Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,373)

Search Parameters:
Keywords = fuel layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3578 KiB  
Article
Performance Improvement of Proton Exchange Membrane Fuel Cell by a New Coupling Channel in Bipolar Plate
by Qingsong Song, Shuochen Yang, Hongtao Li, Yunguang Ji, Dajun Cai, Guangyu Wang and Yuan Liufu
Energies 2025, 18(15), 4068; https://doi.org/10.3390/en18154068 (registering DOI) - 31 Jul 2025
Abstract
The geometric design of flow channels in bipolar plates is one of the critical features of proton exchange membrane fuel cells (PEMFCs), as it determines the power output of the fuel cell and has a significant impact on its performance and durability. The [...] Read more.
The geometric design of flow channels in bipolar plates is one of the critical features of proton exchange membrane fuel cells (PEMFCs), as it determines the power output of the fuel cell and has a significant impact on its performance and durability. The function of the bipolar plate is to guide the transfer of reactant gases to the gas diffusion layer and catalytic layer inside the PEMFC, while removing unreacted gases and gas–liquid byproducts. Therefore, the design of the bipolar plate flow channel is directly related to the water and thermal management of the PEMFC. In order to improve the comprehensive performance of PEMFCs and ensure their safe and stable operation, it is necessary to design the flow channels in bipolar plates rationally and effectively. This study addresses the limitations of existing bipolar plate flow channels by proposing a new coupling of serpentine and radial channels. The distribution of oxygen, water concentrations, and temperature inside the channel is simulated using the multi-physics simulation software COMSOL Multiphysics 6.0. The performance of this novel design is compared with conventional flow channels, with a particular focus on the pressure drop and current density to evaluate changes in the output performance of the PEMFC. The results show that the maximum current density of this novel design is increased by 67.36% and 10.43% compared to straight channel and single serpentine channels, respectively. The main contribution of this research is the innovative design of a new coupling of serpentine and radial channels in bipolar plates, which improves the overall performance of the PEMFC. This study provides theoretical support for the design of bipolar plate flow channels in PEMFCs and holds significant importance for the green development of energy. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

37 pages, 7561 KiB  
Article
Efficient Machine Learning-Based Prediction of Solar Irradiance Using Multi-Site Data
by Hassan N. Noura, Zaid Allal, Ola Salman and Khaled Chahine
Future Internet 2025, 17(8), 336; https://doi.org/10.3390/fi17080336 - 27 Jul 2025
Viewed by 140
Abstract
Photovoltaic panels have become a promising solution for generating renewable energy and reducing our reliance on fossil fuels by capturing solar energy and converting it into electricity. The effectiveness of this conversion depends on several factors, such as the quality of the solar [...] Read more.
Photovoltaic panels have become a promising solution for generating renewable energy and reducing our reliance on fossil fuels by capturing solar energy and converting it into electricity. The effectiveness of this conversion depends on several factors, such as the quality of the solar panels and the amount of solar radiation received in a specific region. This makes accurate solar irradiance forecasting essential for planning and managing efficient solar power systems. This study examines the application of machine learning (ML) models for accurately predicting global horizontal irradiance (GHI) using a three-year dataset from six distinct photovoltaic stations: NELHA, ULL, HSU, RaZON+, UNLV, and NWTC. The primary aim is to identify optimal shared features for GHI prediction across multiple sites using a 30 min time shift based on autocorrelation analysis. Key features identified for accurate GHI prediction include direct normal irradiance (DNI), diffuse horizontal irradiance (DHI), and solar panel temperatures. The predictions were performed using tree-based algorithms and ensemble learners, achieving R2 values exceeding 95% at most stations, with NWTC reaching 99%. Gradient Boosting Regression (GBR) performed best at NELHA, NWTC, and RaZON, while Multi-Layer Perceptron (MLP) excelled at ULL and UNLV. CatBoost was optimal for HSU. The impact of time-shifting values on performance was also examined, revealing that larger shifts led to performance deterioration, though MLP performed well under these conditions. The study further proposes a stacking ensemble approach to enhance model generalizability, integrating the strengths of various models for more robust GHI prediction. Full article
(This article belongs to the Section Smart System Infrastructure and Applications)
Show Figures

