Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (654)

Search Parameters:
Keywords = full polarization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 49278 KB  
Article
Lightweight Attention Refined and Complex-Valued BiSeNetV2 for Semantic Segmentation of Polarimetric SAR Image
by Ruiqi Xu, Shuangxi Zhang, Chenchu Dong, Shaohui Mei, Jinyi Zhang and Qiang Zhao
Remote Sens. 2025, 17(21), 3527; https://doi.org/10.3390/rs17213527 (registering DOI) - 24 Oct 2025
Abstract
In the semantic segmentation tasks of polarimetric SAR images, deep learning has become an important end-to-end method that uses convolutional neural networks (CNNs) and other advanced network architectures to extract features and classify the target region pixel by pixel. However, applying original networks [...] Read more.
In the semantic segmentation tasks of polarimetric SAR images, deep learning has become an important end-to-end method that uses convolutional neural networks (CNNs) and other advanced network architectures to extract features and classify the target region pixel by pixel. However, applying original networks used to optical images for PolSAR image segmentation directly will result in the loss of rich phase information in PolSAR data, which leads to unsatisfactory classification results. In order to make full use of polarization information, the complex-valued BiSeNetV2 with a bilateral-segmentation structure is studied and expanded in this work. Then, considering further improving the ability to extract semantic features in the complex domain and alleviating the imbalance of polarization channel response, the complex-valued BiSeNetV2 with a lightweight attention module (LAM-CV-BiSeNetV2) is proposed for the semantic segmentation of PolSAR images. LAM-CV-BiSeNetV2 supports complex-valued operations, and a lightweight attention module (LAM) is designed and introduced at the end of the Semantic Branch to enhance the extraction of detailed features. Compared with the original BiSeNetV2, the LAM-CV-BiSeNetV2 can not only more fully extract the phase information from polarimetric SAR data, but also has stronger semantic feature extraction capabilities. The experimental results on the Flevoland and San Francisco datasets demonstrate that the proposed LAM has better and more stable performance than other commonly used attention modules, and the proposed network can always obtain better classification results than BiSeNetV2 and other known real-valued networks. Full article
Show Figures

Figure 1

17 pages, 3747 KB  
Article
Quasi-Commercial Pouch Sodium-Ion Battery Capacitors Achieve Extended High-Power Cyclability Through Na3V2(PO4)3/Activated Carbon Hybrid Cathode Design with Presodiation-Free Anodes
by Hengheng Xia, Yuman Zhang, Chongyang Yang, Jianhua Zhang, Yue-Ling Bai, Zhongxun An and Jiaqiang Xu
Batteries 2025, 11(10), 379; https://doi.org/10.3390/batteries11100379 - 17 Oct 2025
Viewed by 280
Abstract
Sodium–ion battery capacitors (SIBatCs) synergistically combine battery–type and capacitor–type components in an inter–parallel configuration, simultaneously delivering high energy and power densities. We pioneer the development of quasi–commercial pouch SIBatCs using Na3V2(PO4)3/activated carbon (NVP/AC) hybrid cathodes [...] Read more.
Sodium–ion battery capacitors (SIBatCs) synergistically combine battery–type and capacitor–type components in an inter–parallel configuration, simultaneously delivering high energy and power densities. We pioneer the development of quasi–commercial pouch SIBatCs using Na3V2(PO4)3/activated carbon (NVP/AC) hybrid cathodes and hard carbon anodes. The hybrid design utilizes NVP as an intrinsic sodium source, eliminating complex anode presodiation—an obstacle to industrialization. The AC component fulfills multiple roles—contributing capacitive capacity, enhancing conductivity, and acting as an electrolyte reservoir, which decreases electrode resistivity as well as polarization. In full cells, an optimal NVP/AC mass ratio range of 10:1–2:1 is identified, enabling balanced low resistance, high energy density, exceptional power density, and long cycle life. SIBatCs incorporating R10/1 (mNVP:mAC = 10:1) and R4/1 (mNVP:mAC = 4:1) achieve energy densities of 148.9 Wh kg−1 (81.0 W kg−1) and 120.6 Wh kg−1 (79.3 W kg−1), respectively. Even at ultrahigh power densities of 30.53 and 29.81 kW kg−1, they retain corresponding energy densities of 50.4 and 39.6 Wh kg−1. They exhibit excellent capacity retentions of 32.8% and 41.6% after 5000 cycles—significantly outperforming pure NVP–based cells (18.0%). The hybrid architecture ensures robust performance across a wide temperature range (−30–60 °C). This work presents a scalable solution for high–performance sodium–ion EES hybrid systems. Full article
Show Figures

