Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = full-heusler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10080 KB  
Article
Exploring Structural, Optoelectronic, Phonon, Spintronic, and Thermodynamic Properties of Novel Full-Heusler Compounds TiMCu2 (M = Al, Ga, In): Eco-Friendly Materials for Next-Generation Renewable Energy Technologies
by Zeesham Abbas, Amna Parveen, H. I. Elsaeedy, Nejla Mahjoub Said and Mohd Taukeer Khan
Crystals 2025, 15(10), 876; https://doi.org/10.3390/cryst15100876 - 10 Oct 2025
Viewed by 380
Abstract
This work presents a comprehensive first-principles investigation of the structural, electronic, magnetic, optical, and thermodynamic properties of Ti-based full-Heusler compounds TiMCu2 (M = Al, Ga, In). Using density functional theory within the GGA+U framework, the compounds were optimized and analyzed to evaluate [...] Read more.
This work presents a comprehensive first-principles investigation of the structural, electronic, magnetic, optical, and thermodynamic properties of Ti-based full-Heusler compounds TiMCu2 (M = Al, Ga, In). Using density functional theory within the GGA+U framework, the compounds were optimized and analyzed to evaluate their stability and potential for functional applications. The results confirm robust structural and dynamic stability, as verified by elastic constants and phonon dispersion curves. All studied systems exhibit metallic character with pronounced spin polarization, while TiGaCu2 shows the strongest total magnetization, highlighting its suitability for spintronic devices. Optical analyses reveal strong absorption across the visible and near-UV regions, low reflectivity, and favorable dielectric behavior, indicating promise for photovoltaic and optoelectronic applications. Thermodynamic modeling further confirms stability under high temperature and pressure, reinforcing their practical viability. Overall, the TiMCu2 family demonstrates multifunctional characteristics, positioning them as eco-friendly and cost-effective candidates for next-generation renewable energy, spintronic, and optoelectronic technologies. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

12 pages, 11870 KB  
Article
Structural, Elastic, Electronic, Magnetic, and Half-Metallic Properties of Full-Heusler Compounds Fe2LiZ (Z = Ge and Si): A First-Principles Study
by Yufeng Wen, Yanlin Yu, Zhangli Lai and Xianshi Zeng
Metals 2025, 15(7), 808; https://doi.org/10.3390/met15070808 - 18 Jul 2025
Viewed by 614
Abstract
The structural, elastic, electronic, magnetic, and half-metallic properties of full-Heusler Fe2LiSi and Fe2LiGe compounds were investigated using first-principles calculations. Among the studied configurations, the cubic XA structures in the ferromagnetic state for both compounds are the most stable. They [...] Read more.
The structural, elastic, electronic, magnetic, and half-metallic properties of full-Heusler Fe2LiSi and Fe2LiGe compounds were investigated using first-principles calculations. Among the studied configurations, the cubic XA structures in the ferromagnetic state for both compounds are the most stable. They exhibit mechanical stability, elastic anisotropy, and ductility. Compared to Fe2LiGe, Fe2LiSi demonstrates higher stability, stronger anisotropy, greater brittleness, higher Debye and melting temperatures, and a smaller Grüneisen parameter. Both compounds exhibit metallic majority-spin channels and semiconducting minority-spin channels. At the equilibrium lattice constant, Fe2LiSi and Fe2LiGe exhibit half-metallic gaps of 0.141 eV and 0.179 eV, respectively. Both compounds exhibit 100% spin-polarization ratio in specific lattice constant ranges. The total magnetic moment per formula unit (3.000 μB) follows the generalized Slater–Pauling rule and depends on Fe atomic magnetic moments. These properties indicate that Fe2LiSi and Fe2LiGe hold promise for spintronic applications. Full article
Show Figures

