Effects of Ti and Sn Substitutions on Magnetic and Transport Properties of the TiFe2Sn Full Heusler Compound
Abstract
:1. Introduction
2. Results
2.1. Structure and Morphology
2.2. Magnetism
2.3. Transport Properties
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wederni, A.; Daza, J.; ben Mbarek, W.; Saurina, J.; Escoda, L.; Suñol, J.J. Crystal Structure and Properties of Heusler Alloys: A Comprehensive Review. Metals 2024, 14, 688. [Google Scholar] [CrossRef]
- Chatterjee, S.; Samanta, S.; Ghosh, B.; Mandal, K. Half-metallic ferromagnetism and intrinsic anomalous Hall effect in the topological Heusler compound Co2MnGe. Phys. Rev. B 2023, 108, 205108. [Google Scholar] [CrossRef]
- Kacimi, S.; Mehnane, H.; Zaoui, A. I-II-V and I-III-IV half-Heusler compounds for optoelectronic applications: Comparative ab initio study. J. Alloy. Compd. 2014, 587, 451–458. [Google Scholar] [CrossRef]
- Barwal, V.; Behera, N.; Husain, S.; Gupta, N.K.; Hait, S.; Pandey, L.; Mishra, V.; Chaudhary, S. Spin gapless semiconducting behavior in inverse Heusler Mn2−xCo1+xAl (0 ≤ x ≤ 1.75) thin films. J. Magn. Magn. Mater. 2021, 518, 167404. [Google Scholar] [CrossRef]
- Elphick, K.; Frost, W.; Samiepour, M.; Kubota, T.; Takanashi, K.; Sukegawa, H.; Mitani, S.; Hirohata, A. Heusler alloys for spintronic devices: Review on recent development and future perspectives. Sci. Technol. Adv. Mater. 2021, 22, 235–271. [Google Scholar] [CrossRef]
- Sofronie, M.; Tolea, F.; Tolea, M.; Popescu, B.; Valeanu, M. Magnetic and magnetostrictive properties of the ternary Fe67.5Pd30.5Ga2 ferromagnetic shape memory ribbons. J. Phys. Chem. Solids 2020, 142, 109446. [Google Scholar] [CrossRef]
- Zhu, H.; Mao, J.; Li, Y.; Sun, J.; Wang, Y.; Zhu, Q.; Li, G.; Song, Q.; Zhou, J.; Fu, Y.; et al. Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nat. Commun. 2019, 10, 270. [Google Scholar] [CrossRef]
- Zhu, H.; He, R.; Mao, J.; Zhu, Q.; Li, C.; Sun, J.; Ren, W.; Wang, Y.; Liu, Z.; Tang, Z.; et al. Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. Nat. Commun. 2018, 9, 297. [Google Scholar] [CrossRef]
- Górnicka, K.; Gui, X.; Chamorro, J.R.; McQueen, T.M.; Cava, R.J.; Klimczuk, T.; Winiarski, M.J. Superconductivity-Electron Count Relationship in Heusler Phases—The Case of LiPd2Si. Chem. Mater. 2024, 36, 1870–1879. [Google Scholar] [CrossRef]
- Yadav, K.; Mukherjee, K. Evidence of multi-band superconductivity in non-centrosymmetric full Heusler alloy LuPd2Sn. J. Phys. Condens. Matter 2023, 35, 275601. [Google Scholar] [CrossRef]
- Palin, V.; Anadón, A.; Andrieu, S.; Fagot-Revurat, Y.; de Melo, C.; Ghanbaja, J.; Kurnosikov, O.; Petit-Watelot, S.; Bertran, F.; Rojas-Sánchez, J.C. Testing the topological insulator behavior of half-Heusler PdYBi and PtYBi (111) epitaxial thin films. Phys. Rev. Mater. 2023, 7, 104203. [Google Scholar] [CrossRef]