Figure 1

18 pages, 3322 KB  
Article
Refractive Index Sensing Properties of Metal–Dielectric Yurt Tetramer Metasurface
by Shuqi Lv, Paerhatijiang Tuersun, Shuyuan Li, Meng Wang and Bojun Pu
Nanomaterials 2025, 15(20), 1570; https://doi.org/10.3390/nano15201570 - 15 Oct 2025
Viewed by 253
Abstract
The metal–dielectric hybrid tetramer metasurface has received a lot of attention in the field of optical sensing owing to the excellent refractive index sensing performance. However, achieving simultaneous high-quality Q-factor, polarization insensitivity, multi-band tunability across visible to near-infrared spectra, and ultra-narrow linewidth [...] Read more.
The metal–dielectric hybrid tetramer metasurface has received a lot of attention in the field of optical sensing owing to the excellent refractive index sensing performance. However, achieving simultaneous high-quality Q-factor, polarization insensitivity, multi-band tunability across visible to near-infrared spectra, and ultra-narrow linewidth is an urgent problem to be solved. To overcome this challenge, we proposed a metal–dielectric yurt tetramer metasurface. The finite-difference time-domain method was used to simulate the sensing properties. We explored the physical mechanism of different resonance modes, optimized the structure parameters of the metasurface, and investigated the influence of incident light and environmental parameters on the sensing properties. The results show that the proposed structure not only possesses a high Q-factor but also exhibits excellent wavelength tunability in the visible to near-infrared band and has polarization insensitivity. By skillfully introducing the structural size perturbation, the surface plasmon resonance mode and two Fano resonance modes are successfully excited at the wavelengths of 737.43 nm, 808.99 nm, and 939.50 nm. The light–matter interaction at the Fano resonance frequencies is highly enhanced so that a maximum refractive index sensitivity, figures of merit (FOM), and Q-factor of 500.94 nm/RIU, 491.12 RIU−1, and 793.13 are obtained. The narrowest full width at half maximum (FWHM) is 1.02 nm, respectively. This work provides a theoretical basis for the realization of a high-performance metasurface refractive index sensor. Full article
(This article belongs to the Special Issue Theoretical Calculation Study of Nanomaterials: 2nd Edition)
Show Figures

Figure 1

11 pages, 1351 KB  
Article
Construction of High-Resolution Goos–Hänchen Shift Measurement System
by Xinmin Fan, Hui Liu, Zhonglin Lv, Shande Li, Yan Wang, Fuyong Qin, Chunyan Wang and Xiaodong Huang
Photonics 2025, 12(10), 1002; https://doi.org/10.3390/photonics12101002 - 11 Oct 2025
Viewed by 216
Abstract
Accurate measurement of the Goos–Hänchen (GH) shift serves as a crucial foundation for the deepening of its theories and the expansion of its applications. To meet the requirements for GH shift measurement, this study constructed a complete experimental system. Composed of a stable [...] Read more.
Accurate measurement of the Goos–Hänchen (GH) shift serves as a crucial foundation for the deepening of its theories and the expansion of its applications. To meet the requirements for GH shift measurement, this study constructed a complete experimental system. Composed of a stable laser light source, a high-precision optical path control unit with adjustable incident angles, a high sensitivity detection scheme, and an integrated control and data processing module, this system possesses the capability of full-process measurement covering optical signal generation, adjustment, detection, and data analysis. To effectively obtain the GH shift, this research adopted the TE/TM polarization differential method for measurement experiments and discussed the performance indicators of the system. Experimental verification shows that the system can accomplish the GH shift measurement task accurately and reliably. The experimental platform established in this study provides a practical tool for in-depth theoretical research and application exploration of the GH shift. Furthermore, its high-precision measurement capability not only lays a foundation for the research and development of optical sensing technologies based on the GH shift phenomenon but also offers important support for further revealing the physical essence of the beam shift effect and exploring its potential technical application value. Full article
Show Figures

