Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,629)

Search Parameters:
Keywords = fuel oils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1899 KiB  
Article
Performance Analysis of New Deuterium Tracer for Online Oil Consumption Measurements
by Francesco Marzemin, Martin Vareka, Kevin Gschiel, Bernhard Rossegger, Peter Grabner, Michael Engelmayer and Nicole Wermuth
Lubricants 2025, 13(8), 351; https://doi.org/10.3390/lubricants13080351 - 5 Aug 2025
Abstract
The accurate and precise measurement of lubricating oil consumption is critical for developing environmentally friendly internal combustion engines, particularly hydrogen-fueled internal combustion engines. The deuterium tracer method is based on the addition of poly-deuterated base oil tracers to fully formulated oils for precise, [...] Read more.
The accurate and precise measurement of lubricating oil consumption is critical for developing environmentally friendly internal combustion engines, particularly hydrogen-fueled internal combustion engines. The deuterium tracer method is based on the addition of poly-deuterated base oil tracers to fully formulated oils for precise, accurate, and fast lubricating oil consumption measurements. Previously performed measurements have shown that the use of poly-deuterated poly-alpha olefins has minimal impact on lubricating oil properties, except for a slight drop in oil viscosity. To further reduce the impact on lubricating oil characteristics, a new base oil for the synthesis of a poly-deuterated tracer is introduced, and its influence on the lubricating oil’s chemical, tribological, and rheological properties is analyzed. Furthermore, the influence of the tracer addition on the preignition tendencies of the fully formulated oil is also examined. Based on the analyses, no relevant changes in the lubricating oil properties, such as viscosity, density, and thermal degradation behavior, can be observed. Additionally, the deuterium tracer does not negatively influence combustion anomalies, thus reducing preignition tendencies. These results establish the method’s compatibility with new-generation engines, especially hydrogen-fueled internal combustion engines. Full article
Show Figures

Figure 1

43 pages, 3290 KiB  
Article
Hydroprocessed Ester and Fatty Acids to Jet: Are We Heading in the Right Direction for Sustainable Aviation Fuel Production?
by Mathieu Pominville-Racette, Ralph Overend, Inès Esma Achouri and Nicolas Abatzoglou
Energies 2025, 18(15), 4156; https://doi.org/10.3390/en18154156 - 5 Aug 2025
Abstract
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) [...] Read more.
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) reduction potential for the HEFA-tJ pathway compared to competing markets using the same resources for road diesel production. Moderate yield variations between air and road pathways lead to several hundred thousand tons less GHG reduction per project, which is generally not evaluated thoroughly in standard environmental assessments. This work demonstrates that, although the HEFA-tJ market seems to have more attractive features than biodiesel/renewable diesel, considerable viability risks might manifest as HEFA-tJ fuel market integration rises. The need for more transparent data and effort in this regard, before envisaging making decisions regarding the volume of HEFA-tJ production, is emphasized. Overall, reducing the carbon intensity of road diesel appears to be less capital-intensive, less risky, and several times more efficient in reducing GHG emissions. Full article
(This article belongs to the Special Issue Sustainable Approaches to Energy and Environment Economics)
Show Figures

Figure 1

21 pages, 1245 KiB  
Article
Geochemical Behaviour of Trace Elements in Diesel Oil-Contaminated Soil During Remediation Assisted by Mineral and Organic Sorbents
by Mirosław Wyszkowski and Natalia Kordala
Appl. Sci. 2025, 15(15), 8650; https://doi.org/10.3390/app15158650 (registering DOI) - 5 Aug 2025
Abstract
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or [...] Read more.
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or fuel spills. This study aimed to determine whether organic and mineral materials could mitigate the effects of diesel oil pollution on the soil’s trace element content. The used materials were compost, bentonite and calcium oxide. Diesel oil pollution had the most pronounced effect on the levels of Cd, Ni, Fe and Co. The levels of the first three elements increased, while the level of Co decreased by 53%. Lower doses of diesel oil (2.5 and 5 cm3 per kg of soil) induced an increase in the levels of the other trace elements, while higher doses caused a reduction, especially in Cr. All materials applied to the soil (compost, bentonite and calcium oxide) reduced the content of Ni, Cr and Fe. Compost and calcium oxide also increased Co accumulation in the soil. Bentonite had the strongest reducing effect on the Ni and Cr contents of the soil, reducing them by 42% and 53%, respectively. Meanwhile, calcium oxide had the strongest reducing effect on Fe and Co accumulation, reducing it by 12% and 31%, respectively. Inverse relationships were recorded for Cd (mainly bentonite), Pb (especially compost), Cu (mainly compost), Mn (mainly bentonite) and Zn (only compost) content in the soil. At the most contaminated site, the application of bentonite reduced the accumulation of Pb, Zn and Mn in the soil, while the application of compost reduced the accumulation of Cd. Applying various materials, particularly bentonite and compost, limits the content of certain trace elements in the soil. This has a positive impact on reducing the effect of minor diesel oil pollution on soil properties and can promote the proper growth of plant biomass. Full article
Show Figures

