)-436 C52(T)-437

11 −228,347,209,688 −228,347,192,556 −228,347,175,414 −228,347,175,408

12 567,290,814,788 567,290,654,621 567,290,494,046 567,290,493,824

13 −1,147,459,180,912 −1,147,458,127,888 −1,147,457,067,510 −1,147,457,063,880

14 1,881,094,347,028 1,881,089,339,988 1,881,084,255,692 1,881,084,221,076

15 −2,481,558,198,016 −2,481,540,762,864 −2,481,522,802,116 −2,481,522,588,124

16 2,608,075,274,168 2,608,030,772,458 2,607,983,836,736 2,607,982,934,853

17 −2,154,508,107,056 −2,154,425,661,680 −2,154,335,363,811 −2,154,332,709,330

18 1,374,351,797,384 1,374,243,411,072 1,374,117,256,664 1,374,111,754,991

19 −661,324,154,776 −661,227,247,200 −661,102,300,879 −661,094,291,988

20 232,679,709,256 232,625,587,423 232,541,130,115 232,533,025,512

21 −57,362,136,248 −57,347,243,516 −57,310,508,266 −57,304,888,024

22 9,326,080,656 9,326,685,034 9,317,305,137 9,314,670,876

23 −912,517,384 −913,967,662 −912,732,486 −911,913,672

24 46,175,688 46,459,731 46,372,434 46,216,468

25 −900,864 −913,906 −906,964 −893,568

26 2904 2941 2814 2700

Table 10. Matching polynomials of C58(C3v)-1 and heptagonal C58(Cs)-hept with 1 heptagon and
13 pentagons.

k C58(C3v)-1 C58(Cs)-hept

0 1 1

1 −87 −87

2 3567 3567

3 −91,669 −91,669

4 1,656,828 1,656,828

5 −22,400,052 −22,400,051

6 235,240,023 235,239,954

7 −1,967,080,257 −1,967,078,043

8 13,320,537,624 13,320,493,739

9 −73,905,469,014 −73,904,866,941

10 338,630,578,458 338,624,507,555

11 −1,287,860,109,036 −1,287,813,476,284

12 4,076,572,360,408 4,076,293,247,395

13 −10,748,037,091,998 −10,746,716,517,904

14 23,577,708,216,708 23,572,726,102,672

15 −42,911,701,168,180 −42,896,647,640,354

16 64,495,465,418,163 64,459,007,350,761

17 −79,522,974,846,489 −79,452,370,129,844

18 79,733,207,226,754 79,624,483,458,808

19 −64,270,421,735,034 −64,138,493,127,215

20 41,044,816,761,150 40,920,303,468,711
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Table 10. Cont.

k C58(C3v)-1 C58(Cs)-hept

21 −20,382,041,191,170 −20,292,270,811,849

22 7,681,900,580,205 7,633,661,167,869

23 −2,128,631,549,481 −2,109,955,392,032

24 415,408,342,364 410,442,814,122

25 −53,747,261,070 −52,902,565,843

26 4,212,821,433 4,130,671,443

27 −172,462,371 −168,752,079

28 2,762,970 2,717,607

29 −7308 −7525

Table 11. Matching polynomials of buckminsterfullerene (C60(Ih)) and its isomer C60(D3)-1811.

k C60(Ih) C60(D3)-1811
0 1 1
1 −90 −90
2 3825 3825
3 −102,120 −102,120
4 1,922,040 1,922,040
5 −27,130,596 −27,130,596
6 298,317,860 298,317,860
7 −2,619,980,460 −2,619,980,460
8 18,697,786,680 18,697,786,686
9 −109,742,831,260 −109,742,831,644
10 534,162,544,380 534,162,555,702
11 −2,168,137,517,940 −2,168,137,722,048
12 7,362,904,561,730 7,362,907,079,705
13 −20,949,286,202,160 −20,949,308,744,700
14 49,924,889,888,850 49,925,041,449,174
15 −99,463,457,244,844 −99,464,238,463,876
16 165,074,851,632,300 165,077,976,023,361
17 −227,043,126,274,260 −227,052,877,002,918
18 256,967,614,454,320 256,991,374,424,828
19 −237,135,867,688,980 −237,180,889,766,676
20 176,345,540,119,296 176,411,295,787,590
21 −104,113,567,937,140 −104,186,538,219,098
22 47,883,826,976,580 47,944,056,256,236
23 −16,742,486,291,340 −16,778,325,531,438
24 4,310,718,227,685 4,325,385,183,252
25 −783,047,312,406 −786,868,226,034
26 94,541,532,165 95,084,107,821
27 −6,946,574,300 −6,969,881,806
28 269,272,620 266,597,229
29 −4,202,760 −3,954,300
30 12,500 9622
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Table 12. Matching polynomials of two isomers of C72: C72(C2v)-11188 fullerene with non-isolated
pentagon structure and C72(D6d)-11190 a.

