Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (144)

Search Parameters:
Keywords = fuel cell/battery/supercapacitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4234 KiB  
Review
A Review on Laser-Induced Graphene-Based Electrocatalysts for the Oxygen Reduction Reaction in Electrochemical Energy Storage and Conversion
by Giulia Massaglia and Marzia Quaglio
Nanomaterials 2025, 15(14), 1070; https://doi.org/10.3390/nano15141070 - 10 Jul 2025
Viewed by 653
Abstract
The increasing demand for efficient and sustainable energy conversion technologies has driven extensive research into alternative electrocatalysts for the oxygen reduction reaction (ORR). Platinum-based catalysts, while highly efficient, suffer from high costs, scarcity, and long-term instability Laser-Induced Graphene (LIG) has recently attracted considerable [...] Read more.
The increasing demand for efficient and sustainable energy conversion technologies has driven extensive research into alternative electrocatalysts for the oxygen reduction reaction (ORR). Platinum-based catalysts, while highly efficient, suffer from high costs, scarcity, and long-term instability Laser-Induced Graphene (LIG) has recently attracted considerable interest as an effective metal-free electrocatalyst for oxygen reduction reaction (ORR), owing to its remarkable electrical conductivity, customizable surface functionalities, and multi-scale porous architecture. This review explores the synthesis strategies, physicochemical properties, and ORR catalytic performance of LIG. Additionally, this review offered a detailed overview regarding the effective pole of heteroatom doping (N, S, P, B) and functionalization techniques to enhance catalytic activity. Finally, we highlight the current challenges and future perspectives of LIG-based ORR catalysts for fuel cells and other electrochemical energy applications. Furthermore, laser-induced-graphene (LIG) has emerged as a highly attractive candidate for electrochemical energy conversion systems, due to its large specific surface area, tunable porosity, excellent electrical conductivity, and cost-effective fabrication process. This review discusses recent advancements in LIG synthesis, its structural and electrochemical properties, and its applications in supercapacitors, batteries, fuel cells, and electrocatalysis. Despite its advantages, challenges such as mechanical stability, electrochemical degradation, and large-scale production remain key areas for improvement. Additionally, this review explores future perspectives on optimizing LIG for next-generation energy storage and conversion technologies. Full article
(This article belongs to the Special Issue Nanomaterials Based (Bio) Electrochemical Energy and Storage Sytems)
Show Figures

Figure 1

30 pages, 3374 KiB  
Review
Review and Outlook of Fuel Cell Power Systems for Commercial Vehicles, Buses, and Heavy Trucks
by Xingxing Wang, Jiaying Ji, Junyi Li, Zhou Zhao, Hongjun Ni and Yu Zhu
Sustainability 2025, 17(13), 6170; https://doi.org/10.3390/su17136170 - 4 Jul 2025
Viewed by 969
Abstract
The power system, which is also one of the most crucial parts of fuel cell cars, marks the biggest distinction between them and conventional automobiles. Fuel cell hybrid power systems are reviewed in this paper along with their current state of research. Three [...] Read more.
The power system, which is also one of the most crucial parts of fuel cell cars, marks the biggest distinction between them and conventional automobiles. Fuel cell hybrid power systems are reviewed in this paper along with their current state of research. Three different kinds of fuel cell hybrid power systems—fuel cell–battery, fuel cell–supercapacitor, and fuel cell–battery–supercapacitor—are thoroughly compared and analyzed, and they are systematically explained in the three areas of passenger cars, buses, and heavy duty trucks. Existing fuel cell hybrid systems and energy strategies are systematically reviewed and summarized, including predictive control strategies based on game theory, power allocation strategies, fuzzy control strategies, and adaptive super twisted sliding mode control (ASTSMC) energy management techniques. This study offers recommendations and direction for the future direction of fuel cell hybrid power system research and development. Full article
(This article belongs to the Special Issue Powertrain Design and Control in Sustainable Electric Vehicles)
Show Figures