Figure 1

13 pages, 5053 KB  
Article
Thermoelectric Properties of NbCoNixSn (x = 0–1)
by Moritz Thiem, Ruijuan Yan, Anke Weidenkaff and Wenjie Xie
Materials 2025, 18(13), 3189; https://doi.org/10.3390/ma18133189 - 5 Jul 2025
Viewed by 813
Abstract
The half-Heusler (HH) compound NbCoSn, with 18 valence electrons, is a promising thermoelectric (TE) material due to its favourable electrical properties and excellent thermal and chemical stability. Enhancing its TE performance typically involves doping and microstructure engineering. In this study, Ni was introduced [...] Read more.
The half-Heusler (HH) compound NbCoSn, with 18 valence electrons, is a promising thermoelectric (TE) material due to its favourable electrical properties and excellent thermal and chemical stability. Enhancing its TE performance typically involves doping and microstructure engineering. In this study, Ni was introduced into NbCoSn to form NbCoNixSn (x = 0–1), and the effects of Ni content on the microstructure and TE properties were systematically investigated. At low doping levels (x ≤ 0.05), Ni occupies interstitial sites, forming NbCoNixSn solid solutions. At higher concentrations (x > 0.05), full-Heusler (FH) secondary phases emerge, resulting in HH–FH composites. The introduction of Co/Ni interstitials enhances TE performance by creating in-gap electronic states and increasing phonon scattering through point defects. A clear structural transition from HH to FH phases is observed with increasing Ni content. The highest figure of merit, ZT ≈ 0.52 at 975 K, was obtained for NbCoNi0.05Sn, comparable to the best values reported for this system. Full article
Show Figures

Figure 1

10 pages, 4065 KB  
Article
Electronic Correlations in Ferromagnetic Heusler Alloy ln2MnW: Insights from First-Principles Calculations
by Abdul Munam Khan and Uzma Zahoor
Alloys 2025, 4(2), 5; https://doi.org/10.3390/alloys4020005 - 28 Mar 2025
Viewed by 1096
Abstract
First-principles calculations were carried out to investigate the physical properties of the full-Heusler compound In2MnW. The WIEN2K code was utilized with various approximations, such as GGA and GGA+U, to analyze its structural, electronic, and magnetic properties. The unit cell was optimized [...] Read more.
First-principles calculations were carried out to investigate the physical properties of the full-Heusler compound In2MnW. The WIEN2K code was utilized with various approximations, such as GGA and GGA+U, to analyze its structural, electronic, and magnetic properties. The unit cell was optimized to determine the ground-state energy. The calculated formation enthalpy (ΔH) of In2MnW is −0.189 eV, indicating its thermodynamic stability due to the negative value. Band structure analysis using both potentials confirms the compound’s metallic nature, which is further supported by total density of states calculations. The total magnetic moment is found to be 4.3 µB, which slightly increases to 4.4 µB when the U parameter is included. These findings suggest that In2MnW demonstrates metallic ferromagnetic behavior, highlighting its potential as a promising ferromagnetic material for mass storage applications. Full article
Show Figures

Figure 1

31 pages, 3890 KB  
Review
A Review on the Magnetovolume Effect of the Full Heusler Alloys Ni2MnZ (Z = In, Sn, Sb)
by Takeshi Kanomata, Xiao Xu, Takuo Sakon, Yuki Nagata, Shin Imada, Toshihiro Omori, Ryosuke Kainuma, Tetsujiro Eto, Yoshiya Adachi, Takumi Kihara, Yasushi Amako, Masaaki Doi and Yoshiya Uwatoko
Metals 2025, 15(2), 215; https://doi.org/10.3390/met15020215 - 18 Feb 2025
Cited by 2 | Viewed by 1896
Abstract
The full Heusler alloys Ni2MnZ (Z = In, Sn, Sb) exhibit ferromagnetic properties with a Curie temperature (TC) above room temperature. The magnetic properties of Ni2MnZ (Z = In, Sn, Sb) were studied through a combination [...] Read more.
The full Heusler alloys Ni2MnZ (Z = In, Sn, Sb) exhibit ferromagnetic properties with a Curie temperature (TC) above room temperature. The magnetic properties of Ni2MnZ (Z = In, Sn, Sb) were studied through a combination of experiments and band calculations under ambient and elevated pressures. The main results of this study open up further prospects for controlling the magnetic properties of the multifunctional Heusler alloys Ni2Mn1+xZ1−x (Z = In, Sn, Sb) and their practical application. Full article
(This article belongs to the Section Metallic Functional Materials)
Show Figures