k C72(C2v)-11188 (Non-ISP) C72(D6d)-11190

0 1 1

1 −108 −108

2 5562 5562

3 −181,836 −181,836

4 4,238,379 4,238,379

5 −74,997,996 −74,997,996

6 1,047,459,326 1,047,459,326

7 −11,852,752,392 −11,852,752,392

8 110,690,579,974 110,690,579,973

9 −864,652,893,966 −864,652,893,884

10 5,705,866,144,122 5,705,866,140,966

11 −32,043,716,552,498 −32,043,716,476,716

12 153,971,991,502,747 153,971,990,229,848

13 −635,430,828,140,544 −635,430,812,245,836

14 2,257,883,027,813,575 2,257,882,874,735,690

15 −6,917,120,612,820,084 −6,917,119,448,538,120

16 18,275,900,215,535,848 18,275,893,112,174,600

17 −41,618,256,862,032,538 −41,618,221,745,909,600

18 81,556,423,951,149,669 81,556,282,447,653,600

19 −137,186,547,343,055,238 −137,186,081,385,089,000

20 197,391,632,599,522,833 197,390,379,486,861,000

21 −241,844,737,361,104,930 −241,841,995,535,982,000

22 250,872,705,868,808,807 250,867,862,188,707,000

23 −218,784,208,970,190,972 −218,777,389,029,217,000

24 159,029,898,793,311,758 159,022,409,077,892,000

25 −95,339,702,590,544,974 −95,333,534,217,776,900

26 46,538,823,097,489,228 46,535,333,778,130,000

27 −18,206,425,404,161,442 −18,205,449,520,239,600

28 5,596,680,643,711,950 5,596,999,388,641,250

29 −1,318,481,294,247,250 −1,318,986,435,090,070

30 230,452,534,808,904 230,726,853,211,188

31 −28,618,179,154,208 −28,704,598,608,024

32 2,376,922,675,783 2,393,469,043,524

33 −120,715,631,942 −122,558,197,024

34 3,237,686,991 3,345,162,432

35 −34,480,394 −37,159,200

36 63,487 77,400
a Results shown for C72(D6d) in the third column are from [50].

Tables 2–10 display the computed matching polynomials of a number of isomers of
fullerenes, C30 through C58. Among these, fullerenes C36, C40, and C50 were considered
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for five isomers with contrasting symmetries and shapes in Tables 3 and 5, respectively
(see Figure 1 for the corresponding structures of the isomers). Tables 11 and 12 display the
matching polynomials of two isomers, C60 and C72, where for each case, two isomers of
contrasting shapes or symmetries were considered. In the case of C72, the two isomers as
well as C70 have been considered in quantum chemical studies [76,77]. A critical analysis of
all matching polynomials displayed in the Tables reveals that for all fullerenes containing
only pentagons and hexagons, the first eight coefficients are identical for the isomers in
that these coefficients do not exhibit any structural dependence. That is, they vary as
polynomials of n. As discussed earlier [52], the exact analytical expressions for the first few
coefficients of fullerene cages can be derived through a combination of Sach’s theorem and
the coefficients of the corresponding terms in the characteristic polynomials. The resulting
expressions are shown below:

p(Cn:Full,0) = 1 (5)

p(Cn:Full,1) = −3n/2 (6)

p(Cn:Full,2) = 3n(3n−10)/8 (7)

p(Cn : Full, 3) = − 1
16

(
9n3 − 90n2 + 232n

)
(8)

p(Cn : Full, 4) = c8 −
1
4
(3n− 24)(n− 20) + 2n(2)

5 (9)

p(Cn : Full, 5) = c10 − n(2)
5 (3n− 30) + 2n(2)

6 − 4n′(2)5 (10)

where cn is the corresponding coefficient in the characteristic polynomial of the fullerene,
n(k)

l is the number of ways of choosing k adjacent l-membered rings in the fullerene whereas

n′(k)l is the number of ways to choose k disjoint l-membered rings from the fullerene.
The coefficients of the first 8 terms in the matching polynomials of all cages containing