- Pham, A.; Li, S. Unique topological surface states of full-Heusler topological crystalline insulators. Phys. Rev. B 2017, 95, 115124. [Google Scholar] [CrossRef]
- Gurau, C.; Gurau, G.; Tolea, F.; Popescu, B.; Banu, M.; Bujoreanu, L.G. The effect of the in-situ heat treatment on the martensitic transformation and specific properties of the Fe-Mn-Si-Cr shape memory alloys processed by HSHPT severe plastic deformation. Materials 2021, 14, 4621. [Google Scholar] [CrossRef] [PubMed]
- Sofronie, M.; Popescu, B.; Enculescu, M.; Tolea, M.; Tolea, F. Processing Effects on the Martensitic Transformation and Related Properties in the Ni55Fe18Nd2Ga25 Ferromagnetic Shape Memory Alloy. Nanomaterials 2022, 12, 3667. [Google Scholar] [CrossRef]
- Rogl, G.; Rogl, P.F. Development of Thermoelectric Half-Heusler Alloys over the Past 25 Years. Crystals 2023, 13, 1152. [Google Scholar] [CrossRef]
- Nishino, Y. Electronic Structure and Transport Properties of Pseudogap System Fe2VAl. Mater. Trans. 2001, 42, 902–910. [Google Scholar] [CrossRef]
- Mikami, M.; Inukai, M.; Miyazaki, H.; Nishino, Y. Effect of Off-Stoichiometry on the Thermoelectric Properties of Heusler-Type Fe2VAl Sintered Alloys. J. Electron. Mater. 2016, 45, 1284–1289. [Google Scholar] [CrossRef]
- Nakatsugawa, H.; Ozaki, T.; Kishimura, H.; Okamoto, Y. Thermoelectric Properties of Heusler Fe2TiSn Alloys. J. Electron. Mater. 2020, 49, 2802–2812. [Google Scholar] [CrossRef]
- Yabuuchi, S.; Okamoto, M.; Nishide, A.; Kurosaki, Y.; Hayakawa, J. Large Seebeck Coefficients of Fe2TiSn and Fe2TiSi: First-Principles Study. Appl. Phys. Express 2013, 6, 025504. [Google Scholar] [CrossRef]
- Taranova, A.I.; Novitskii, A.P.; Voronin, A.I.; Taskaev, S.V.; Khovaylo, V.V. Influence of V Doping on the Thermoelectric Properties of Fe2Ti1−xVxSn Heusler Alloys. Semiconductors 2019, 53, 768–771. [Google Scholar] [CrossRef]
- Novitskii, A.; Serhiienko, I.; Nepapushev, A.; Ivanova, A.; Sviridova, T.; Moskovskikh, D.; Voronin, A.; Miki, H.; Khovaylo, V. Mechanochemical synthesis and thermoelectric properties of TiFe2Sn Heusler alloy. Intermetallics 2021, 133, 107195. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, Y.; Wang, Y.; Zhang, H.; Fu, Z.; Wang, S.; Yu, W.; Du, J.; Wang, W.; Qiu, J.; et al. Thermoelectric Properties of n-type Full-Heusler Fe2−2xCo2xTiSn Prepared by an Ultra-fast Synthesis Process. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2021, 36, 497–504. [Google Scholar] [CrossRef]
- Zou, T.; Jia, T.; Xie, W.; Zhang, Y.; Widenmeyer, M.; Xiao, X.; Weidenkaff, A. Band structure modification of the thermoelectric Heusler-phase TiFe2Sn via Mn substitution. Phys. Chem. Chem. Phys. 2017, 19, 18273–18278. [Google Scholar] [CrossRef] [PubMed]