Figure 1

48 pages, 9186 KiB  
Review
A Review on Design, Synthesis and Application of Composite Materials Based on MnO2 for Energy Storage
by Loukia Plakia and Ioannis A. Kartsonakis
Energies 2025, 18(13), 3455; https://doi.org/10.3390/en18133455 - 1 Jul 2025
Viewed by 579
Abstract
The design, synthesis, and application of composite materials based on manganese dioxide (MnO2) for energy storage are pivotal in advancing efficient, sustainable, and high-performance energy storage systems. The MnO2 is widely recognized for its abundance, low cost, environmental friendliness, and [...] Read more.
The design, synthesis, and application of composite materials based on manganese dioxide (MnO2) for energy storage are pivotal in advancing efficient, sustainable, and high-performance energy storage systems. The MnO2 is widely recognized for its abundance, low cost, environmental friendliness, and excellent electrochemical properties, making it a promising candidate for use in supercapacitors, batteries, fuel cells, and other energy storage systems. This study offers a comprehensive overview of how various materials influence the performance of MnO2 as an energy storage medium. Specifically, the design of composite materials is examined with respect to morphological control, integration with conductive additives, doping strategies, and structural engineering, all of which impact the final material properties. Additionally, the influence of diverse synthetic techniques—including hydrothermal synthesis, electrochemical deposition, sol–gel processing, co-precipitation, and templating methods—is evaluated. The latest attempts through which the developed composites showcase improved structural stability, inherent conductivity, and electron mobility compared to the original first material are presented in this review article. The presented results have been quite promising for the synthesis of great-performing materials with improved electrochemical data compared to that of MnO2 alone, competing with other significant energy storage materials. This review highlights future prospects for the development of state-of-the-art devices, large-scale production applications, and the use of environmentally friendly materials and methods. It is anticipated that this research will provide valuable insights to facilitate further improvements in performance and broaden the scope of practical applications in this rapidly evolving field of composite materials. Full article
(This article belongs to the Special Issue Advances in Electrochemical Power Sources: Systems and Applications)
Show Figures

Figure 1

37 pages, 1546 KiB  
Article
Fractional-Order Swarming Intelligence Heuristics for Nonlinear Sliding-Mode Control System Design in Fuel Cell Hybrid Electric Vehicles
by Nabeeha Qayyum, Laiq Khan, Mudasir Wahab, Sidra Mumtaz, Naghmash Ali and Babar Sattar Khan
World Electr. Veh. J. 2025, 16(7), 351; https://doi.org/10.3390/wevj16070351 - 24 Jun 2025
Viewed by 345
Abstract
Due to climate change, the electric vehicle (EV) industry is rapidly growing and drawing researchers interest. Driving conditions like mountainous roads, slick surfaces, and rough terrains illuminate the vehicles inherent nonlinearities. Under such scenarios, the behavior of power sources (fuel cell, battery, and [...] Read more.
Due to climate change, the electric vehicle (EV) industry is rapidly growing and drawing researchers interest. Driving conditions like mountainous roads, slick surfaces, and rough terrains illuminate the vehicles inherent nonlinearities. Under such scenarios, the behavior of power sources (fuel cell, battery, and super-capacitor), power processing units (converters), and power consuming units (traction motors) deviates from nominal operation. The increasing demand for FCHEVs necessitates control systems capable of handling nonlinear dynamics, while ensuring robust, precise energy distribution among fuel cells, batteries, and super-capacitors. This paper presents a DSMC strategy enhanced with Robust Uniform Exact Differentiators for FCHEV energy management. To optimally tune DSMC parameters, reduce chattering, and address the limitations of conventional methods, a hybrid metaheuristic framework is proposed. This framework integrates moth flame optimization (MFO) with the gravitational search algorithm (GSA) and Fractal Heritage Evolution, implemented through three spiral-based variants: MFOGSAPSO-A (Archimedean), MFOGSAPSO-H (Hyperbolic), and MFOGSAPSO-L (Logarithmic). Control laws are optimized using the Integral of Time-weighted Absolute Error (ITAE) criterion. Among the variants, MFOGSAPSO-L shows the best overall performance with the lowest ITAE for the fuel cell (56.38), battery (57.48), super-capacitor (62.83), and DC bus voltage (4741.60). MFOGSAPSO-A offers the most accurate transient response with minimum RMSE and MAE FC (0.005712, 0.000602), battery (0.004879, 0.000488), SC (0.002145, 0.000623), DC voltage (0.232815, 0.058991), and speed (0.030990, 0.010998)—outperforming MFOGSAPSO, GSA, and PSO. MFOGSAPSO-L further reduces the ITAE for fuel cell tracking by up to 29% over GSA and improves control smoothness. PSO performs moderately but lags under transient conditions. Simulation results conducted under EUDC validate the effectiveness of the MFOGSAPSO-based DSMC framework, confirming its superior tracking, faster convergence, and stable voltage control under transients making it a robust and high-performance solution for FCHEV. Full article
(This article belongs to the Special Issue Vehicle Control and Drive Systems for Electric Vehicles)
Show Figures