12 pentagons and varied number of hexagons are the same for the isomers, as can be
inferred to be identical from Tables 1–12. The only exception to this is the C58(Cs)-hept
structure which is comprised of 13 pentagons and 1 heptagon and, thus, the ring structures
are different compared to the C58(C3v)-1 fullerene, which contains 12 pentagons and no
heptagons. Even then, the first five coefficients of the matching polynomials of the two iso-
mers of C58 are identical, with the sixth coefficient differing only by unity. Although the
results for C72(D6d) in Table 12 were derived from [50] and hence they lack the accuracy
of C72(C2v)-11188 computed here, the similarity indices computed subsequently for C72
do not suffer from the accuracy issue, as the similarity measures are based on a natural
logarithmic scale.

The constant coefficients of the matching polynomials yield the number of Kekulé
structures of fullerene isomers, although there exists no direct correlation between the
stability of the fullerene structure and the number of resonance structures. However, a
number of related topological indices have been derived and used from the coefficients of
the matching polynomials as well as their spectra. For example, the sum of the absolute
values of the coefficients of the matching polynomials is the well-known Hosoya’s topo-
logical index [78] while the sum of the difference in the eigenvalues of the characteristic
and matching polynomials yields the topological resonance energy; the latter has been
employed as a measure of the relative stabilities of isomers of fullerenes. The isomers that
exhibit extremal values of Hosoya’s topological Z-index [78] are also of interest. It can thus
be inferred that if two isomers of fullerenes exhibit Z-indices close to each other, then they
can be viewed as candidates for further investigations by a higher level of computations
in order to assess further their relative stabilities. Although many such variants have
been proposed, up to now, no similarity measures have been developed for comparing the
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isomers of fullerenes or other structures. As the first eight coefficients are identical, I have
proposed the reduced Z-indices for fullerenes which consider only the differing coefficients
of the matching polynomials in deriving the Z-indices. I have further introduced natural
logarithms and scaling techniques for deriving the indices proposed in the next section for
both the comparison and similarity analysis of fullerenes.

3.2. The Similarity Matrices of Fullerenes and Reduced Z-Indices

As can be seen from Tables 1–12, the matching polynomials of isomers of fullerenes
exhibit similarities and, hence, I develop quantitative similarity measures in terms of the
similarity matrices that would have the capability to offer a contrast among isomers as well
as across the platform of fullerenes. These matrices are defined using the coefficients of the
matching polynomials with a scaling incorporated into them. Hence, I define the similarity
matrix based on matching polynomials as follows:

Sij(M) =
1
ne

ln(∑
n
2
k=8 |

∣∣∣p(Gi, λk

)∣∣∣− ∣∣∣p(Gj, λk

)∣∣∣|, i 6= j (11)

where p
(
Gi, λk

)
is the kth coefficient of the matching polynomial of fullerene isomer Gi,

while p
(
Gj, λk

)
is the kth coefficient of the matching polynomial of fullerene isomer Gj. The

absolute differences of the corresponding coefficients are taken and, thus, the difference
is always positive so as to maintain this as a true difference without regard for the sign
variations of the alternate terms of the matching polynomials. We obtain a matrix element
Sij for any two members (i, j) among a set of isomers considered for comparison. The
diagonal elements of the similarity matrix are set to 0 as the similarity distance between
two identical isomers is 0. Consequently, the larger the similarity matrix element, the
greater is the dissimilarity between the isomers i and j, while a small value would then
imply that the two isomers are very similar. I have computed the similarity matrices for all
of the isomers of fullerenes considered in this study, and the computed similarity matrices
are shown in Figure 2 for each fullerene considered here.

As the first eight coefficients of the matching polynomials of isomers of fullerenes are
identical, I have introduced a scaled, natural logarithmic version of the reduced Z-index,
ZR, as follows:

S− ln(ZR(M)) =
1
ne

ln(∑
n
2
k=8|p(G, λk)|) (12)

A primary advantage of the reduced-scaled version is that it facilitates a comparison of
isomers of fullerenes across the platform. Hence, I have shown in Figure 2 both S-ln(ZR) as
well as ZR for comparing isomers, where ZR is simply the sum of the absolute coefficients
starting with the eighth coefficient of the matching polynomials.