Figure 1

26 pages, 2056 KiB  
Article
“(Don’t) Stop the Rising Oil Price”: Mediatization, Digital Discourse, and Fuel Price Controversies in Indonesian Online Media
by Nezar Patria, Budi Irawanto and Ana Nadhya Abrar
Journal. Media 2025, 6(3), 124; https://doi.org/10.3390/journalmedia6030124 - 4 Aug 2025
Viewed by 30
Abstract
Fuel price increases have long been a contentious issue in Indonesia, sparking intense public and political debates. This study examines how digital media, particularly Kompas.com and Tempo.co, shape public discourse on fuel price hikes through mediatization. Using discourse network analysis, this study compares [...] Read more.
Fuel price increases have long been a contentious issue in Indonesia, sparking intense public and political debates. This study examines how digital media, particularly Kompas.com and Tempo.co, shape public discourse on fuel price hikes through mediatization. Using discourse network analysis, this study compares the political narratives surrounding fuel price increases during the administrations of Susilo Bambang Yudhoyono (2013) and Joko Widodo (2022). The findings reveal a shift in dominant discourse—opposition to price hikes was prominent in both periods, with government authority and economic justification emphasized in 2013, whereas concerns over rising living costs and social unrest dominated in 2022. This study highlights how mediatization has transformed policymaking from deliberative discussions into fragmented media battles, where digital platforms amplify competing narratives rather than facilitating consensus. Kompas.com predominantly featured counter-discourses, while Tempo.co exhibited stronger pro-government narratives in 2013. This study suggests that while digital media plays a crucial role in shaping policy perceptions, it does not necessarily translate into policy influence. It contributes to the broader understanding of the media’s role in policy debates. It underscores the need for more strategic government communication to manage public expectations and mitigate political unrest surrounding fuel price adjustments. Full article
Show Figures

Figure 1

16 pages, 1504 KiB  
Article
Tuning the Activity of NbOPO4 with NiO for the Selective Conversion of Cyclohexanone as a Model Intermediate of Lignin Pyrolysis Bio-Oils
by Abarasi Hart and Jude A. Onwudili
Energies 2025, 18(15), 4106; https://doi.org/10.3390/en18154106 - 2 Aug 2025
Viewed by 143
Abstract
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds [...] Read more.
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds in the final upgraded liquid products. The present work involved a systematic study of solvent-free catalytic reactions of cyclohexanone in the presence of hydrogen gas at 160 °C for 3 h in a batch reactor. Cyclohexanone can be produced from biomass through the selective hydrogenation of lignin-derived phenolics. Three types of catalysts comprising undoped NbOPO4, 10 wt% NiO/NbOPO4, and 30 wt% NiO/NbOPO4 were studied. Undoped NbOPO4 promoted both aldol condensation and the dehydration of cyclohexanol, producing fused ring aromatic hydrocarbons and hard char. With 30 wt% NiO/NbOPO4, extensive competitive hydrogenation of cyclohexanone to cyclohexanol was observed, along with the formation of C6 cyclic hydrocarbons. When compared to NbOPO4 and 30 wt% NiO/NbOPO4, the use of 10 wt% NiO/NbOPO4 produced superior selectivity towards bi-cycloalkanones (i.e., C12) at cyclohexanone conversion of 66.8 ± 1.82%. Overall, the 10 wt% NiO/NbOPO4 catalyst exhibited the best performance towards the production of precursor compounds that can be further hydrodeoxygenated into energy-dense aviation fuel hydrocarbons. Hence, the presence and loading of NiO was able to tune the activity and selectivity of NbOPO4, thereby influencing the final products obtained from the same cyclohexanone feedstock. This study underscores the potential of lignin-derived pyrolysis oils as important renewable feedstocks for producing replacement hydrocarbon solvents or feedstocks and high-density sustainable liquid hydrocarbon fuels via sequential and selective catalytic upgrading. Full article
Show Figures