Figure 1

27 pages, 6279 KiB  
Article
Investigation of the Performance and Fuel Oil Corrosion Resistance of Semi-Flexible Pavement with the Incorporation of Recycled Glass Waste
by Ayman Hassan AL-Qudah, Suhana Koting, Mohd Rasdan Ibrahim and Muna M. Alibrahim
Materials 2025, 18(15), 3442; https://doi.org/10.3390/ma18153442 - 22 Jul 2025
Viewed by 277
Abstract
Semi-flexible pavement (SFP) is a durable and cost-effective alternative to conventional rigid and flexible pavement and is formed by permeating an open-graded asphalt (OGA) layer with high-fluidity cement grout. The degradation of SFP mattresses due to fuel oil spills can result in significant [...] Read more.
Semi-flexible pavement (SFP) is a durable and cost-effective alternative to conventional rigid and flexible pavement and is formed by permeating an open-graded asphalt (OGA) layer with high-fluidity cement grout. The degradation of SFP mattresses due to fuel oil spills can result in significant maintenance costs. Incorporating glass waste (GW) into the construction of SFPs offers an eco-friendly solution, helping to reduce repair costs and environmental impact by conserving natural resources and minimizing landfill waste. The main objective of this research is to investigate the mechanical performance and fuel oil resistance of SFP composites containing different levels of glass aggregate (GlaSFlex composites). Fine glass aggregate (FGA) was replaced with fine virgin aggregate at levels of 0%, 20%, 40%, 60%, 80%, and 100% by mass. The results indicated the feasibility of utilizing FGA as a total replacement (100%) for fine aggregate in the OGA structural layer of SFPs. At 100% FGA, the composite exhibited excellent mechanical performance and durability, including a compressive strength of 8.93 MPa, a Marshall stability exceeding 38 kN, and a stiffness modulus of 19,091 MPa. Furthermore, the composite demonstrated minimal permanent deformation (0.04 mm), a high residual stability of 94.7%, a residual compressive strength of 83.3%, and strong resistance to fuel spillage with a mass loss rate of less than 1%, indicating excellent durability. Full article
(This article belongs to the Special Issue Advanced Materials for Pavement and Road Infrastructure)
Show Figures

Graphical abstract

26 pages, 15143 KiB  
Article
Spatiotemporal Characteristics of and Factors Influencing CO2 Concentration During 2010–2023 in China
by Jiayi Zou, Huaixu Jiang, Tianshun Yang, Liqing Wu, Qi Zhang and Jianjun Xu
Remote Sens. 2025, 17(15), 2542; https://doi.org/10.3390/rs17152542 - 22 Jul 2025
Viewed by 408
Abstract
Human activities at unprecedented levels have exacerbated the greenhouse effect and escalated the frequency of extreme weather. In response, the Chinese government has pledged to reach “carbon peak” by 2030 and achieve “carbon neutrality” by 2060. Leveraging the GOSAT L3 and L4B CO [...] Read more.
Human activities at unprecedented levels have exacerbated the greenhouse effect and escalated the frequency of extreme weather. In response, the Chinese government has pledged to reach “carbon peak” by 2030 and achieve “carbon neutrality” by 2060. Leveraging the GOSAT L3 and L4B CO2 datasets, this study investigated the spatiotemporal and vertical characteristics of atmospheric carbon dioxide (CO2) concentration across China, alongside quantifying the relative importance of key influencing factors. The results show that there is a distinct regional disparity in CO2 column concentration, with eastern China having a higher concentration level (406.85 × 10−6) than the western regions (400.92 × 10−6). Vertically, the concentration of CO2 (390–420 × 10−6) reaches its peak at the near-surface layer (975 hPa) and then decreases with increasing altitude. High values of CO2 levels in the mid-lower layer are concentrated in eastern China, while those in the upper layer are mainly located in southern China. In addition, CO2 concentration shows seasonal variations, with the highest concentration occurring in spring (406.39 × 10−6) and the lowest in summer. Biospheric emissions and fossil fuel combustion emerge as the two most significant factors affecting CO2 variation, with relative importance of 24% and 22%, respectively. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