As seen from Figure 2, the computed similarity measures are in a logarithmic scale and
the matrix elements vary between 0.137 and 0.313 where the lowest value corresponding
to the most similar structures are for the first two isomers of C36 (Figure 1) which are
C36(C2)-12 and C36(C2v)-9. As can be seen from both Figure 1 and Table 3, the two isomers
are very similar in multiple ways. Their overall shapes and structural similarities are
striking. At a quantitative level, an inspection of Table 3 reveals that the first 10 coefficients
in the matching polynomial are identical while the 11th coefficient differs only by unity.
Several other subsequent coefficients are also close to each other. This is in turn reflected by
the similarity matrix element of 0.137484542 for the two isomers. Likewise, the isomers 5
and 3, which correspond to C36-D5h-15 and C36-D2d-14, exhibit remarkable similarity both
in terms of their shape, structures, and matching polynomials. That is, the arrangements of
pentagons and hexagons are such that they provide very similar combinatorial matchings.
I note that other structures which exhibit such similarities are the two isomers of C28 in
Figure 1; the two isomers have a similarity measure of 0.1677151 on the basis of their
combinatorial matchings. Likewise, two isomers of C30 also exhibit comparable similarity
measures (see Figure 2). The first isomers of C40 (Figure 1) have comparable similarity
measures of 0.1627944 and this is corroborated by the corresponding matching polynomials
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shown in Table 5 where I find that the first 12 coefficients of the two isomers are identical,
with the 13th coefficient differing by only 12.

Although most of the other isomers of fullerenes exhibit similarity indices close to
0.2, the two isomers of C58 are important cases to be noted for the dramatic similarity
contrast. First, as noted before, their similarity index is the highest among all the isomers
considered here with a striking value of 0.312761 given that this is a logarithmic scale. The
contrasting similarity measure is fully consistent with the fact that the first isomer of C58 is
a true fullerene containing 12 pentagons and hexagons while the second one designated
as C58(Cs)-hept contains 1 heptagon and 13 pentagons. This contrasting juxtaposition
shown in Figure 1 as well as Table 10 is truly echoed in their similarity index measure
introduced here. This is a direct validation of the similarity matrix measure that I have
developed in that the measure faithfully reflects the variations and dissimilarities as well as
similarities among the structures. Moreover, with the values shown in Figure 2, I now have
a reference platform to evaluate the similarities among isomers through such quantitative
similarity measures.
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As seen from Figure 2, the computed similarity measures are in a logarithmic scale 
and the matrix elements vary between 0.137 and 0.313 where the lowest value correspond-
ing to the most similar structures are for the first two isomers of C36 (Figure 1) which are 
C36(C2)-12 and C36(C2v)-9. As can be seen from both Figure 1 and Table 3, the two isomers 
are very similar in multiple ways. Their overall shapes and structural similarities are strik-
ing. At a quantitative level, an inspection of Table 3 reveals that the first 10 coefficients in 
the matching polynomial are identical while the 11th coefficient differs only by unity. Sev-
eral other subsequent coefficients are also close to each other. This is in turn reflected by 
the similarity matrix element of 0.137484542 for the two isomers. Likewise, the isomers 5 
and 3, which correspond to C36-D5h-15 and C36-D2d-14, exhibit remarkable similarity both 
in terms of their shape, structures, and matching polynomials. That is, the arrangements 
of pentagons and hexagons are such that they provide very similar combinatorial match-
ings. I note that other structures which exhibit such similarities are the two isomers of C28 
in Figure 1; the two isomers have a similarity measure of 0.1677151 on the basis of their 
combinatorial matchings. Likewise, two isomers of C30 also exhibit comparable similarity 

Figure 2. Similarity matrices and reduced Z-indices and scaled reduced ln(Z-indices) of fullerene
isomers considered in this study.

To shed further light into the similarity matrix invariants, let us consider the five
isomers of C50 shown in Figure 1 with their matching polynomials displayed in Table 8. Let
us consider the computed similarity matrix which is highlighted below for the five isomers
of C50 in the order:

C50(C2)-269, C50(C2v)-13, C50(D3)-270, C50(D5h)-271, and C50(D3h)-3.

C50(C2)-269 C50(C2v)-13 C50(D3)-270 C50(D5h)-271 C50(D3h)-3
C50(C2)-269 0.0000000000 0.2783002779 0.2610747109 0.2662630442 0.2850277531
C50(C2v)-13 0.2783002779 0.0000000000 0.2815354907 0.2828349970 0.2726842541
C50(D3)-270 0.2610747109 0.2815354907 0.0000000000 0.2511735066 0.2870732104
C50(D5h)-271 0.2662630442 0.2828349970 0.2511735066 0.0000000000 0.2879451010
C50(D3h)-3 0.2850277531 0.2726842541 0.2870732104 0.2879451010 0.0000000000