Figure 1

35 pages, 8296 KiB  
Review
Bridging Additive Manufacturing and Electronics Printing in the Age of AI
by Jihua Chen, Yue Yuan, Qianshu Wang, Hanyu Wang and Rigoberto C. Advincula
Nanomaterials 2025, 15(11), 843; https://doi.org/10.3390/nano15110843 - 31 May 2025
Cited by 2 | Viewed by 1727
Abstract
Printing techniques have been instrumental in developing flexible and stretchable electronics, including organic light-emitting diode displays, organic thin film transistor arrays, electronic skins, organic electrochemical transistors for biosensors and neuromorphic computing, as well as flexible solar cells with low-cost processes such as inkjet [...] Read more.
Printing techniques have been instrumental in developing flexible and stretchable electronics, including organic light-emitting diode displays, organic thin film transistor arrays, electronic skins, organic electrochemical transistors for biosensors and neuromorphic computing, as well as flexible solar cells with low-cost processes such as inkjet printing, ultrasonic nozzle, roll-to-roll coating. The rise of additive manufacturing provides even more opportunities to print electronics in automated and customizable ways. In this work, we will review the current technologies of printing electronics (including printed batteries, supercapacitors, fuel cells, and sensors), especially with 3D printing. In this age of ongoing AI revolution, the application of AI algorithms is discussed in terms of combining them with 3D printing and electronics printing for a future with automated optimization, sustainable design, and customizable and scalable manufacturing. Full article
(This article belongs to the Special Issue The Future of Nanotechnology: Healthcare and Manufacturing)
Show Figures

Graphical abstract

68 pages, 9522 KiB  
Review
Gel Electrolytes in the Development of Textile-Based Power Sources
by Ana Isabel Ribeiro, Cátia Alves, Marta Fernandes, José Abreu, Fábio Pedroso de Lima, Jorge Padrão and Andrea Zille
Gels 2025, 11(6), 392; https://doi.org/10.3390/gels11060392 - 27 May 2025
Viewed by 791
Abstract
The interest in flexible and wearable electronics is increasing in both scientific research and in multiple industry sectors, such as medicine and healthcare, sports, and fashion. Thus, compatible power sources are needed to develop secondary batteries, fuel cells, supercapacitors, sensors, and dye-sensitized solar [...] Read more.
The interest in flexible and wearable electronics is increasing in both scientific research and in multiple industry sectors, such as medicine and healthcare, sports, and fashion. Thus, compatible power sources are needed to develop secondary batteries, fuel cells, supercapacitors, sensors, and dye-sensitized solar cells. Traditional liquid electrolytes pose challenges in the development of textile-based electronics due to their potential for leakage, flammability, and limited flexibility. On the other hand, gel electrolytes offer solutions to these issues, making them suitable choices for these applications. There are several advantages to using gel electrolytes in textile-based electronics, namely higher safety, leak resistance, mechanical flexibility, improved interface compatibility, higher energy density, customizable properties, scalability, and easy integration into manufacturing processes. However, it is also essential to consider some challenges associated with these gels, such as lower conductivity and long-term stability. This review highlights the application of gel electrolytes to textile materials in various forms (e.g., fibers, yarns, woven, knit, and non-woven), along with the strategies for their integration and their resulting properties. While challenges remain in optimizing key parameters, the integration of gel electrolytes into textiles holds immense potential to enhance conductivity, flexibility, and energy storage, paving the way for advanced electronic textiles. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Graphical abstract