Figure 1

15 pages, 10397 KB  
Article
Preparation and Physical Properties of Quaternary Mn2FeSi0.5Al0.5 Alloy Powders with Heusler and β-Mn Structures
by Katerina Skotnicova, Jan Jurica, Ondrej Zivotsky, Tomas Cegan, Kamila Hrabovska, Vlastimil Matejka, Simona Zla, Monika Kawulokova and Artur Chrobak
Materials 2025, 18(2), 309; https://doi.org/10.3390/ma18020309 - 11 Jan 2025
Cited by 1 | Viewed by 3138
Abstract
Manganese-based alloys with the composition Mn2FeZ (Z = Si, Al) have been extensively investigated in recent years due to their potential applications in spintronics. The Mn2FeSi alloy, prepared in the form of ingots, powders, or ribbons, exhibits either a [...] Read more.
Manganese-based alloys with the composition Mn2FeZ (Z = Si, Al) have been extensively investigated in recent years due to their potential applications in spintronics. The Mn2FeSi alloy, prepared in the form of ingots, powders, or ribbons, exhibits either a cubic full-Heusler (L21) structure, an inverse-Heusler (XA) structure, or a combination of both. In contrast, the Mn2FeAl alloy has so far been synthesized only in the form of ingots, featuring a primitive cubic (β-Mn type) structure. This study focuses on the new quaternary Mn2FeSi0.5Al0.5 alloy synthesized from pure Mn, Fe, Si, and Al powders via mechanical alloying. The elemental powders were ball-milled for 168 h with a ball-to-powder ratio of 10:1, followed by annealing at 550 °C, 700 °C, and 950 °C for 8 h in an argon protective atmosphere. The results demonstrate that annealing at lower temperatures (550 °C) led to the formation of a Heusler structure with a lattice constant of 0.5739 nm. Annealing at 700 °C resulted in the coexistence of several phases, including the Heusler phase and a newly developed primitive cubic β-Mn structure. Further increasing the annealing temperature to 950 °C completely suppressed the Heusler phase, with the β-Mn structure, having a lattice constant of 0.6281 nm, becoming the dominant phase. These findings confirm the possibility of tuning the structure of Mn2FeSi0.5Al0.5 alloy powder—and thereby its physical properties—by varying the annealing temperature. The sensitivity of magnetic properties to structural changes is demonstrated through magnetization curves and zero-field-cooled/field-cooled curves in the temperature range of 5 K to 300 K. Full article
(This article belongs to the Special Issue Advances in Mechanical Alloying and Milling)
Show Figures

Graphical abstract

11 pages, 3525 KB  
Article
Effects of Ti and Sn Substitutions on Magnetic and Transport Properties of the TiFe2Sn Full Heusler Compound
by Bogdan Popescu, Ilhame Assahsahi, Magdalena Galatanu and Andrei Galatanu
Inorganics 2024, 12(12), 322; https://doi.org/10.3390/inorganics12120322 - 11 Dec 2024
Viewed by 1035
Abstract
The synthesis of polycrystalline TiFe2Sn samples by a route including arc melting and spark plasma sintering with Hf, Y, and In substitutions at the Ti and Sn sites is investigated. For a reduced amount of substitution, around 2 at%, the samples [...] Read more.
The synthesis of polycrystalline TiFe2Sn samples by a route including arc melting and spark plasma sintering with Hf, Y, and In substitutions at the Ti and Sn sites is investigated. For a reduced amount of substitution, around 2 at%, the samples are single phase, while for increased amounts, secondary phases segregate. As is characteristic of these compounds, the Fe-Ti atomic disorder generates a weak ferromagnetic ordering, which is also influenced by the type of substitutional atoms and the secondary phases in the samples with a higher Hf content. The Seebeck coefficient values show an increase for Ti0.98Hf0.02Fe2Sn and for samples with an adjusted Sn content, resulting in slightly increased power factor values. These values reach a maximum for Ti0.98Hf0.02Fe2Sn at approximately 300 K and for TiFe2Sn1.05 at approximately 325 K, namely, 2.69 × 10⁻4 Wm−1K−2 and 2.52 × 10⁻4 Wm−1K−2, respectively. The thermal conductivity of all the samples with substitutions increases with respect to the pristine sample. The highest figure of merit value of 0.016 is also obtained for Ti0.98Hf0.02Fe2Sn at 325 K. Full article
(This article belongs to the Special Issue New Semiconductor Materials for Energy Conversion)
Show Figures