Figure 1

48 pages, 5229 KiB  
Article
Enhancing Ship Propulsion Efficiency Predictions with Integrated Physics and Machine Learning
by Hamid Reza Soltani Motlagh, Seyed Behbood Issa-Zadeh, Md Redzuan Zoolfakar and Claudia Lizette Garay-Rondero
J. Mar. Sci. Eng. 2025, 13(8), 1487; https://doi.org/10.3390/jmse13081487 - 31 Jul 2025
Viewed by 251
Abstract
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte [...] Read more.
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte Carlo simulations provides a solid foundation for training machine learning models, particularly in cases where dataset restrictions are present. The XGBoost model demonstrated superior performance compared to Support Vector Regression, Gaussian Process Regression, Random Forest, and Shallow Neural Network models, achieving near-zero prediction errors that closely matched physics-based calculations. The physics-based analysis demonstrated that the Combined scenario, which combines hull coatings with bulbous bow modifications, produced the largest fuel consumption reduction (5.37% at 15 knots), followed by the Advanced Propeller scenario. The results demonstrate that user inputs (e.g., engine power: 870 kW, speed: 12.7 knots) match the Advanced Propeller scenario, followed by Paint, which indicates that advanced propellers or hull coatings would optimize efficiency. The obtained insights help ship operators modify their operational parameters and designers select essential modifications for sustainable operations. The model maintains its strength at low speeds, where fuel consumption is minimal, making it applicable to other oil tankers. The hybrid approach provides a new tool for maritime efficiency analysis, yielding interpretable results that support International Maritime Organization objectives, despite starting with a limited dataset. The model requires additional research to enhance its predictive accuracy using larger datasets and real-time data collection, which will aid in achieving global environmental stewardship. Full article
(This article belongs to the Special Issue Machine Learning for Prediction of Ship Motion)
Show Figures

Figure 1

13 pages, 3081 KiB  
Review
Surface Air-Cooled Oil Coolers (SACOCs) in Turbofan Engines: A Comprehensive Review of Design, Performance, and Optimization
by Wiktor Hoffmann and Magda Joachimiak
Energies 2025, 18(15), 4052; https://doi.org/10.3390/en18154052 - 30 Jul 2025
Viewed by 257
Abstract
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This [...] Read more.
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This review explores SACOC design principles, integration challenges, aerodynamic impacts, and performance trade-offs. Emphasis is placed on the balance between thermal efficiency and aerodynamic penalties such as pressure drop and flow distortion. Experimental techniques, including wind tunnel testing, are discussed alongside numerical methods, and Conjugate Heat Transfer modeling. Presented studies mostly demonstrate the impact of fin geometry and placement on both heat transfer and drag. Optimization strategies and Additive Manufacturing techniques are also covered. SACOCs are positioned to play a central role in future propulsion systems, especially in ultra-high bypass ratio and hybrid-electric architectures, where traditional cooling strategies are insufficient. This review highlights current advancements, identifies limitations, and outlines research directions to enhance SACOC efficiency in aerospace applications. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

23 pages, 1652 KiB  
Article
Case Study on Emissions Abatement Strategies for Aging Cruise Vessels: Environmental and Economic Comparison of Scrubbers and Low-Sulphur Fuels
by Luis Alfonso Díaz-Secades, Luís Baptista and Sandrina Pereira
J. Mar. Sci. Eng. 2025, 13(8), 1454; https://doi.org/10.3390/jmse13081454 - 30 Jul 2025
Viewed by 220
Abstract
The maritime sector is undergoing rapid transformation, driven by increasingly stringent international regulations targeting air pollution. While newly built vessels integrate advanced technologies for compliance, the global fleet averages 21.8 years of age and must meet emission requirements through retrofitting or operational changes. [...] Read more.
The maritime sector is undergoing rapid transformation, driven by increasingly stringent international regulations targeting air pollution. While newly built vessels integrate advanced technologies for compliance, the global fleet averages 21.8 years of age and must meet emission requirements through retrofitting or operational changes. This study evaluates, at environmental and economic levels, two key sulphur abatement strategies for a 1998-built cruise vessel nearing the end of its service life: (i) the installation of open-loop scrubbers with fuel enhancement devices, and (ii) a switch to marine diesel oil as main fuel. The analysis was based on real operational data from a cruise vessel. For the environmental assessment, a Tier III hybrid emissions model was used. The results show that scrubbers reduce SOx emissions by approximately 97% but increase fuel consumption by 3.6%, raising both CO2 and NOx emissions, while particulate matter decreases by only 6.7%. In contrast, switching to MDO achieves over 99% SOx reduction, an 89% drop in particulate matter, and a nearly 5% reduction in CO2 emissions. At an economic level, it was found that, despite a CAPEX of nearly USD 1.9 million, scrubber installation provides an average annual net saving exceeding USD 8.2 million. From the deterministic and probabilistic analyses performed, including Monte Carlo simulations under various fuel price correlation scenarios, scrubber installation consistently shows high profitability, with NPVs surpassing USD 70 million and payback periods under four months. Full article
(This article belongs to the Special Issue Sustainable and Efficient Maritime Operations)
Show Figures