Figure 1

24 pages, 10080 KB  
Article
Exploring Structural, Optoelectronic, Phonon, Spintronic, and Thermodynamic Properties of Novel Full-Heusler Compounds TiMCu2 (M = Al, Ga, In): Eco-Friendly Materials for Next-Generation Renewable Energy Technologies
by Zeesham Abbas, Amna Parveen, H. I. Elsaeedy, Nejla Mahjoub Said and Mohd Taukeer Khan
Crystals 2025, 15(10), 876; https://doi.org/10.3390/cryst15100876 - 10 Oct 2025
Viewed by 279
Abstract
This work presents a comprehensive first-principles investigation of the structural, electronic, magnetic, optical, and thermodynamic properties of Ti-based full-Heusler compounds TiMCu2 (M = Al, Ga, In). Using density functional theory within the GGA+U framework, the compounds were optimized and analyzed to evaluate [...] Read more.
This work presents a comprehensive first-principles investigation of the structural, electronic, magnetic, optical, and thermodynamic properties of Ti-based full-Heusler compounds TiMCu2 (M = Al, Ga, In). Using density functional theory within the GGA+U framework, the compounds were optimized and analyzed to evaluate their stability and potential for functional applications. The results confirm robust structural and dynamic stability, as verified by elastic constants and phonon dispersion curves. All studied systems exhibit metallic character with pronounced spin polarization, while TiGaCu2 shows the strongest total magnetization, highlighting its suitability for spintronic devices. Optical analyses reveal strong absorption across the visible and near-UV regions, low reflectivity, and favorable dielectric behavior, indicating promise for photovoltaic and optoelectronic applications. Thermodynamic modeling further confirms stability under high temperature and pressure, reinforcing their practical viability. Overall, the TiMCu2 family demonstrates multifunctional characteristics, positioning them as eco-friendly and cost-effective candidates for next-generation renewable energy, spintronic, and optoelectronic technologies. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 21399 KB  
Article
Temporal Variability of Major Stratospheric Sudden Warmings in CMIP5 Climate Change Scenarios
by Víctor Manuel Chávez-Pérez, Juan A. Añel, Citlalli Almaguer-Gómez and Laura de la Torre
Climate 2025, 13(10), 207; https://doi.org/10.3390/cli13100207 - 2 Oct 2025
Viewed by 452
Abstract
Major stratospheric sudden warmings are key processes in the coupling between the stratosphere and the troposphere, exerting a direct influence on mid-latitude climate variability. This study evaluates projected changes in the frequency of these phenomena during the 2006–2100 period using six high-top general [...] Read more.
Major stratospheric sudden warmings are key processes in the coupling between the stratosphere and the troposphere, exerting a direct influence on mid-latitude climate variability. This study evaluates projected changes in the frequency of these phenomena during the 2006–2100 period using six high-top general circulation models from the CMIP5 project under the Representative Concentration Pathway scenarios 2.6, 4.5, and 8.5. The analysis combines the full future period with a moving-window approach of 27 and 48 years, compared against both the satellite-era (1979–2005) and extended historical (1958–2005) periods. This methodology reveals that model responses are highly heterogeneous, with alternating periods of significant increases and decreases in event frequency, partially modulated by internal variability. The magnitude and statistical significance of the projected changes strongly depend on the chosen historical reference period, and most models tend to reproduce displacement-type polar vortex events preferentially over split-type events. These results indicate that assessments based solely on multi-model means or long aggregated periods may mask subperiods with robust signals, although some of these may arise by chance given the 5% significance threshold. This underscores the need for temporally resolved analyses to improve the understanding of stratospheric variability and its potential impact on climate predictability. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