Figure 1

13 pages, 572 KB  
Article
High Spin Magnetic Moments in All-3d-Metallic Co-Based Full Heusler Compounds
by Murat Tas, Kemal Özdoğan, Ersoy Şaşıoğlu and Iosif Galanakis
Materials 2023, 16(24), 7543; https://doi.org/10.3390/ma16247543 - 7 Dec 2023
Cited by 6 | Viewed by 1863
Abstract
We conduct ab-initio electronic structure calculations to explore a novel category of magnetic Heusler compounds, comprising solely 3d transition metal atoms and characterized by high spin magnetic moments. Specifically, we focus on Co2YZ Heusler compounds, where Y and Z [...] Read more.
We conduct ab-initio electronic structure calculations to explore a novel category of magnetic Heusler compounds, comprising solely 3d transition metal atoms and characterized by high spin magnetic moments. Specifically, we focus on Co2YZ Heusler compounds, where Y and Z represent transition metal atoms such that the order of the valence is Co > Y > Z. We show that these compounds exhibit a distinctive region of very low density of minority-spin states at the Fermi level when crystallizing in the L21 lattice structure. The existence of this pseudogap leads most of the studied compounds to a Slater–Pauling-type behavior of their total spin magnetic moment. Co2FeMn is the compound that presents the largest total spin magnetic moment in the unit cell reaching a very large value of 9 μB. Our findings suggest that these compounds are exceptionally promising materials for applications in the realms of spintronics and magnetoelectronics. Full article
Show Figures