Figure 1

13 pages, 1480 KiB  
Article
Physicochemical Properties of Coconut and Waste Cooking Oils for Biofuel Production and Lubrication
by Ahissan Innocent Adou, Laura Brelle, Pedro Marote, Muriel Sylvestre, Gerardo Cebriàn-Torrejòn and Nadiège Nomede-Martyr
Fuels 2025, 6(3), 57; https://doi.org/10.3390/fuels6030057 - 30 Jul 2025
Viewed by 303
Abstract
Vegetable oils are an important alternative to the massive use of fuels and lubricants from non-renewable energy sources. In this study, the physicochemical properties of coconut oil and waste cooking oil are investigated for biofuels and biolubricant applications. A transesterification of both oils [...] Read more.
Vegetable oils are an important alternative to the massive use of fuels and lubricants from non-renewable energy sources. In this study, the physicochemical properties of coconut oil and waste cooking oil are investigated for biofuels and biolubricant applications. A transesterification of both oils was reached, and the transesterified oils were characterized by infrared analysis and gas chromatography. The lubricant performances of these oils have been evaluated using a ball-on-plane tribometer under an ambient atmosphere. Different formulations were developed using graphite particles as solid additive. Each initial and modified oil has been investigated as a base oil and as a liquid additive lubricant. The best friction reduction findings have been obtained for both initial oils as liquid additives, highlighting the key role of triglycerides in influencing tribological performances. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
Show Figures

Figure 1

28 pages, 2918 KiB  
Article
Machine Learning-Powered KPI Framework for Real-Time, Sustainable Ship Performance Management
by Christos Spandonidis, Vasileios Iliopoulos and Iason Athanasopoulos
J. Mar. Sci. Eng. 2025, 13(8), 1440; https://doi.org/10.3390/jmse13081440 - 28 Jul 2025
Viewed by 347
Abstract
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics [...] Read more.
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics is at an emerging state. This paper proposes a machine learning-driven framework for real-time ship performance management. The framework starts with data collected from onboard sensors and culminates in a decision support system that is easily interpretable, even by non-experts. It also provides a method to forecast vessel performance by extrapolating Key Performance Indicator (KPI) values. Furthermore, it offers a flexible methodology for defining KPIs for every crucial component or aspect of vessel performance, illustrated through a use case focusing on fuel oil consumption. Leveraging Artificial Neural Networks (ANNs), hybrid multivariate data fusion, and high-frequency sensor streams, the system facilitates continuous diagnostics, early fault detection, and data-driven decision-making. Unlike conventional static performance models, the framework employs dynamic KPIs that evolve with the vessel’s operational state, enabling advanced trend analysis, predictive maintenance scheduling, and compliance assurance. Experimental comparison against classical KPI models highlights superior predictive fidelity, robustness, and temporal consistency. Furthermore, the paper delineates AI and ML applications across core maritime operations and introduces a scalable, modular system architecture applicable to both commercial and naval platforms. This approach bridges advanced simulation ecosystems with in situ operational data, laying a robust foundation for digital transformation and sustainability in maritime domains. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 3547 KiB  
Article
Enzymatic Degumming of Soybean Oil for Raw Material Preparation in BioFuel Production
by Sviatoslav Polovkovych, Andriy Karkhut, Volodymyr Gunka, Yaroslav Blikharskyy, Roman Nebesnyi, Semen Khomyak, Jacek Selejdak and Zinoviy Blikharskyy
Appl. Sci. 2025, 15(15), 8371; https://doi.org/10.3390/app15158371 - 28 Jul 2025
Viewed by 191
Abstract
The paper investigates the process of degumming substandard soybean oil using an enzyme complex of phospholipases to prepare it as a feedstock for biodiesel production. Dehumidification is an important refining step aimed at reducing the phosphorus content, which exceeds the permissible limits according [...] Read more.
The paper investigates the process of degumming substandard soybean oil using an enzyme complex of phospholipases to prepare it as a feedstock for biodiesel production. Dehumidification is an important refining step aimed at reducing the phosphorus content, which exceeds the permissible limits according to ASTM, EN, and ISO standards, by re-moving phospholipids. The enzyme complex of phospholipases includes phospholipase C, which specifically targets phosphatidylinositol, and phospholipase A2, which catalyzes the hydrolysis of phospholipids into water-soluble phosphates and lysophospholipids. This process contributes to the efficient removal of phospholipids, increased neutral oil yield, and reduced residual oil in the humic phase. The use of an enzyme complex of phospholipases provides an innovative, cost-effective, and environmentally friendly method of oil purification. The results of the study demonstrate the high efficiency of using the phospholipase enzyme complex in the processing of substandard soybean oil, which allows reducing the content of total phosphorus to 0.001% by weight, turning it into a high-quality raw material for biodiesel production. The proposed approach contributes to increasing the profitability of agricultural raw materials and the introduction of environmentally friendly technologies in the field of renewable energy. Full article
(This article belongs to the Special Issue Biodiesel Production: Current Status and Perspectives)
Show Figures