- Assahsahi, I.; Popescu, B. Structural, Magnetic, and Transport Properties of Ti(Fe,Re)2Sn Heusler Alloys. Metall. Mater. Trans. A 2024, 55, 5128–5136. [Google Scholar] [CrossRef]
- Pallecchi, I.; Pani, M.; Ricci, F.; Lemal, S.; Bilc, D.I.; Ghosez, P.; Bernini, C.; Ardoino, N.; Lamura, G.; Marré, D. Thermoelectric Properties of Chemically Substituted Full-Heusler Fe2TiSn1−xSbx (x = 0, 0.1, and 0.2) Compounds. Phys. Rev. Mater. 2018, 2, 075403. [Google Scholar] [CrossRef]
- Buffon, M.L.C.; Laurita, G.; Lamontagne, L.; Levin, E.E.; Mooraj, S.; Lloyd, D.L.; White, N.; Pollock, T.M.; Seshadri, R. Thermoelectric Performance and the Role of Anti-site Disorder in the 24-Electron Heusler TiFe2Sn. J. Phys. Condens. Matter 2017, 29, 405702. [Google Scholar] [CrossRef]
- Pallecchi, I.; Bilc, D.I.; Pani, M.; Ricci, F.; Lemal, S.; Ghosez, P.; Marré, D. Roles of Defects and Sb-Doping in the Thermoelectric Properties of Full-Heusler Fe2TiSn. ACS Appl. Mater. Interfaces 2022, 14, 25722–25730. [Google Scholar] [CrossRef]
- Bilc, D.I.; Hautier, G.; Waroquiers, D.; Rignanese, G.-M.; Ghosez, P. Low-Dimensional Transport and Large Thermoelectric Power Factors in Bulk Semiconductors by Band Engineering of Highly Directional Electronic States. Phys. Rev. Lett. 2015, 114, 136601. [Google Scholar] [CrossRef]
- Zheng, Z.-H.; Shi, X.-L.; Ao, D.-W.; Liu, W.-D.; Li, M.; Kou, L.-Z.; Chen, Y.-X.; Li, F.; Wei, M.; Liang, G.-X.; et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat. Sustain. 2022, 6, 180–191. [Google Scholar] [CrossRef]
- Yan, Q.; Kanatzidis, M.G. High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 2022, 21, 503–513. [Google Scholar] [CrossRef]
- Popescu, B.; Galatanu, M.; Enculescu, M.; Galatanu, A. The inclusion of ceramic carbides dispersion in In and Yb filled CoSb3 and their effect on the thermoelectric performance. J. Alloy. Compd. 2022, 893, 162400. [Google Scholar] [CrossRef]
- Kim, G.; Shin, H.; Lee, J.; Lee, W. A Review on Silicide-Based Materials: Thermoelectric and Mechanical Properties. Met. Mater. Int. 2021, 27, 2205–2219. [Google Scholar] [CrossRef]
- Assahsahi, I.; Popescu, B.; Enculescu, M.; Galatanu, M.; Galca, A.C.; El Bouayadi, R.; Zejli, D.; Galatanu, A. Influence of the synthesis parameters on the transport properties of Mg2Si0.4Sn0.6 solid solutions produced by melting and spark plasma sintering. J. Phys. Chem. Solids 2022, 163, 110561. [Google Scholar] [CrossRef]
- Assahsahi, I.; Popescu, B.; El Bouayadi, R.; Zejli, D.; Enculescu, M.; Galatanu, A. Thermoelectric properties of p-type Mg2Si0.3Sn0.7 doped with silver and gallium. J. Alloy. Compd. 2023, 944, 169270. [Google Scholar] [CrossRef]
- Slebarski, A.; Maple, M.B.; Sirvent, E.C.; Tworuszka, D.; Orzechowska, M.; Wrona, A.; Jezierski, A.; Chiuzbaian, S.; Neumann, M. Weak ferromagnetism induced by atomic disorder in Fe2TiSn. Phys. Rev. B 2000, 62, 3296–3299. [Google Scholar] [CrossRef]