Figure 1

24 pages, 10120 KB  
Article
Excellent Thermoelectric Performance in KBaTh (Th = Sb, Bi) Based Half-Heusler Compounds and Design of Actuator for Efficient and Sustainable Energy Harvesting Applications
by Debidatta Behera, Boumaza Akila, Rabie Amraoui, Salim Kadri, Sanat Kumar Mukherjee, Mostafa M. Salah and Ahmed Saeed
Crystals 2023, 13(11), 1551; https://doi.org/10.3390/cryst13111551 - 29 Oct 2023
Cited by 21 | Viewed by 1872
Abstract
To examine the structural, optoelectronic, thermodynamic, and thermoelectric properties of KBaTh (Th = Sb, Bi) half-Heuslers, we used the full potential, linearized augmented plane wave (FP_LAPW) approach as in the Wien2K simulator. Generalized gradient approximation (GGA), technique, was used for the structural optimization. [...] Read more.
To examine the structural, optoelectronic, thermodynamic, and thermoelectric properties of KBaTh (Th = Sb, Bi) half-Heuslers, we used the full potential, linearized augmented plane wave (FP_LAPW) approach as in the Wien2K simulator. Generalized gradient approximation (GGA), technique, was used for the structural optimization. Mechanical stability and ductility were inherent characteristics of the studied KBaTh (Th = Sb, Bi). Having band gaps of 1.31 eV and 1.20 eV for the KBaTh (Th = Sb, Bi) compounds, they have a semiconducting character. The KBaTh (Th = Sb, Bi) compounds are suggested for use in optoelectronic devices based on studies of their optical characteristics. Thermoelectric properties were investigated using the Boltzmann transport provided by the BoltzTraP software. Since the acquired figures of merit (ZT) values for the KBaTh (Th = Sb, Bi) compounds are all almost equal to one at room temperature, this demonstrates that these substances can be used in thermoelectric devices. Additionally, we used the Slack method to determine the lattice thermal conductivity of KBaTh (Th = Sb, Bi). Our research shows that the half-Heusler compounds under investigation increase actuator response time and hence can be considered as good materials for actuators. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 2168 KB  
Article
Unveiling the Magnetic and Structural Properties of (X2YZ; X = Co and Ni, Y = Fe and Mn, and Z = Si) Full-Heusler Alloy Microwires with Fixed Geometrical Parameters
by Mohamed Salaheldeen, Valentina Zhukova, Mihail Ipatov and Arcady Zhukov
Crystals 2023, 13(11), 1550; https://doi.org/10.3390/cryst13111550 - 29 Oct 2023
Cited by 10 | Viewed by 1794
Abstract
We studied Ni2FeSi-, Co2FeSi-, and Co2MnSi-based full-Heusler alloy glass-coated microwires with the same geometric parameters, i.e., fixed nucleus and total diameters, prepared using the Taylor–Ulitovsky method. The fabrication of X2YZ (X = Co and Ni, [...] Read more.
We studied Ni2FeSi-, Co2FeSi-, and Co2MnSi-based full-Heusler alloy glass-coated microwires with the same geometric parameters, i.e., fixed nucleus and total diameters, prepared using the Taylor–Ulitovsky method. The fabrication of X2YZ (X = Co and Ni, Y = Fe and Mn, and Z = Si)-based glass-coated microwires with fixed geometric parameters is quite challenging due to the different sample preparation conditions. The XRD analysis showed a nanocrystalline microstructure for all the samples. The space groups Fm3¯m (FCC) and Im3¯m (BCC) with disordered B2 and A2 types are observed for Ni2FeSi and Co2FeSi, respectively. Meanwhile, a well-defined, ordered L21 type was observed for Co2MnSi GCMWs. The change in the positions of Ni, Co and Mn, Fe in X2YSi resulted in a variation in the lattice cell parameters and average grain size of the sample. The room-temperature magnetic behavior showed a dramatic change depending on the chemical composition, where Ni2FeSi MWs showed the highest coercivity (Hc) compared to Co2FeSi and Co2MnSi MWs. The Hc value of Ni2FeSi MWs was 16 times higher than that of Co2MnSi MWs and 3 times higher than that of Co2FeSi MWs. Meanwhile, the highest reduced remanence was reported for Co2FeSi MWs (Mr = 0.92), being about 0.82 and 0.22 for Ni2FeSi and Co2MnSi MWs, respectively. From the analysis of the temperature dependence of the magnetic properties (Hc and Mr) of X2YZ MWs, we deduced that the Hc showed a stable tendency for Co2MnSi and Co2FeSi MWs. Meanwhile, two flipped points were observed for Ni2FeSi MWs, where the behavior of Hc changed with temperature. For Mr, a monotonic increase on decreasing the temperature was observed for Co2FeSi and Ni2FeSi MWs, and it remained roughly stable for Co2MnSi MWs. The thermomagnetic curves at low magnetic field showed irreversible magnetic behavior for Co2MnSi and Co2FeSi MWs and regular ferromagnetic behavior for Ni2FeSi MWs. The current result illustrates the ability to tailor the structure and magnetic behavior of X2YZ MWs at fixed geometric parameters. Additionally, a different behavior was revealed in X2YZ MWs depending on the degree of ordering and element distribution. The tunability of the magnetic properties of X2YZ MWs makes them suitable for sensing applications. Full article
(This article belongs to the Topic Advanced Magnetic Alloys)
Show Figures

Figure 1

17 pages, 1977 KB  
Article
Effect of Electron Correlations on the Electronic Structure and Magnetic Properties of the Full Heusler Alloy Mn2NiAl
by Evgeniy D. Chernov and Alexey V. Lukoyanov
Magnetochemistry 2023, 9(7), 185; https://doi.org/10.3390/magnetochemistry9070185 - 17 Jul 2023
Cited by 8 | Viewed by 2264
Abstract
In this theoretical study, we investigate the effect of electron correlations on the electronic structure and magnetic properties of the full Heusler alloy Mn2NiAl in the framework of first-principles calculations. We investigate the electron correlation effect as employed within hybrid functional [...] Read more.
In this theoretical study, we investigate the effect of electron correlations on the electronic structure and magnetic properties of the full Heusler alloy Mn2NiAl in the framework of first-principles calculations. We investigate the electron correlation effect as employed within hybrid functional (HSE) and also within the DFT+U method with varied values of parameters between 0.9 and 6 eV. The XA-crystal structure was investigated with antiferromagnetic orderings of the magnetic moments of the manganese. It was found that with a growth of the Coulomb interaction parameter, the manganese ions magnetic moment increases, and it reaches the value of 4.15–4.46 μB per Mn. In addition, the total magnetic moment decreases because of the AFM ordering of the Mn ions and a small magnetic moment of Ni. The calculated total magnetic value agrees well with recent experiments demonstrating a low value of magnetization. This experimental value is most closely reproduced for the moderate values of the Coulomb parameter, also calculated in constrained LDA, while previous DFT studies substantially overestimated this value. It is also worth noticing that for all values of the Coulomb interaction parameter, this compound remains metallic in its electronic structure in agreement with transport measurements. Full article
(This article belongs to the Special Issue Magnetic Properties of Metals and Alloys)
Show Figures