Figure 1

14 pages, 1577 KiB  
Article
Determination of Acidity of Edible Oils for Renewable Fuels Using Experimental and Digitally Blended Mid-Infrared Spectra
by Collin G. White, Ayuba Fasasi, Chanda Swalley and Barry K. Lavine
J. Exp. Theor. Anal. 2025, 3(3), 20; https://doi.org/10.3390/jeta3030020 - 28 Jul 2025
Viewed by 183
Abstract
Renewable fuels produced from animal- and plant-based edible oils have emerged as an alternative to oil and natural gas. Burgeoning interest in renewables can be attributed to the rapid depletion of fossil fuels caused by the global energy demand and the environmental advantages [...] Read more.
Renewable fuels produced from animal- and plant-based edible oils have emerged as an alternative to oil and natural gas. Burgeoning interest in renewables can be attributed to the rapid depletion of fossil fuels caused by the global energy demand and the environmental advantages of renewables, specifically reduced emissions of greenhouse gases. An important property of the feedstock that is crucial for the conversion of edible oils to renewable fuels is the total acid number (TAN), as even a small increase in TAN for the feedstock can lead to corrosion of the catalyst in the refining process. Currently, the TAN is determined by potentiometric titration, which is time-consuming, expensive, and requires the preparation of reagents. As part of an effort to promote the use of renewable fuels, a partial least squares regression method with orthogonal signal correction to remove spectral information related to the sample background was developed to determine the TAN from the mid-infrared (IR) spectra of the feedstock. Digitally blended mid-IR spectral data were generated to fill in regions of the PLS calibration where there were very few samples. By combining experimental and digitally blended mid-IR spectral data to ensure adequate sample representation in all regions of the spectra–property calibration and better understand the spectra–property relationship through the identification of sample outliers in the original data that can be difficult to detect because of swamping, a PLS regression model for TAN (R2 = 0.992, cross-validated root mean square error = 0.468, and bias = 0.0036) has been developed from 118 experimental and digitally blended mid-IR spectra of commercial feedstock. Thus, feedstock whose TAN value is too high for refining can be flagged using the proposed mid-IR method, which is faster and easier to use than the current titrimetric method. Full article
Show Figures