13 pages, 2300 KiB  
Article
A Hierarchically Structured Ni-NOF@ZIF-L Heterojunction Using Van Der Waals Interactions for Electrocatalytic Reduction of CO2 to HCOOH
by Liqun Wu, Xiaojun He and Jian Zhou
Appl. Sci. 2025, 15(14), 8095; https://doi.org/10.3390/app15148095 - 21 Jul 2025
Viewed by 221
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion [...] Read more.
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion layer (GDL) remains a significant challenge. In this study, we successfully engineered a novel metal–organic framework (MOF) heterojunction through the controlled coating of zeolitic imidazolate framework (ZIF-L) on ultrathin nickel—metal–organic framework (Ni-MOF) nanosheets. This innovative architecture simultaneously integrates GDL functionality and exposes abundant solid–liquid–gas triple-phase boundaries. The resulting Ni-MOF@ZIF-L heterostructure demonstrates exceptional performance, achieving a formate Faradaic efficiency of 92.4% while suppressing the hydrogen evolution reaction (HER) to 6.7%. Through computational modeling of the optimized heterojunction configuration, we further elucidated its competitive adsorption behavior and electronic modulation effects. The experimental and theoretical results demonstrate an improvement in electrochemical CO2 reduction activity with suppressed hydrogen evolution for the heterojunction because of its hydrophobic interface, good electron transfer capability, and high CO2 adsorption at the catalyst interface. This work provides a new insight into the rational design of porous crystalline materials in electrocatalytic CO2RR. Full article
Show Figures

Figure 1

14 pages, 7570 KiB  
Article
Experimental Study on Effects of Lateral Spacing on Flame Propagation over Solid Fuel Matrix
by Xin Xu, Yanyan Ma, Guoqing Zhu, Zhen Hu and Yumeng Wang
Fire 2025, 8(7), 284; https://doi.org/10.3390/fire8070284 - 20 Jul 2025
Viewed by 407
Abstract
The increasing complexity of urban structures has significantly elevated the risk and severity of façade fires in high-rise buildings. Unlike traditional models assuming continuous fuel beds, real-world fire scenarios often involve discrete combustible materials arranged in discrete fuel matrices. This study presents a [...] Read more.
The increasing complexity of urban structures has significantly elevated the risk and severity of façade fires in high-rise buildings. Unlike traditional models assuming continuous fuel beds, real-world fire scenarios often involve discrete combustible materials arranged in discrete fuel matrices. This study presents a systematic investigation into the influence of lateral spacing on vertical flame propagation behavior. Laboratory-scale experiments were conducted using vertically oriented polymethyl methacrylate (PMMA) fuel arrays under nine different spacing configurations. Results reveal that lateral spacing plays a critical role in determining flame spread paths and intensities. Specifically, with a vertical spacing fixed at 8 cm, a lateral spacing of 10 mm resulted in rapid flame growth, reaching a peak flame height of approximately 96.5 cm within 450 s after ignition. In contrast, increasing the lateral spacing to 15 mm significantly slowed flame development, achieving a peak flame height of just under 90 cm at approximately 600 s. This notable transition in flame dynamics is closely associated with the critical thermal boundary layer thickness (~11.5 mm). Additionally, at 10 mm spacing, a chimney-like effect was observed, enhancing upward air entrainment and resulting in intensified combustion. These findings reveal the coupled influence of geometric configuration and heat transfer mechanisms on façade flame propagation. The insights gained provide guidance for cladding system design, suggesting that increasing lateral separation between combustible elements may be an effective strategy to limit flame spread and enhance fire safety performance in buildings. Full article
Show Figures

Figure 1

19 pages, 6291 KiB  
Article
Tidal Current Energy Assessment and Exploitation Recommendations for Semi-Enclosed Bay Straits: A Case Study on the Bohai Strait, China
by Yuze Song, Pengcheng Ma, Zikang Li, Yilin Zhai, Dan Li, Hongyuan Shi and Chao Li
Energies 2025, 18(14), 3787; https://doi.org/10.3390/en18143787 - 17 Jul 2025
Viewed by 154
Abstract
Against the backdrop of increasingly depleted global non-renewable resources, research on renewable energy has become urgently critical. As a significant marine clean energy source, tidal current energy has attracted growing scholarly interest, effectively addressing global energy shortages and fossil fuel pollution. Semi-enclosed bay [...] Read more.
Against the backdrop of increasingly depleted global non-renewable resources, research on renewable energy has become urgently critical. As a significant marine clean energy source, tidal current energy has attracted growing scholarly interest, effectively addressing global energy shortages and fossil fuel pollution. Semi-enclosed bay straits, with their geographically advantageous topography, offer substantial potential for tidal energy exploitation. China’s Bohai Strait exemplifies such a geomorphological feature. This study focuses on the Bohai Strait, employing the Delft3D model to establish a three-dimensional numerical simulation of tidal currents in the region. Combined with the Flux tidal energy assessment method, the tidal energy resources are evaluated, and exploitation recommendations are proposed. The results demonstrate that the Laotieshan Channel, particularly its northern section, contains the most abundant tidal energy reserves in the Bohai Strait. The Laotieshan Channel has an average power flux density of 50.83 W/m2, with a tidal energy potential of approximately 81,266.5 kW, of which about 12,189.97 kW is technically exploitable. Particularly in its northern section, favorable flow conditions exist—peak current speeds can reach 2 m/s, and the area offers substantial effective power generation hours. Annual durations with flow velocities exceeding 0.5 m/s total around 4500 h, making this zone highly suitable for deploying tidal turbines. To maximize the utilization of tidal energy resources, installation within the upper 20 m of the water layer is recommended. This study not only advances tidal energy research in semi-enclosed bay straits but also provides a critical reference for future studies, while establishing a foundational framework for practical tidal energy development in the Bohai Strait region. Full article
Show Figures