15 pages, 14001 KB  
Article
Single-Step Engineered Gelatin-Based Hydrogel for Integrated Prevention of Postoperative Adhesion and Promotion of Wound Healing
by Xinyu Wu, Lei Sun, Jianmei Chen, Meiling Su and Zongguang Liu
Gels 2025, 11(10), 797; https://doi.org/10.3390/gels11100797 - 2 Oct 2025
Viewed by 455
Abstract
Postoperative adhesion remains a major clinical challenge, often leading to chronic pain, functional disorders, and recurrent surgeries. Herein, we developed a multifunctional gelatin–polyphenol hydrogel (GPP20) featuring rapid gelation (within 5 min), strong tissue adhesion (lasting > 24 h under physiological conditions), and intrinsic [...] Read more.
Postoperative adhesion remains a major clinical challenge, often leading to chronic pain, functional disorders, and recurrent surgeries. Herein, we developed a multifunctional gelatin–polyphenol hydrogel (GPP20) featuring rapid gelation (within 5 min), strong tissue adhesion (lasting > 24 h under physiological conditions), and intrinsic wound healing capacity to achieve integrated prevention of postoperative adhesion. GPP20 was fabricated via dynamic crosslinking between gelatin and tea polyphenol, endowing it with injectability, self-healing, biodegradability, and excellent mechanical properties (shear stress of 14.2 N). In vitro studies demonstrated that GPP20 exhibited effective ROS scavenging (82% ABTS scavenging capability), which protects cells against oxidative stress, while possessing excellent hemocompatibility and in vivo safety. Notably, GPP20 significantly reduced postoperative cecum–abdominal wall adhesions through both physical barrier effects and modulation of inflammation and collagen deposition, demonstrating a comprehensive integrated prevention strategy. Furthermore, in full-thickness wound models, GPP20 accelerated tissue regeneration (85% wound closure rate on day 10) by promoting macrophage polarization toward the M2 phenotype and stimulating angiogenesis, thereby enhancing collagen deposition and re-epithelialization. Collectively, these findings demonstrate that GPP20 integrates anti-adhesion efficacy with regenerative support, offering a facile and clinically translatable strategy for postoperative care and wound healing. Full article
(This article belongs to the Special Issue Advances in Functional Gel (3rd Edition))
Show Figures

Figure 1

24 pages, 3861 KB  
Article
Mechanical and Anti-Icing Properties of Polyurethane/Carbon Fiber-Reinforced Polymer Composites with Carbonized Coffee Grounds
by Seong Baek Yang, Min Ji Woo, Donghyeon Lee, Jong-Hyun Kim, Sang Yong Nam and Dong-Jun Kwon
Materials 2025, 18(19), 4533; https://doi.org/10.3390/ma18194533 - 29 Sep 2025
Viewed by 463
Abstract
Spent coffee grounds represent an abundant waste resource with potential for sustainable material applications. This study investigates the use of carbonized spent coffee grounds (CSCG) as fillers in polyurethane (PU) coatings for carbon fiber-reinforced polymer (CFRP) substrates to enhance mechanical durability and anti-icing [...] Read more.
Spent coffee grounds represent an abundant waste resource with potential for sustainable material applications. This study investigates the use of carbonized spent coffee grounds (CSCG) as fillers in polyurethane (PU) coatings for carbon fiber-reinforced polymer (CFRP) substrates to enhance mechanical durability and anti-icing performance. SCGs were dried, sieved (<100 µm), and oxidatively carbonized in air at 100–300 °C for 60–120 min, then incorporated into PU at 1 or 5 wt.% and applied by spray-coating. A full-factorial design was employed to evaluate the effects of carbonization temperature, particle size, and filler loading. The optimized formulation (300 °C, 100 µm, 5 wt.%) showed the highest water contact angle (103.5°), lowest work of adhesion (55.8 mJ/m2), and improved thermal stability with 60% char yield. Mechanical testing revealed increased tensile modulus with reduced strain, and differential scanning calorimetry indicated an upward shift in glass-transition temperature, suggesting restricted chain mobility. Ice formation at 0 °C was sparse and discontinuous, attributed to lowered polar surface energy, rough surface texture, and porous carbon morphology. These results demonstrate that CSCGs are effective sustainable fillers for PU coatings, offering combined improvements in mechanical, thermal, and anti-icing properties suitable for aerospace, wind power, and other icing-prone applications. Full article
(This article belongs to the Special Issue Carbon Fiber Reinforced Polymers (3rd Edition))
Show Figures