Figure 1

18 pages, 5991 KiB  
Article
Sustainability Assessment of Rural Biogas Production and Use Through a Multi-Criteria Approach: A Case Study in Colombia
by Franco Hernan Gomez, Nelson Javier Vasquez, Kelly Cristina Torres, Carlos Mauricio Meza and Mentore Vaccari
Sustainability 2025, 17(15), 6806; https://doi.org/10.3390/su17156806 - 26 Jul 2025
Viewed by 810
Abstract
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels [...] Read more.
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels for cooking and heating in domestic and productive activities poses significant health and environmental risks. This study validated, in three different phases, the sustainability of a model for the production and use of biogas from the treatment of swine-rearing wastewater (WWs) on a community farm: (i) A Multi-Criteria Analysis (MCA), incorporating environmental, social/health, technical, and economic criteria, identified the main weighted criterion to C8 (use of small-scale technologies and low-cost access), with a score of 0.44 points, as well as the Tubular biodigester (Tb) as the most suitable option for the study area, scoring 8.1 points. (ii) Monitoring of the Tb over 90 days showed an average biogas production of 2.6 m3 d−1, with average correlation 0.21 m3 Biogas kg Biomass−1. Using the experimental biogas production rate (k = 0.0512 d−1), the process was simulated with the BgMod model, achieving an average deviation of only 10.4% during the final production phase. (iii) The quantification of benefits demonstrated significant reductions in firewood use: in Scenario S1 (kitchen energy needs), biogas replaced 83.1% of firewood, while in Scenario S2 (citronella essential oil production), the substitution rate was 24.1%. In both cases, the avoided emissions amounted to 0.52 tons of CO2eq per month. Finally, this study proposes a synthesised, community-based rural biogas framework designed for replication in regions with similar socio-environmental, technical, and economic conditions. Full article
Show Figures

Figure 1

5 pages, 175 KiB  
Proceeding Paper
General Concepts from the Risk Assessment and Hazard Identification of HTL-Derived Bio-Oil: A Case Study of the MARINES Project
by Nicholas J. Daras, Paraskevi C. Divari, Constantinos C. Karamatsoukis, Konstantinos G. Kolovos, Theodore Liolios, Georgia Melagraki, Christos Michalopoulos and Dionysios E. Mouzakis
Proceedings 2025, 121(1), 12; https://doi.org/10.3390/proceedings2025121012 - 25 Jul 2025
Viewed by 162
Abstract
This study evaluates the risk assessment and hazard identification of hydrothermal liquefaction (HTL)-derived bio-oil from the MARINES project, which converts military organic waste into fuel. The high oxygen content (35–50 wt%), acidic pH (2–4), and viscosity (10–1000 cP) of bio-oils pose unique challenges, [...] Read more.
This study evaluates the risk assessment and hazard identification of hydrothermal liquefaction (HTL)-derived bio-oil from the MARINES project, which converts military organic waste into fuel. The high oxygen content (35–50 wt%), acidic pH (2–4), and viscosity (10–1000 cP) of bio-oils pose unique challenges, including oxidative polymerization, corrosion, and micro-explosions during combustion. Key hazards include storage instability, particulate emissions (20–30% higher than diesel), and aquatic toxicity (LC50 < 10 mg/L for phenolics). Mitigation strategies such as inert gas blanketing, preheating, and spill containment are proposed. While offering renewable fuel potential, HTL bio-oil demands rigorous safety protocols for military/industrial deployment, warranting further experimental validation. Full article
48 pages, 4145 KiB  
Review
A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies
by Md Hujjatul Islam and Shashank Reddy Patlolla
Energies 2025, 18(15), 3937; https://doi.org/10.3390/en18153937 - 23 Jul 2025
Viewed by 391
Abstract
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector [...] Read more.
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector and other CO2 intensive industries such as iron and steel production, natural gas processing oil refining and cement production where there is no obvious alternative to carbon capture technologies. While the progress of carbon capture technologies has fallen behind expectations in the past, in recent years there has been substantial growth in this area, with over 700 projects at various stages of development. Moreover, there are around 45 commercial carbon capture facilities already in operation around the world in different industrial processes, fuel transformation and power generation. Carbon capture technologies including pre/post-combustion, oxyfuel and chemical looping combustion have been widely exploited in the recent years at different Technology Readiness level (TRL). Although, a large number of review studies are available addressing different carbon capture strategies, however, studies related to the commercial status of the carbon capture technologies are yet to be conducted. In this review article, we summarize the state-of-the-art of different carbon capture technologies applied to different emission sources, focusing on emission reduction, net-zero emission, and negative emission. We also highlight the commercial status of the different carbon capture technologies including economics, opportunities, and challenges. Full article
Show Figures

Graphical abstract

Back to TopTop