Figure 1

14 pages, 3020 KB  
Article
Structural, Elastic, Electronic, and Magnetic Properties of Full-Heusler Alloys Sc2TiAl and Sc2TiSi Using the FP-LAPW Method
by Khadejah M. Al-Masri, Mohammed S. Abu-Jafar, Mahmoud Farout, Diana Dahliah, Ahmad A. Mousa, Said M. Azar and Rabah Khenata
Magnetochemistry 2023, 9(4), 108; https://doi.org/10.3390/magnetochemistry9040108 - 16 Apr 2023
Cited by 8 | Viewed by 3337
Abstract
In this article, the structural, elastic, electronic, and magnetic characteristics of both regular and inverse Heusler alloys, Sc2TiAl and Sc2TiSi, were investigated using a full-potential, linearized augmented plane-wave (FP-LAPW) method, within the density functional theory. The optimized structural parameters [...] Read more.
In this article, the structural, elastic, electronic, and magnetic characteristics of both regular and inverse Heusler alloys, Sc2TiAl and Sc2TiSi, were investigated using a full-potential, linearized augmented plane-wave (FP-LAPW) method, within the density functional theory. The optimized structural parameters were determined from the minimization of the total energy versus the volume of the unit cell. The band structure and DOS calculations were performed within the generalized gradient approximation (GGA) and modified Becke–Johnson approaches (mBJ-GGA), employed in the Wien2K code. The density of states (DOS) and band structure (BS) indicate the metallic nature of the regular structure of the two compounds. The total spin magnetic moments for the two compounds were consistent with the previous theoretical results. We calculated the elastic properties: bulk moduli, B, Poisson’s ratio, ν, shear modulus, S, Young’s modulus (Y), and the B/s ratio. Additionally, we used Blackman’s diagram and Every’s diagram to compare the elastic properties of the studied compounds, whereas Pugh’s and Poisson’s ratios were used in the analysis of the relationship between interatomic bonding type and physical properties. Mechanically, we found that the regular and inverse full-Heusler compounds Sc2TiAl and Sc2TiSi were stable. The results agree with previous studies, providing a road map for possible uses in electronic devices. Full article
Show Figures

Figure 1

16 pages, 9132 KB  
Article
First-Principles Studies on the Physical Properties of the Half Heusler RbNbCd and RbNbZn Compounds: A Promising Material for Thermoelectric Applications
by Debidatta Behera, Ahmed Azzouz-Rached, Abdessalem Bouhenna, Mostafa M. Salah, Ahmed Shaker and Sanat Kumar Mukherjee
Crystals 2023, 13(4), 618; https://doi.org/10.3390/cryst13040618 - 4 Apr 2023
Cited by 26 | Viewed by 2766
Abstract
This work focuses on study of the structural, electronic, thermodynamic and thermoelectric properties of RbNbCd and RbNbZn Half Heusler (HH), utilizing a full-potential linearized augmented plane wave (FP-LAPW) approach and the Boltzmann transport equation using a constant relaxation time approximation within the context [...] Read more.
This work focuses on study of the structural, electronic, thermodynamic and thermoelectric properties of RbNbCd and RbNbZn Half Heusler (HH), utilizing a full-potential linearized augmented plane wave (FP-LAPW) approach and the Boltzmann transport equation using a constant relaxation time approximation within the context of density functional theory (DFT) as embedded in the WIEN2k code. The structural analysis employed the generalized gradient approximation (GGA) and considered the Birch Murnaghan equation of state (EOS), which results in the stable phase for RbNbCd and RbNbZn. The positive phonon spectra indicate the dynamical stability of the studied RbNbCd and RbNbZn. The compounds under investigation that have no bandgap are metallic, as evidenced by their electronic properties. Their mechanical and thermal stability as well as their anisotropic and ductile character are confirmed by the various elastic and thermodynamic parameters. The lattice thermal conductivity has been calculated. This thorough analysis demonstrates the applicability of the studied RbNbCd and RbNbZn for thermoelectric applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

