Performance Improvement of Proton Exchange Membrane Fuel Cell by a New Coupling Channel in Bipolar Plate
Abstract
1. Introduction
2. Mathematical Model
2.1. Model Geometry
2.2. Governing Equations
2.2.1. Mass Conservation Equation
2.2.2. Conservation Equation of Electric Current
2.2.3. Conservation Equation of Momentum
2.2.4. Electrochemical Equation
2.2.5. The Formation and Transport Equation of Liquid Water
2.2.6. Conservation Equation of Heat Transport
2.3. Assumptions and Initial Conditions of the Model
2.4. Grid Division and Independence Verification
2.5. Experimental Verification of the Accuracy of PEMFC Mathematical Model
2.5.1. Experimental Preparation
2.5.2. Experimental Results and Error Analysis
3. Results and Discussion
3.1. Polarization Curve and Power Density Curve
3.2. Oxygen Distribution at the Interface Between Cathode Channel and Gas Diffusion Layer with Different Channels
3.3. Distribution of Water Content in Cathode Channels with Different Flow Field Structures
3.4. Cathodic Channel Pressure Drop with Different Flow Field Structures
3.5. Current Density at the Interface Between Cathode Gas Diffusion Layer and Catalyst Layer with Different Flow Field Structures
3.6. Temperature at the Interface with Different Flow Field Structures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PEMFC | Proton exchange membrane fuel cell |
MEA | Membrane electrode assembly |
GDL | Gas diffusion layer |
References
- Lu, K.; Zhang, J.; Ding, H.; Wang, Z.; Pan, X. Numerical and experimental investigation of 3D flow field bipolar plates for PEMFCs by metal 3D printing. Fuel 2024, 357, 129699. [Google Scholar] [CrossRef]
- Bégot, S.; Harel, F.; Lepiller, V.; Saidouni, W.H. A new cooling circuit and its control strategies for the thermal management of PEMFC in rapid startup application. Int. J. Hydrogen Energy 2023, 48, 344–352. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, S.; Song, J.; Kim, M.; Chu, C.; Lee, Y.; Kim, D.; Kim, M. Influence of PEMFC degradation on its performance in different temperature and relative humidity conditions. J. Mech. Sci. Technol. 2023, 37, 420–431. [Google Scholar] [CrossRef]
- Sahin, H. Hydrogen refueling of a fuel cell electric vehicle. Int. J. Hydrogen Energy 2024, 75, 604–612. [Google Scholar] [CrossRef]
- Zhu, Q.-C.; Ma, J.; Huang, J.-H.; Mao, D.-Y.; Wang, K.-X. Realizing long-cycling solid-state Li-CO2 batteries using Zn-doped LATP ceramic electrolytes. Chem. Eng. J. 2024, 482, 148977. [Google Scholar] [CrossRef]
- Wang, Y.D.; Meyer, Q.; Tang, K.; McClure, J.E.; White, R.T.; Kelly, S.T.; Crawford, M.M.; Iacoviello, F.; Brett, D.J.L.; Shearing, P.R.; et al. Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning. Nat. Commun. 2023, 14, 112–124. [Google Scholar] [CrossRef]
- Wilberforce, T.; Olabi, A.G.; Monopoli, D.; Dassisti, M.; Sayed, E.T.; Abdelkareem, M.A. Design optimization of proton exchange membrane fuel cell bipolar plate. Energy Convers. Manag. 2023, 277, 350–361. [Google Scholar] [CrossRef]
- Müller, M.-V.; Giorgio, M.; Hausmann, P.; Kinlechner, L.; Heinzel, A.; Schwämmlein, J. Investigation of the effect of carbon post- vs. pre-coated metallic bipolar plates for PEMFCs-start-up and shut-down. Int. J. Hydrogen Energy 2022, 47, 133–142. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, J.; Chen, Y.; Liu, S.; Wang, Z. Effects of gas permeation on the sealing performance of PEMFC stacks. Int. J. Hydrogen Energy 2021, 46, 734–742. [Google Scholar] [CrossRef]
- Paul, C.O.; Ikram, B.B.; Wilfred, E.; Paul, C.U. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. Int. J. Hydrogen Energy 2021, 46, 556–562. [Google Scholar]
- Zhou, Y.; Chen, B. Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review. Renew. Sustain. Energy Rev. 2023, 185, 113584. [Google Scholar] [CrossRef]
- Mojica, F.; Rahman, A.M.; Mora, M.J.; Ocon, D.J.; Chuang, A.Y.P. Experimental study of three channel designs with model comparison in a PEM fuel cell. Fuel Cells 2020, 20, 51–60. [Google Scholar] [CrossRef]
- Rahimi-Esbo, M.; Rahgoshay, S.; Hassani, M.; Dadashi, K.F. Novel design and numerical evaluating of a cooling flow field in PEMFC with metallic bipolar plates. Int. J. Hydrogen Energy 2020, 43, 678–682. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Liu, J.; Xiang, M.; Sun, B.; Ya, Y.; Cheng, X. Effects of bipolar plate flow channel configuration on thermal-electric performance of direct ammonia solid oxide fuel cell: Part II—Promoting in-cell ammonia endothermic decomposition via a novel parallel S-type channel arrangement. Int. J. Hydrogen Energy 2024, 55, 1217–1233. [Google Scholar] [CrossRef]