Figure 1

16 pages, 3629 KiB  
Article
Influence of Mg/Al Coating on the Ignition and Combustion Behavior of Boron Powder
by Yanjun Wang, Yueguang Yu, Xin Zhang and Siyuan Zhang
Coatings 2025, 15(7), 828; https://doi.org/10.3390/coatings15070828 - 16 Jul 2025
Viewed by 245
Abstract
Amorphous boron powder, as a high-energy fuel, is widely used in the energy sector. However, its ignition and combustion difficulties have long limited its performance in propellants, explosives, and pyrotechnics. In this study, Mg/Al-coated boron powder with enhanced combustion properties was synthesized using [...] Read more.
Amorphous boron powder, as a high-energy fuel, is widely used in the energy sector. However, its ignition and combustion difficulties have long limited its performance in propellants, explosives, and pyrotechnics. In this study, Mg/Al-coated boron powder with enhanced combustion properties was synthesized using the electrical explosion method. To investigate the effect of Mg/Al coating on the ignition and combustion behavior of boron powder, four samples with different Mg/Al coating contents (4 wt.%, 6 wt.%, 8 wt.%, and 10 wt.%) were prepared. Compared with raw B95 boron powder, the coated powders showed a significant reduction in particle size (from 2.9 μm to 0.2–0.3 μm) and a marked increase in specific surface area (from 10.37 m2/g to over 20 m2/g). The Mg/Al coating formed a uniform layer on the boron surface, which reduced the ignition delay time from 143 ms to 40–50 ms and significantly improved the combustion rate, combustion pressure, and combustion calorific value. These results demonstrate that Mg/Al coating effectively promotes rapid ignition and sustained combustion of boron particles. Furthermore, with the increasing Mg/Al content, the ignition delay time decreased progressively, while the combustion rate, combustion pressure, and heat release increased accordingly, reaching optimal values at 8 wt.% Mg/Al. An analysis of the combustion residues revealed that both Mg and Al reacted with boron oxide to form new multicomponent compounds, which reduced the barrier effect of the oxide layer on oxygen diffusion into the boron core, thereby facilitating continuous combustion and high heat release. This work innovatively employs the electrical explosion method to prepare dual-metal-coated boron powders and, for the first time, reveals the synergistic promotion effect of Mg and Al coatings on the ignition and combustion performance of boron. The results provide both experimental data and theoretical support for the high-energy release and practical application of boron-based fuels. Full article
Show Figures