The above array suggests that the smallest matrix element (0.251174) is between
the isomers 3 and 4, while the largest matrix element is between the isomers 4 and 5
(0.2879451010). I now refer to Figure 1, where indeed I find the isomers 3 and 4, C50(D3)-270
and C50(D5h)-271, which are quite similar in their shapes and overall structural features.
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On the other hand, the isomers C50(D5h)-271 and C50(D3h)-3 are extremely dissimilar in
that the latter is an oblate spheroid while the former is more spherical. Likewise, as can be
seen from the fifth row of the similarity matrix, the oblate spheroidal C50(D3h)-3 stands out
in having larger matrix elements with the entire array of other isomers of C50 considered
here. This is consistent with the fact that the C50(D3h)-3 isomer is conspicuous among the
five isomers of C50 in being an oblate spheroid while the other four isomers are closer to
spherical structures (See Figure 1).

I note from Figure 2 that although ZR increases rapidly as a function of the number of
atoms in fullerenes, the scaled-logarithmic version can be used to make comparisons. As
pointed out by Hosoya [78], the Z-index by itself does not correlate with the aromaticity or
stability of polycyclic aromatics. However, the reduced index ZR can provide first-order
information on the total number of resonance structures and possible full and partial
matchings. If I consider the two isomers of C60, their ZR values are 1,417,033,687,086,496
and 1,417,370,147,605,744 for the Ih and D3 isomers, respectively. Although the numbers
of the resonance structures of the Ih and D3 structures are 12,500 and 9622, respectively,
their ZR indices exhibit an opposite trend with the Ih isomer exhibiting an overall lower
ZR index. The lower overall ZR for the Ih isomer together with the greater number of
resonance structures for the Ih structure suggests a considerably enhanced stability for
the Ih isomer. This is consistent with the DFT quantum chemical studies on these isomers
which reveal that the D3 isomer of C60 is higher in energy [76]. I find a similar correlation
for other fullerenes such as C50 and C36 with the cautionary note that there is no direct
correlation between the relative stability and the ZR indices as well as the total number of
resonance structures.

Finally, there appears to be a correlation between the shapes of fullerene structures
and the combinatorial matching-based similarity indices. For example, nearly spherical
structures have very close similarity indices while a fullerene isomer with an oblate spheroid
structure exhibits a numerically larger value of the similarity index when compared to more
spherical structures. Likewise, two oblate spheroid isomers have closer similarity and, thus,
a smaller similarity matrix element. The subject matter of quantifying shapes and QShAR
has received attention over the years [79,80]. Consequently, the present similarity matrices
derived from the matchings add yet another novel dimension to the shape similarity
problem. The similarity indices derived here based on combinatorial matchings could
find applications in water clusters [81] where the hydrogen bonds between any two water
molecules could become matchings. Moreover, dimer covers could also model placing
dimers such as transition metal dimers [82] that avoid being neighbors and, thus, could also
serve as models for the chemisorption or substitution of dimeric molecules on fullerene
cages and nanotubes.

4. Conclusions

In retrospect, I have developed powerful similarity measures using matrix invariants
derived from the matching polynomials. These similarity matrices were applied to isomers
of fullerenes, and it was demonstrated that the similarity matrix measures are quite robust
in providing quantitative measures of similarity of two fullerene isomers. It also seems
that the techniques provide some indirect measures of shape similarities of fullerene iso-
mers. There are a few limitations that should be pointed out. The techniques developed
might not provide much contrast for isospectral graphs and isospectral trees. In particular,
for isospectral trees, the matching polynomials and characteristic polynomials become
degenerate. Likewise, some isospectral structures that contain rings with pending frag-
ments might not be contrasted by the matching polynomial-based methods. Babić [83] has
shown the existence of isospectral benzenoid graphs containing 33 vertices and 9 hexagons.
Likewise, the author and Basak [84] have illustrated isospectral benzenoid graphs with
pendant bonds. Yet, the techniques based on matching polynomials appear to provide
considerable promise for molecular structures containing several rings, three-dimensional
fullerene cages, and carbon nanotubes. Graph theoretical techniques analogous to the ones
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developed here in conjunction with group theory and combinatorics can also be applied to
NMR, ESR, and vibrational spectroscopies [85], thus paving the way for the applications of
the emerging field of artificial intelligence.
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23. Randić, M.; Balaban, A.T. Local aromaticity and aromatic sextet theory beyond Clar. Int. J. Quant. Chem. 2018, 118, e25657.

[CrossRef]
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