- Belošević-Čavor, J.; Koteski, V.; Novaković, N.; Concas, G.; Congiu, F.; Spano, G. Magnetic properties, Mössbauer effect and first principle calculations study of laves phase HfFe2. EPJ B 2006, 50, 425–430. [Google Scholar] [CrossRef]
- Franz, R.; Wiedemann, G. Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann. Der Phys. 1853, 165, 497–531. [Google Scholar] [CrossRef]
- Graf, T.; Felser, C.; Parkin, S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 2011, 39, 1–50. [Google Scholar] [CrossRef]
- Lue, C.S.; Kuo, Y.-K. Thermal and transport properties of the Heusler-type compounds Fe2−xTi1+xSn. J. Appl. Phys. 2004, 96, 2681–2683. [Google Scholar] [CrossRef]
- Saito, T.; Kamishima, S. Magnetic and thermoelectric properties of Fe–Ti–Sn alloys. IEEE Trans. Magn. 2019, 55, 2900104. [Google Scholar] [CrossRef]
Sample | Extra Phases (XRD) | a (Å) | Density | GoF * | ||
---|---|---|---|---|---|---|
Theoretical (g/cm3) | Experimental (g/cm3) | Relative (%) | ||||
TiFe2Sn | 6.062 (2) | 8.008 | 7.662 | 95.68 | 2.2 | |
TiFe2Sn1.05 | 6.061 (7) | 8.072 | 7.433 | 92.08 | 2.2 | |
TiFe2Sn0.99In0.01 | 6.061 (8) | 7.925 | 6.961 | 87.83 | 2 | |
TiFe2Sn0.98In0.02 | 6.062 (7) | 8.026 | 7.011 | 87.35 | 2 | |
Hf0.02Ti0.98Fe2Sn | 6.066 (0) | 8.695 | 7.662 | 88.12 | 1 | |
Hf0.25Ti0.75Fe2Sn (80.6%) | HfFe2 (17.1%) Hf (2.3%) | 6.075 (2) | 8.846 | 8.518 | 96.29 | 2.4 |
Y0.02Ti0.98Fe2Sn | 6.061 (5) | 8.175 | 7.514 | 91.91 | 2.1 |
Sample | μeff (μB) | θCW (K) | MS (μB/f.u.) @ 2K |
---|---|---|---|
TiFe2Sn | 2.868 | 223.96 | 0.179 |
TiFe2Sn0.98In0.02 | 2.113 | 243.82 | 0.236 |
Ti0.98Hf0.02Fe2Sn | 2.733 | 243.79 | 0.229 |
Ti0.75Hf0.25Fe2Sn | 10.54 | 352.21 | 1.157 |
Ti0.98Y0.02Fe2Sn | 1.709 | 237.5 | 0.224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, B.; Assahsahi, I.; Galatanu, M.; Galatanu, A. Effects of Ti and Sn Substitutions on Magnetic and Transport Properties of the TiFe2Sn Full Heusler Compound. Inorganics 2024, 12, 322. https://doi.org/10.3390/inorganics12120322
Popescu B, Assahsahi I, Galatanu M, Galatanu A. Effects of Ti and Sn Substitutions on Magnetic and Transport Properties of the TiFe2Sn Full Heusler Compound. Inorganics. 2024; 12(12):322. https://doi.org/10.3390/inorganics12120322
Chicago/Turabian StylePopescu, Bogdan, Ilhame Assahsahi, Magdalena Galatanu, and Andrei Galatanu. 2024. "Effects of Ti and Sn Substitutions on Magnetic and Transport Properties of the TiFe2Sn Full Heusler Compound" Inorganics 12, no. 12: 322. https://doi.org/10.3390/inorganics12120322
APA StylePopescu, B., Assahsahi, I., Galatanu, M., & Galatanu, A. (2024). Effects of Ti and Sn Substitutions on Magnetic and Transport Properties of the TiFe2Sn Full Heusler Compound. Inorganics, 12(12), 322. https://doi.org/10.3390/inorganics12120322