21 pages, 5864 KB  
Article
The Structural, Electronic, Magnetic and Elastic Properties of Full-Heusler Co2CrAl and Cr2MnSb: An Ab Initio Study
by Sara J. Yahya, Mohammed S. Abu-Jafar, Said Al Azar, Ahmad A. Mousa, Rabah Khenata, Doha Abu-Baker and Mahmoud Farout
Crystals 2022, 12(11), 1580; https://doi.org/10.3390/cryst12111580 - 6 Nov 2022
Cited by 4 | Viewed by 3532
Abstract
In this paper, the full-potential, linearized augmented plane wave (FP-LAPW) method was employed in investigating full-Heusler Co2CrA1’s structural, elastic, magnetic and electronic properties. The FP-LAPW method was employed in computing the structural parameters (bulk modulus, lattice parameters, c/a and first pressure [...] Read more.
In this paper, the full-potential, linearized augmented plane wave (FP-LAPW) method was employed in investigating full-Heusler Co2CrA1’s structural, elastic, magnetic and electronic properties. The FP-LAPW method was employed in computing the structural parameters (bulk modulus, lattice parameters, c/a and first pressure derivatives). The optimized structural parameters were determined by generalized gradient approximation (GGA) for the exchange-correlation potential, Vxc. Estimating the energy gaps for these compounds was accomplished through modified Becke–Johnson potential (mBJ). It was found that the conventional Heusler compound Co2CrA1 with mBJ and CGA approaches had a half-metallic character, and its spin-down configuration had an energy gap. It was also found that the conventional and inverse Heusler Cr2MnSb and tetragonal (139) (Co2CrA1, Cr2MnSb) compounds with a half-metallic character had direct energy gaps in the spin-down configuration. To a certain degree, the total magnetic moments for the two compounds were compatible with the theoretical and experimental results already attained. Mechanically, we found that the conventional and inverse full-Heusler compound Co2CrAl was stable, but the inverse Cr2MnSb was unstable in the ferromagnetic state. The conventional Heusler compound Cr2MnSb was mechanically stable in the ferromagnetic state. Full article
(This article belongs to the Special Issue Intermetallic Compound (Volume II))
Show Figures

Figure 1

13 pages, 9324 KB  
Article
Electronic Properties and Chemical Bonding in V2FeSi and Fe2VSi Heusler Alloys
by Aisulu Abuova, Nurpeiis Merali, Fatima Abuova, Vladimir Khovaylo, Nursultan Sagatov and Talgat Inerbaev
Crystals 2022, 12(11), 1546; https://doi.org/10.3390/cryst12111546 - 29 Oct 2022
Cited by 11 | Viewed by 2470
Abstract
First-principles calculations of the stability, electronic, and magnetic properties of full-Heusler compound V2FeSi and Fe2VSi in regular (L21) and inverse (XA) structures have been performed using density functional theory within an SCAN [...] Read more.
First-principles calculations of the stability, electronic, and magnetic properties of full-Heusler compound V2FeSi and Fe2VSi in regular (L21) and inverse (XA) structures have been performed using density functional theory within an SCAN meta-GGA functional. It is found that the XA crystal lattice is energetically more favorable for V2FeSi, while Fe2VSi forms the L21 structure. In both cases, the electronic structure of the energetically stable modifications corresponds to half-metallic ferrimagnets. Magnetic properties of energetically favorable structures obey the Slater–Pauling rule. All considered properties of the studied structures are explained within the crystal orbital Hamilton population analysis. Full article
(This article belongs to the Special Issue Advances in Metal Matrix Composites)
Show Figures

Figure 1

Back to TopTop