Figure 1

13 pages, 2630 KB  
Article
Research on Polar-Axis Direct Solar Radiation Spectrum Measurement Method
by Jingrui Sun, Yangyang Zou, Lu Wang, Jian Zhang, Yu Zhang, Ke Zhang, Yang Su, Junjie Yang, Ran Zhang and Guoyu Zhang
Photonics 2025, 12(9), 931; https://doi.org/10.3390/photonics12090931 - 18 Sep 2025
Viewed by 431
Abstract
High-precision measurements of direct solar radiation spectra are crucial for the development of solar resources, climate change research, and agricultural applications. However, the current measurement systems all rely on a moving two-axis tracking system with a complex structure and many error transmission links. [...] Read more.
High-precision measurements of direct solar radiation spectra are crucial for the development of solar resources, climate change research, and agricultural applications. However, the current measurement systems all rely on a moving two-axis tracking system with a complex structure and many error transmission links. In response to the above problems, a polar-axis rotating solar direct radiation spectroscopic measurement method is proposed, and an overall architecture consisting of a rotating reflector and a spectroradiometric measurement system is constructed, which simplifies the system’s structural form and enables year-round, full-latitude solar direct radiation spectroscopic measurements without requiring moving tracking. The paper focuses on the study of its optical system, optimizes the design of a polar-axis rotating solar direct radiation spectroscopy measurement optical system with a spectral range of 380–780 nm and a spectral resolution better than 2 nm, and carries out spectral reconstruction of the solar direct radiation spectra as well as the assessment of measurement accuracy. The results show that the point error distribution of the AM0 spectral curve ranges from −9.05% to 13.35%, and the area error distribution ranges from −0.04% to 0.09%; the point error distribution of the AM1.5G spectral curve ranges from −9.19% to 13.66%, and the area error distribution ranges from −0.03% to 0.11%. Both exhibit spatial and temporal uniformity exceeding 99.92%, ensuring excellent measurement performance throughout the year. The measurement method proposed in this study enhances the solar direct radiation spectral measurement system. Compared to the existing dual-axis moving tracking measurement method, the system composition is simplified, enabling direct solar radiation spectrum measurement at all latitudes throughout the year without the need for tracking, providing technical support for the development and application of new technologies for solar direct radiation measurement. It is expected to promote future theoretical research and technological breakthroughs in this field. Full article
Show Figures

Figure 1

15 pages, 6557 KB  
Article
A Multifunctional Reconfigurable Terahertz Metasurface Enabling Spin-Decoupled Logic Operations and Holography
by Zou Long and Zhengji Xu
Materials 2025, 18(18), 4362; https://doi.org/10.3390/ma18184362 - 18 Sep 2025
Viewed by 448
Abstract
We present a multifunctional, reconfigurable terahertz metasurface built from dual split-ring resonators combining photosensitive silicon and metallic elements. By hybridizing structural and Pancharatnam–Berry phase control, the device achieves spin-decoupled manipulation of circularly polarized wavefronts and an optical, light-intensity-driven reconfiguration mechanism. Using spatially encoded [...] Read more.
We present a multifunctional, reconfigurable terahertz metasurface built from dual split-ring resonators combining photosensitive silicon and metallic elements. By hybridizing structural and Pancharatnam–Berry phase control, the device achieves spin-decoupled manipulation of circularly polarized wavefronts and an optical, light-intensity-driven reconfiguration mechanism. Using spatially encoded bifocal responses, we implement two two-input/two-output logic modules (OR-XOR and AND-NAND), and full-wave simulations verify the expected truth-table behaviors; additionally, a spin- and intensity-dependent hologram produces four distinct far-field images under different input conditions. At the selected working point (≈0.95 THz), the design exhibits a strong cross-polarization response (cross-polarized reflection amplitude > 0.7), demonstrating a viable route toward chip-scale, integrated terahertz logic and multifunctional imaging devices. Full article
(This article belongs to the Special Issue Advances in Nanophotonic Materials, Devices, and Applications)
Show Figures