- Peng, L.; Yi, P.; Lai, X. Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2014, 39, 21127–21153. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Xu, H.; Liu, G.; Wang, K. Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design. Energy 2022, 239, 122102. [Google Scholar] [CrossRef]
- Zuo, Q.; Ouyang, Y.; Chen, W.; Li, Q.; Ma, Y.; Xia, X.; Ouyang, M. Flow characteristics analysis and performance evaluation of a novel rotary proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2024, 50, 1391–1405. [Google Scholar] [CrossRef]
- Wang, J. Barriers of scaling-up fuel cells: Cost, durability and reliability. Energy 2015, 80, 560–571. [Google Scholar] [CrossRef]
- Lee, Y.I.; Kim, M.S. Effect of gradient anode flow field designs on polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 2024, 50, 1324–1337. [Google Scholar] [CrossRef]
- Chen, C.; Wang, C.; Zhang, Z. Numerical investigation of the water transport and performance of proton exchange membrane fuel cell with an imitating river flow field. Energy Convers. Manag. 2023, 276, 116532. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Q.; Wang, C.; Yan, X.; Shen, S.; Xia, G.; Zhu, F.; Zhang, J. Experimental and numerical analysis of a three-dimensional flow field for PEMFCs. Appl. Energy 2017, 195, 278–288. [Google Scholar] [CrossRef]
- Ceballos, J.O.; Ordoñez, L.C.; Sierra, J.M. Numerical simulation of a PEM fuel cell: Effect of tortuosity parameters on the construction of polarization curves. Int. J. Hydrogen Energy 2022, 47, 30291–30302. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, B.; Meng, K.; Zhou, H.; Chen, W.; Zhang, N.; Deng, Q.; Yang, G.; Tu, Z. Optimization and evaluation criteria of water-gas transport performance in wave flow channel for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2023, 48, 20717–20733. [Google Scholar] [CrossRef]
- Celik, E.; Karagoz, I. Performance assessment of a four-pass serpentine proton exchange membrane fuel cell with non-humidified cathode and cell state estimation without special measurement. Int. J. Hydrogen Energy 2022, 47, 9382–9394. [Google Scholar] [CrossRef]
No. | Boundary Condition Description |
---|---|
1 | The anode gas diffusion layer (GDL) boundary facing the flow pattern rib is set to zero potential, and the corresponding boundary on the cathode side is set to battery potential. All other external boundaries are insulated |
2 | All wall boundary conditions are slip free |
3 | Gas laminar flow into the inlet of the anode and cathode |
4 | Negative and anode outlet pressure conditions ρo = 0 |
5 | The gases of the anode (H2) and cathode (O2) are ideal gases |
6 | The flow of gas in the channel is laminar and incompressible |
7 | All porous media are considered isotropic and uniform |
8 | Ignore the gravity effect |
9 | Neglecting resistance potential drop in solid components |
10 | All internal boundaries are continuous |
Parameters | Value | Unit |
---|---|---|
GDL porosity | 0.4 | - |
GDL penetration rate | 1 × 10−13 | m2 |
GDL conductivity | 222 | S/m |
Anode inlet velocity | 2 | m/s |
Cathode feed velocity | 2 | m/s |
Molecular mass of H2 | 0.002 | kg/mol |
Molecular mass of N2 | 0.028 | kg/mol |
Molecular mass of H2O | 0.018 | kg/mol |
Molecular mass of O2 | 0.032 | kg/mol |
H2-H2O binary diffusion coefficient | 1.1684 × 10−4 | m2/s |
N2-H2O binary diffusion coefficient | 3.2682 × 10−5 | m2/s |
O2-N2 binary diffusion coefficient | 3.0466 × 10−5 | m2/s |
O2-H2O binary diffusion coefficient | 3.5807 × 10−5 | m2/s |
Oxygen reference concentration | 40.88 | mol/m3 |
Hydrogen reference concentration | 40.88 | mol/m3 |
Volume fraction of electrolyte phase | 0.3 | - |
Porous electrode gas diffusion volume fraction | 0.3 | - |
Permeability (porous electrode) | 2 × 10−4 | m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Q.; Yang, S.; Li, H.; Ji, Y.; Cai, D.; Wang, G.; Liufu, Y. Performance Improvement of Proton Exchange Membrane Fuel Cell by a New Coupling Channel in Bipolar Plate. Energies 2025, 18, 4068. https://doi.org/10.3390/en18154068
Song Q, Yang S, Li H, Ji Y, Cai D, Wang G, Liufu Y. Performance Improvement of Proton Exchange Membrane Fuel Cell by a New Coupling Channel in Bipolar Plate. Energies. 2025; 18(15):4068. https://doi.org/10.3390/en18154068
Chicago/Turabian StyleSong, Qingsong, Shuochen Yang, Hongtao Li, Yunguang Ji, Dajun Cai, Guangyu Wang, and Yuan Liufu. 2025. "Performance Improvement of Proton Exchange Membrane Fuel Cell by a New Coupling Channel in Bipolar Plate" Energies 18, no. 15: 4068. https://doi.org/10.3390/en18154068
APA StyleSong, Q., Yang, S., Li, H., Ji, Y., Cai, D., Wang, G., & Liufu, Y. (2025). Performance Improvement of Proton Exchange Membrane Fuel Cell by a New Coupling Channel in Bipolar Plate. Energies, 18(15), 4068. https://doi.org/10.3390/en18154068