Graphical abstract

10 pages, 3200 KiB  
Article
Enhancing Fuel Cell Performance by Constructing a Gas Diffusion Layer with Gradient Microstructure
by Rui-Xin Wang, Bai-He Chen, Ye-Fan-Hao Wang, Cheng Guo, Bo-Wen Deng, Zhou-Long Song, Yi You and Hai-Bo Jiang
Materials 2025, 18(14), 3271; https://doi.org/10.3390/ma18143271 - 11 Jul 2025
Viewed by 322
Abstract
This study focuses on addressing the issues of water flooding and mass transfer limitations in proton exchange membrane fuel cells (PEMFCs) under high current density conditions. A multi-scale gradient pore gas diffusion layer (GDL) is designed to enhance fuel cell performance. The pore [...] Read more.
This study focuses on addressing the issues of water flooding and mass transfer limitations in proton exchange membrane fuel cells (PEMFCs) under high current density conditions. A multi-scale gradient pore gas diffusion layer (GDL) is designed to enhance fuel cell performance. The pore structure is precisely controlled using a self-assembled mold, resulting in the fabrication of a GDL with a gradient distribution of pore diameters ranging from 80 to 170 μm. Experimental results indicate that, with the optimized gradient pore GDL, the peak power density of the fuel cell reaches 1.18 W·cm−2, representing a 20% improvement compared to the traditional structure. A mechanism analysis reveals that this structure establishes a concentrated water transport pathway through channels while enabling gas diffusion and transport driven by concentration gradients, thereby achieving the collaborative optimization of gas–liquid transport. This approach offers a novel solution for managing water in PEMFCs operating under high current density conditions, and holds significant implications for advancing the commercialization of PEMFC technology. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

18 pages, 5941 KiB  
Article
Non-Calcined Metal Tartrate Pore Formers for Lowering Sintering Temperature of Solid Oxide Fuel Cells
by Mehdi Choolaei, Mohsen Fallah Vostakola and Bahman Amini Horri
Crystals 2025, 15(7), 636; https://doi.org/10.3390/cryst15070636 - 10 Jul 2025
Viewed by 276
Abstract
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing [...] Read more.
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing better control over porosity and pore size distribution, which allows for enhanced gas diffusion, reactant transport and gaseous product release within the fuel cells’ functional layers. In this work, nanocrystalline gadolinium-doped ceria (GDC) and Ni-Gd-Ce-tartrate anode powders were prepared using a single-step co-precipitation synthesis method, based on the carboxylate route, utilising ammonium tartrate as a low-cost, environmentally friendly precipitant. The non-calcined Ni-Gd-Ce-tartrate was used to fabricate dense GDC electrolyte pellets (5–20 μm thick) integrated with a thin film of Ni-GDC anode with controlled porosity at 1300 °C. The dilatometry analysis showed the shrinkage anisotropy factor for the anode substrates prepared using 20 wt. The percentages of Ni-Gd-Ce-tartrate were 30 wt.% and 40 wt.%, with values of 0.98 and 1.01, respectively, showing a significant improvement in microstructural properties and pore size compared to those fabricated using a carbonaceous pore former. The results showed that the non-calcined pore formers can also lower the sintering temperature for GDC to below 1300 °C, saving energy and reducing thermal stresses on the materials. They can also help maintain optimal material properties during sintering, minimising the risk of unwanted chemical reactions or contamination. This flexibility enables the versatile designing and manufacturing of ceramic fuel cells with tailored compositions at a lower cost for large-scale applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

26 pages, 5399 KiB  
Article
Microwave-Assisted Pyrolysis of Polyethylene and Polypropylene from End-of-Life Vehicles: Hydrogen Production and Energy Valorization
by Grigore Psenovschi, Ioan Calinescu, Alexandru Fiti, Ciprian-Gabriel Chisega-Negrila, Sorin-Lucian Ionascu and Lucica Barbes
Sustainability 2025, 17(13), 6196; https://doi.org/10.3390/su17136196 - 6 Jul 2025
Viewed by 581
Abstract
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene [...] Read more.
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene (PP) and polyethylene (PE) plastic waste through microwave-assisted pyrolysis, aiming to maximize conversion into gaseous products, particularly hydrogen-rich gas. A monomode microwave reactor was employed, using layered configurations of plastic feedstock, silicon carbide as a microwave susceptor, and activated carbon as a catalyst. The influence of catalyst loading, reactor configuration, and plastic type was assessed through systematic experiments. Results showed that technical-grade PP, under optimal conditions, yielded up to 81.4 wt.% gas with a hydrogen concentration of 45.2 vol.% and a hydrogen efficiency of 44.8 g/g. In contrast, PE and mixed PP + PE waste displayed lower hydrogen performance, particularly when containing inorganic fillers. For all types of plastics studied, the gaseous fractions obtained have a high calorific value (46,941–55,087 kJ/kg) and at the same time low specific CO2 emissions (4.4–6.1 × 10−5 kg CO2/kJ), which makes these fuels very efficient and have a low carbon footprint. Comparative tests using conventional heating revealed significantly lower hydrogen yields (4.77 vs. 19.7 mmol/g plastic). These findings highlight the potential of microwave-assisted pyrolysis as an efficient method for transforming ELV-derived plastic waste into energy carriers, offering a pathway toward low-carbon, resource-efficient waste management. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