20 pages, 5514 KiB  
Article
The Tailored Surface Oxygen Vacancies and Reduced Optical Band Gap of NiO During the Development of NiO@Polyaniline Hybrid Materials for the Efficient Asymmetric and Oxygen Evolution Reaction Applications
by Fida Hussain, Wanhinyal Dars, Rabia Kanwal, Jethanand Parmar, Ghansham Das, Ahmed Raza, Haresh Kumar, Rameez Mangi, Masroor Ali Bhellar, Ambedker Meghwar, Kashif Ali, Aneela Tahira, Muhammad Ali Bhatti, Elmuez Dawi, Rafat M. Ibrahim, Brigitte Vigolo and Zafar Hussain Ibupoto
Catalysts 2025, 15(6), 508; https://doi.org/10.3390/catal15060508 - 22 May 2025
Viewed by 3753
Abstract
This study employed a simple and cost-effective method for developing NiO with reduced optical band gaps that can be combined with nanostructured polyaniline (PANI). The composite systems were used as electrocatalytic and electrode materials in oxygen evolution reactions (OER) and in supercapacitor applications. [...] Read more.
This study employed a simple and cost-effective method for developing NiO with reduced optical band gaps that can be combined with nanostructured polyaniline (PANI). The composite systems were used as electrocatalytic and electrode materials in oxygen evolution reactions (OER) and in supercapacitor applications. We prepared the composite material in two stages: NiO was prepared with a reduced optical band gap by combining it with wheat peel extract. This was followed by the incorporation of PANI nanoparticles during the chemical oxidation polymerization process. A variety of structural characterization techniques were employed, including scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). A surface-modified NiO/PANI composite with enhanced surface area, fast charge transfer rate, and redox properties was produced. When NiO/PANI composites were tested in KOH electrolytic solution, 0.5 mL of wheat peel extract-mediated NiO/PANI demonstrated excellent electrochemical performance. It was found that the asymmetric supercapacitor (ASC) device had the highest specific capacitance of 404 Fg−1 at a current density of 4 Ag−1. In terms of energy density and power density, the ASC device was found to have 140 Whkg−1 and 3160 Wkg−1, respectively. The ASC device demonstrated excellent cycling stability and charge storage rates, with 97.9% capacitance retention and 86.9% columbic efficiency. For the OER process, an overpotential of 320 mV was observed at a current density of 10 mA/cm2. It was found that the NiO/PANI composite was highly durable for a period of 30 h. A proposed hypothesis suggested that reducing the optical band gap of NiO and making its composites with PANI could be an appealing approach to developing next-generation electrode materials for supercapacitors, batteries, and fuel cells. Full article
(This article belongs to the Special Issue Advances in Biomass-Based Electrocatalysts)
Show Figures

Graphical abstract

35 pages, 4575 KiB  
Review
Advances in Metal-Organic Frameworks (MOFs) for Rechargeable Batteries and Fuel Cells
by Christos Argirusis, Niyaz Alizadeh, Maria-Εleni Katsanou, Nikolaos Argirusis and Georgia Sourkouni
Batteries 2025, 11(5), 192; https://doi.org/10.3390/batteries11050192 - 14 May 2025
Cited by 2 | Viewed by 1294
Abstract
The growing demand for energy, coupled with the unsustainable nature of fossil fuels due to global warming and the greenhouse effect, have led to the advancement of renewable energy production concepts. Innovations such as photovoltaics, wind energy, and infrared energy harvesters are emerging [...] Read more.
The growing demand for energy, coupled with the unsustainable nature of fossil fuels due to global warming and the greenhouse effect, have led to the advancement of renewable energy production concepts. Innovations such as photovoltaics, wind energy, and infrared energy harvesters are emerging as viable solutions. The challenge lies in the stochastic nature of renewable energy sources, which necessitates the implementation of electrical energy storage solutions, whether through batteries, supercapacitors, or hydrogen production. In this regard, innovative materials are essential to address the questions associated with these technologies. Metal-organic frameworks (MOFs) are crucial for achieving clean and efficient energy conversion in fuel cells and storage in batteries and supercapacitors. Metal-organic frameworks (MOFs) can be used as electrocatalytic materials, membranes for electrolytes, and energy storage materials. They exhibit exceptional design versatility, large surface, and can be functionalized with ligands with several charges and metallic centers. This article offers an in-depth examination of materials and devices utilizing metal-organic frameworks (MOFs) for electrochemical processes concerning the generation, transformation, and storage of electrical energy. This review specifically focuses on rechargeable batteries and fuel cells that incorporate MOFs. Finally, an outlook on the potential applications of MOFs in electrochemical industries is presented. Full article
(This article belongs to the Special Issue Novel Materials for Rechargeable Batteries)
Show Figures