Figure 1

18 pages, 40307 KB  
Article
A Reconfigurable Metasurface for Linear-to-Circular Polarization Conversion Using Mechanical Rotation
by Gregorio J. Molina-Cuberos, Ángel J. García-Collado, Ismael Barba and José Margineda
Electronics 2025, 14(18), 3639; https://doi.org/10.3390/electronics14183639 - 14 Sep 2025
Viewed by 648
Abstract
We present a single-slab metasurface that converts a normally incidental linearly polarized wave into either right- or left-handed circular polarization (RHCP/LHCP) through a simple 90 mechanical rotation. Each unit cell comprises two L-shaped metallic resonators placed on the opposite faces of a [...] Read more.
We present a single-slab metasurface that converts a normally incidental linearly polarized wave into either right- or left-handed circular polarization (RHCP/LHCP) through a simple 90 mechanical rotation. Each unit cell comprises two L-shaped metallic resonators placed on the opposite faces of a low-permittivity substrate. Operating in transmission mode, the linear-to-circular (LTC) converter does not require any active electronic components. The geometry is optimized by using full-wave simulations to maximize the conversion up to 26% relative bandwidth with polarization conversion efficiency up to 65%, and insertion loss below 1.3 dB. Power balance analysis confirms low-loss, impedance-matched behavior. A scaled prototype fabricated from AWG-25 steel wires validates the model: experimental measurements closely reproduce the simulated bandwidth and demonstrate robust handedness switching. Because the resonance frequency depends primarily on resonator length and unit-cell pitch and thickness, the design can be retuned across the microwave spectrum through straightforward geometrical scaling. These results suggest that mechanical rotation could provide a simple and reliable alternative to electronic tuning in reconfigurable circular polarizers. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

13 pages, 7927 KB  
Article
Dual-Mode Reconfigurable Frequency-Selective Surface for Switching Between Narrowband and Wideband Applications
by Batuhan Uslu, Sena Esen Bayer Keskin and Nurhan Türker Tokan
Micromachines 2025, 16(9), 1030; https://doi.org/10.3390/mi16091030 - 8 Sep 2025
Viewed by 504
Abstract
This study presents a reconfigurable frequency-selective surface (R-FSS) designed to dynamically switch between WLAN, WiMAX, and sub-6 GHz band frequencies. The electronic switching mechanism of this R-FSS is controlled in real-time using PIN-diodes. Depending on the activation state of these diodes, the structure [...] Read more.
This study presents a reconfigurable frequency-selective surface (R-FSS) designed to dynamically switch between WLAN, WiMAX, and sub-6 GHz band frequencies. The electronic switching mechanism of this R-FSS is controlled in real-time using PIN-diodes. Depending on the activation state of these diodes, the structure operates in three distinct modes. Among the three modes, one exhibits polarization-stable wideband suppression, whereas the other two demonstrate polarization selectivity by interchanging between the dual-narrow and single-wide stopband regimes under orthogonal polarizations. The design is described with an equivalent-circuit model, corroborated by full-wave electromagnetic simulations, and validated through measurements of a fabricated prototype. This reconfigurability allows the proposed structure to operate across WLAN, sub-6 GHz, and WiMAX frequency ranges either with two narrow stopbands or with a single-wide stopband, while providing polarization selectivity for frequency-selective applications. Full article
(This article belongs to the Special Issue RF MEMS and Microsystems)
Show Figures

Figure 1

25 pages, 4816 KB  
Review
Organogels for the Preservation of Cultural Heritage
by Damiano Bandelli, Céline Adamo, Giovanna Poggi, David Chelazzi and Piero Baglioni
Gels 2025, 11(9), 715; https://doi.org/10.3390/gels11090715 - 5 Sep 2025
Viewed by 631
Abstract
The degradation of works of art, enhanced by climate change, needs to be counteracted to have Cultural Heritage express its full socioeconomic potential. Cleaning artifacts requires the confinement of fluids in retentive gel matrices to achieve safe, time-effective removal of soil, aged coatings, [...] Read more.
The degradation of works of art, enhanced by climate change, needs to be counteracted to have Cultural Heritage express its full socioeconomic potential. Cleaning artifacts requires the confinement of fluids in retentive gel matrices to achieve safe, time-effective removal of soil, aged coatings, or vandalism from artistic/historical surfaces. This review discusses past and current research in organogels, which are largely unexplored systems to confine average or low polarity solvents. Particular focus is on bio-derived, “green”, and sustainable materials, polymers, and solvents. Perspectives in this field strongly link with current recommendations for sustainable design in materials science and multiple industrial sectors. Full article
Show Figures