16 pages, 2745 KiB  
Article
Next-Generation Nafion Membranes: Synergistic Enhancement of Electrochemical Performance and Thermomechanical Stability with Sulfonated Siliceous Layered Material (sSLM)
by Valeria Loise and Cataldo Simari
Polymers 2025, 17(13), 1866; https://doi.org/10.3390/polym17131866 - 3 Jul 2025
Viewed by 465
Abstract
Nafion, while a benchmark proton exchange membrane (PEM) for fuel cells, suffers from significant performance degradation at elevated temperatures and low humidity due to dehydration and diminished mechanical stability. To address these limitations, this study investigated the development and characterization of Nafion nanocomposite [...] Read more.
Nafion, while a benchmark proton exchange membrane (PEM) for fuel cells, suffers from significant performance degradation at elevated temperatures and low humidity due to dehydration and diminished mechanical stability. To address these limitations, this study investigated the development and characterization of Nafion nanocomposite membranes incorporating sulfonated silica layered materials (sSLMs). The inherent lamellar structure, high surface area, and abundant sulfonic acid functionalities of sSLMs were leveraged to synergistically enhance membrane properties. Our results demonstrate that sSLM incorporation significantly improved ion exchange capacity, water uptake, and dimensional stability, leading to superior water retention and self-diffusion at higher temperatures. Critically, the nanocomposite membranes exhibited remarkably enhanced proton conductivity, particularly under demanding conditions of 120 C and low relative humidity (i.e., 20% RH), where filler-free Nafion largely ceases to conduct. Single H2/O2 fuel cell tests confirmed these enhancements, with the optimal sSLM-Nafion nanocomposite membrane (N-sSLM5) achieving a two-fold power density improvement over pristine Nafion at 120 C and 20% RH (340 mW cm−2 vs. 117 mW cm−2 for Nafion). These findings underscore the immense potential of sSLM as a functional filler for fabricating robust and high-performance PEMs, paving the way for the next generation of fuel cells capable of operating efficiently under more challenging environmental conditions. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

24 pages, 4363 KiB  
Article
Ni Supported on Pr-Doped Ceria as Catalysts for Dry Reforming of Methane
by Antonella R. Ponseggi, Amanda de C. P. Guimarães, Renata O. da Fonseca, Raimundo C. Rabelo-Neto, Yutao Xing, Andressa A. A. Silva, Fábio B. Noronha and Lisiane V. Mattos
Processes 2025, 13(7), 2119; https://doi.org/10.3390/pr13072119 - 3 Jul 2025
Viewed by 426
Abstract
The use of CH4 and CO2 as fuels in direct internal reforming solid oxide fuel cells (DIR-SOFCs) is a promising strategy for efficient power generation with reduced greenhouse gas emissions. In this study, Ni catalysts supported on Ce–Pr mixed oxides with [...] Read more.
The use of CH4 and CO2 as fuels in direct internal reforming solid oxide fuel cells (DIR-SOFCs) is a promising strategy for efficient power generation with reduced greenhouse gas emissions. In this study, Ni catalysts supported on Ce–Pr mixed oxides with varying Pr contents (0–80 mol%) were synthesized, calcined at 1200 °C, and tested for dry reforming of methane (DRM), aiming at their application as catalytic layers in SOFC anodes. Physicochemical characterization (XRD, TPR, TEM) showed that increasing Pr loading enhances catalyst reducibility and promotes the formation of the Pr2NiO4 phase, which contributes to the generation of smaller Ni0 particles after reduction. Catalytic tests revealed that all samples exhibited low-carbon deposition, attributed to the large Ni crystallites. The catalyst with 80 mol% Pr showed the best performance, achieving the highest CH4 conversion (72%), a H2/CO molar ratio of 0.89, and improved stability. These findings suggest that Ni/Ce0.2Pr0.8 could be a promising candidate for use as a catalyst layer of anodes in DIR-SOFC anodes. Although electrochemical data are not yet available, future work will evaluate the catalyst’s performance and durability under SOFC-relevant conditions. Full article
(This article belongs to the Special Issue Advances in Synthesis and Applications of Supported Nanocatalysts)
Show Figures