Figure 1

29 pages, 9574 KiB  
Review
Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review
by Yan Tong, Issam Salhi, Qin Wang, Gang Lu and Shengyu Wu
Energies 2025, 18(9), 2312; https://doi.org/10.3390/en18092312 - 1 May 2025
Cited by 2 | Viewed by 2657
Abstract
Electric Vehicles (EV) significantly contribute to reducing carbon emissions and promoting sustainable transportation. Among EV technologies, hybrid energy storage systems (HESS), which combine fuel cells, power batteries, and supercapacitors, have been widely adopted to enhance energy density, power density, and system efficiency. Bidirectional [...] Read more.
Electric Vehicles (EV) significantly contribute to reducing carbon emissions and promoting sustainable transportation. Among EV technologies, hybrid energy storage systems (HESS), which combine fuel cells, power batteries, and supercapacitors, have been widely adopted to enhance energy density, power density, and system efficiency. Bidirectional DC-DC converters are pivotal in HESS, enabling efficient energy management, voltage matching, and bidirectional energy flow between storage devices and vehicle systems. This paper provides a comprehensive review of bidirectional DC-DC converter topologies for EV applications, which focuses on both non-isolated and isolated designs. Non-isolated topologies, such as Buck-Boost, Ćuk, and interleaved converters, are featured for their simplicity, efficiency, and compactness. Isolated topologies, such as dual active bridge (DAB) and push-pull converters, are featured for their high voltage gain and electrical isolation. An evaluation framework is proposed, incorporating key performance metrics such as voltage stress, current stress, power density, and switching frequency. The results highlight the strengths and limitations of various converter topologies, offering insights into their optimization for EV applications. Future research directions include integrating wide-bandgap devices, advanced control strategies, and novel topologies to address challenges such as wide voltage gain, high efficiency, and compact design. This work underscores the critical role of bidirectional DC-DC converters in advancing energy-efficient and sustainable EV technologies. Full article
Show Figures

Figure 1

22 pages, 713 KiB  
Review
Functional Graphene Coatings in Electrochemical Energy Technology—Beyond Corrosion Protection
by Qunting Qu, Lijun Fu, Lili Liu, Veniamin Kondratiev and Rudolf Holze
Molecules 2025, 30(7), 1436; https://doi.org/10.3390/molecules30071436 - 24 Mar 2025
Cited by 1 | Viewed by 875
Abstract
Coating the surfaces of active masses and auxiliary components in devices of electrochemical energy technology with graphene and closely related materials has been suggested and experimentally verified in numerous examples. The results in terms of improved performance are promising and suggest the need [...] Read more.
Coating the surfaces of active masses and auxiliary components in devices of electrochemical energy technology with graphene and closely related materials has been suggested and experimentally verified in numerous examples. The results in terms of improved performance are promising and suggest the need for further research and technological development. This report provides a complete overview, providing details that are relevant for understanding the way in which these coatings work. Suggestions and directions for further development are indicated. Full article
Show Figures

Figure 1

27 pages, 17498 KiB  
Article
Hierarchical Energy Management and Energy Saving Potential Analysis for Fuel Cell Hybrid Electric Tractors
by Shenghui Lei, Yanying Li, Mengnan Liu, Wenshuo Li, Tenglong Zhao, Shuailong Hou and Liyou Xu
Energies 2025, 18(2), 247; https://doi.org/10.3390/en18020247 - 8 Jan 2025
Cited by 3 | Viewed by 1021
Abstract
To address the challenges faced by fuel cell hybrid electric tractors (FCHETs) equipped with a battery and supercapacitor, including the complex coordination of multiple energy sources, low power allocation efficiency, and unclear optimal energy consumption, this paper proposes two energy management strategies (EMSs): [...] Read more.
To address the challenges faced by fuel cell hybrid electric tractors (FCHETs) equipped with a battery and supercapacitor, including the complex coordination of multiple energy sources, low power allocation efficiency, and unclear optimal energy consumption, this paper proposes two energy management strategies (EMSs): one based on hierarchical instantaneous optimization (HIO) and the other based on multi-dimensional dynamic programming with final state constraints (MDDP-FSC). The proposed HIO-based EMS utilizes a low-pass filter and fuzzy logic correction in its upper-level strategy to manage high-frequency dynamic power using the supercapacitor. The lower-level strategy optimizes fuel cell efficiency by allocating low-frequency stable power based on the principle of minimizing equivalent consumption. Validation using a hardware-in-the-loop (HIL) simulation platform and comparative analysis demonstrate that the HIO-based EMS effectively improves the transient operating conditions of the battery and fuel cell, extending their lifespan and enhancing system efficiency. Furthermore, the HIO-based EMS achieves a 95.20% level of hydrogen consumption compared to the MDDP-FSC-based EMS, validating its superiority. The MDDP-FSC-based EMS effectively avoids the extensive debugging efforts required to achieve a final state equilibrium, while providing valuable insights into the global optimal energy consumption potential of multi-energy source FCHETs. Full article
Show Figures