Graphical abstract

24 pages, 8351 KB  
Article
The Information Consistency Between Full- and Improved Dual-Polarimetric Mode SAR for Multiscenario Oil Spill Detection
by Guannan Li, Gaohuan Lv, Tong Wang, Xiang Wang and Fen Zhao
Sensors 2025, 25(17), 5551; https://doi.org/10.3390/s25175551 - 5 Sep 2025
Viewed by 1059
Abstract
Detecting marine oil spills is vital for protecting the marine environment, ensuring maritime traffic safety, supporting marine development, and enabling effective emergency response. The dual-polarimetric (DP) synthetic aperture radar (SAR) system represents an evolution from single to full polarization (FP), which has become [...] Read more.
Detecting marine oil spills is vital for protecting the marine environment, ensuring maritime traffic safety, supporting marine development, and enabling effective emergency response. The dual-polarimetric (DP) synthetic aperture radar (SAR) system represents an evolution from single to full polarization (FP), which has become an essential tool for oil spill detection with the growing availability of open-source and shared datasets. Recent research has focused on enhancing DP information structures to better exploit this data. This study introduces improved DP models’ structure with modified the scattering vector coefficients to ensure consistency with the corresponding components of the FP system, enabling comprehensive comparison and analysis with traditional DP structure, includes theoretical and quantitative evaluations of simulated data from FP system, as well as validation using real DP scenarios. The results showed the following: (1) The polarimetric entropy HL obtained through the improved DP scattering matrix CL can achieve higher information consistency results closely aligns with FP system and better performance, compared to the typical two DP scattering structures. (2) For multiple polarimetric features from DP scattering matrix (both traditional feature and combination feature), the improved DP scattering matrix CL can be used for oil spill extraction effectively with prominent results. (3) For oil spill extraction, the polarimetric features-based CL tend to have relatively high contribution, especially the H_A feature combination, leading to substantial gains in improved classification performance. This approach not only enriches the structural information of the DP system under VV–VH mode but also improves oil spill identification by integrating multi-structured DP features. Furthermore, it offers a practical alternative when FP data are unavailable. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Graphical abstract

14 pages, 3684 KB  
Article
Accuracy Enhancement in Refractive Index Sensing via Full-Spectrum Machine Learning Modeling
by Majid Aalizadeh, Chinmay Raut, Morteza Azmoudeh Afshar, Ali Tabartehfarahani and Xudong Fan
Biosensors 2025, 15(9), 582; https://doi.org/10.3390/bios15090582 - 5 Sep 2025
Viewed by 533
Abstract
We present a full-spectrum machine learning framework for refractive index sensing using simulated absorption spectra from meta-grating structures composed of titanium or silicon nanorods under TE and TM polarizations. Linear regression was applied to 80 principal components extracted from each spectrum, and model [...] Read more.
We present a full-spectrum machine learning framework for refractive index sensing using simulated absorption spectra from meta-grating structures composed of titanium or silicon nanorods under TE and TM polarizations. Linear regression was applied to 80 principal components extracted from each spectrum, and model performance was assessed using five-fold cross-validation, simulating real-world biosensing scenarios where unknown patient samples are predicted based on standard calibration data. Titanium-based structures, dominated by broadband intensity changes, yielded the lowest mean squared errors and the highest accuracy improvements—up to an 8128-fold reduction compared to the best single-feature model. In contrast, silicon-based structures, governed by narrow resonances, showed more modest gains due to spectral nonlinearity that limits the effectiveness of global linear models. We also show that even the best single-wavelength predictor is identified through data-driven analysis, not visual selection, highlighting the value of automated feature preselection. These findings demonstrate that spectral shape plays a key role in modeling performance and that full-spectrum linear approaches are especially effective for intensity-modulated index sensors. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

Back to TopTop