Graphical abstract

24 pages, 19539 KiB  
Article
Effects of Circumferential and Interaction Angles of Hydrogen Jets and Diesel Sprays on Combustion Characteristics in a Hydrogen–Diesel Dual-Fuel CI Engine
by Qiang Zhang, Zhipeng Li, Yang Xu and Xiangrong Li
Sustainability 2025, 17(13), 6059; https://doi.org/10.3390/su17136059 - 2 Jul 2025
Viewed by 305
Abstract
This study investigates the impact of circumferential angle (φ) and interaction angle (θ) between hydrogen jets and diesel sprays in a co-axial hydrogen–diesel injector on combustion and emissions in a hydrogen–diesel dual-fuel engine using 3D CFD simulations. The results demonstrate that a co-axial [...] Read more.
This study investigates the impact of circumferential angle (φ) and interaction angle (θ) between hydrogen jets and diesel sprays in a co-axial hydrogen–diesel injector on combustion and emissions in a hydrogen–diesel dual-fuel engine using 3D CFD simulations. The results demonstrate that a co-axial dual-layer nozzle design significantly enhances combustion performance by leveraging hydrogen jet kinetic energy to accelerate fuel–air mixing. Specifically, a co-axial alignment (φ = 0°) between hydrogen and diesel sprays achieves optimal combustion characteristics, including the highest in-cylinder pressure (20.92 MPa), the earliest ignition timing (−0.3° CA ATDC), and the maximum indicated power of the high-pressure cycle (47.26 kW). However, this configuration also results in elevated emissions, with 29.6% higher NOx and 34.5% higher soot levels compared to a φ = 15° arrangement. To balance efficiency and emissions, an interaction angle of θ = 7.5° proves most effective, further improving combustion efficiency and increasing indicated power to 47.69 kW while reducing residual fuel mass. For applications prioritizing power output, the φ = 0° and θ = 7.5° configuration is recommended, whereas a φ = 15° alignment with a moderate θ (5–7.5°) offers a viable compromise, maintaining over 90% of peak power while substantially lowering NOx and soot emissions. Full article
(This article belongs to the Special Issue Green Shipping and Operational Strategies of Clean Energy)
Show Figures

Figure 1

17 pages, 4494 KiB  
Article
Experimental Investigation on the Erosion Resistance Characteristics of Compressor Impeller Coatings to Water Droplet Impact
by Richárd Takács, Ibolya Zsoldos, Norbert Kiss, Izolda Popa-Müller, István Barabás, Balázs Dobos, Miklós Zsolt Tabakov, Csaba Tóth-Nagy and Pavel Novotny
Coatings 2025, 15(7), 767; https://doi.org/10.3390/coatings15070767 - 28 Jun 2025
Viewed by 347
Abstract
This study presents a comparative analysis of the water droplet erosion resistance of three compressor wheels coated with Ni-P and Si-P layers. The tests were conducted using a custom-developed experimental apparatus in accordance with the ASTM G73-10 standard. The degree of erosion was [...] Read more.
This study presents a comparative analysis of the water droplet erosion resistance of three compressor wheels coated with Ni-P and Si-P layers. The tests were conducted using a custom-developed experimental apparatus in accordance with the ASTM G73-10 standard. The degree of erosion was monitored through continuous precision mass measurements, and structural changes on the surfaces of both the base materials and the coatings were examined using a Zeiss Crossbeam 350 scanning electron microscope (SEM). Hardness values were determined using a Vickers KB 30 hardness tester, while the chemical composition was analysed using a WAS Foundry Master optical emission spectrometer. Significant differences in erosion resistance were observed among the various compressor wheels, which can be attributed to differences in coating hardness values, as well as to the detachment of the Ni-P layer from the base material under continuous erosion. In all cases, water droplet erosion led to a reduction in the isentropic efficiency of the compressor—measured using a hot gas turbocharger testbench—with the extent of efficiency loss depending upon the type of coating applied. Although blade protection technologies for turbocharger compressor impellers used in the automotive industry have been the subject of only a limited number of studies, modern technologies, such as the application of certain alternative fuels and exhaust gas recirculation, have increased water droplet formation, thereby accelerating the erosion rate of the impeller. The aim of this study is to evaluate the resistance of three different coating layers to water droplet erosion through standardized tests conducted using a custom-designed experimental apparatus. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

Back to TopTop