Figure 1

21 pages, 3922 KiB  
Article
Prior Knowledge-Based Two-Layer Energy Management Strategy for Fuel Cell Ship Hybrid Power System
by Lin Liu, Xiangguo Yang, Xin Li, Xingwei Zhou, Yufan Wang, Telu Tang, Qijia Song and Yifan Liu
J. Mar. Sci. Eng. 2025, 13(1), 94; https://doi.org/10.3390/jmse13010094 - 7 Jan 2025
Viewed by 1207
Abstract
Implementing energy management is crucial in the fuel cell and battery or supercapacitor hybrid energy systems of ships. Traditional real-time energy management strategies often struggle to adapt to complex operating conditions; to address this issue and mitigate fuel cell fluctuations during real-time operations [...] Read more.
Implementing energy management is crucial in the fuel cell and battery or supercapacitor hybrid energy systems of ships. Traditional real-time energy management strategies often struggle to adapt to complex operating conditions; to address this issue and mitigate fuel cell fluctuations during real-time operations while extending the lifespan of lithium-ion batteries, this paper proposes a two-layer energy management system (EMS) based on prior knowledge of ship operation. In the first layer of the EMS, which operates offline, dynamic programming (DP) and low-pass filtering (LPF) are used to allocate power optimally for different typical ship operating conditions. Distribution results are then used to train an SSA-BP neural network, creating an offline strategy library. In the second layer, operating in real-time, the current load power is input into a support vector machine (SVM) to classify the current operating condition. The corresponding strategy from the offline library is then selected and used to provide energy distribution recommendations based on the real-time load and the state of charge (SOC) of the lithium-ion batteries and supercapacitors. The proposed EMS was validated using different ship load cycles. The results demonstrate that, compared to second-order filtering-based real-time energy management strategies, the proposed method reduces fuel cell power fluctuations by 44% and decreases lithium-ion battery degradation by 28%. Furthermore, the simulation results closely align with the offline optimization results, indicating that the proposed strategy achieves near-optimal energy management in real-time ship operations with minimal computational overhead. Full article
(This article belongs to the Special Issue Advancements in Power Management Systems for Hybrid Electric Vessels)
Show Figures

Figure 1

33 pages, 7735 KiB  
Article
Control and Optimization of Hydrogen Hybrid Electric Vehicles Using GPS-Based Speed Estimation
by Nouha Mansouri, Aymen Mnassri, Sihem Nasri, Majid Ali, Abderezak Lashab, Juan C. Vasquez and Josep M. Guerrero
Electronics 2025, 14(1), 110; https://doi.org/10.3390/electronics14010110 - 30 Dec 2024
Cited by 3 | Viewed by 1690
Abstract
This paper investigates the feasibility of hydrogen-powered hybrid electric vehicles as a solution to transportation-related pollution. It focuses on optimizing energy use to improve efficiency and reduce emissions. The study details the creation and real-time performance assessment of a hydrogen hybrid electric vehicle [...] Read more.
This paper investigates the feasibility of hydrogen-powered hybrid electric vehicles as a solution to transportation-related pollution. It focuses on optimizing energy use to improve efficiency and reduce emissions. The study details the creation and real-time performance assessment of a hydrogen hybrid electric vehicle (HHEV)system using an STM32F407VG board. This system includes a fuel cell (FC) as the main energy source, a battery (Bat) to provide energy during hydrogen supply disruptions and a supercapacitor (SC) to handle power fluctuations. A multi-agent-based artificial intelligence tool is used to model the system components, and an energy management algorithm (EMA) is applied to optimize energy use and support decision-making. Real Global Positioning System (GPS) data are analyzed to estimate energy consumption based on trip and speed parameters. The EMA, developed and implemented in real-time using Matlab/Simulink(2016), identifies the most energy-efficient routes. The results show that the proposed vehicle architecture and management strategy effectively select optimal routes with minimal energy use. Full article
Show Figures

Figure 1

25 pages, 9795 KiB  
Article
Research on the Integrated Converter and Its Control for Fuel Cell Hybrid Electric Vehicles with Three Power Sources
by Yuang Ma and Wenguang Luo
Electronics 2025, 14(1), 29; https://doi.org/10.3390/electronics14010029 - 25 Dec 2024
Cited by 1 | Viewed by 1120
Abstract
Separate DC-DC converters for each energy source are typically configured in fuel-cell hybrid vehicles. This results in a complex control structure of the powertrain system, low energy density of the converter, and high cost due to the large number of components. Conducting research [...] Read more.
Separate DC-DC converters for each energy source are typically configured in fuel-cell hybrid vehicles. This results in a complex control structure of the powertrain system, low energy density of the converter, and high cost due to the large number of components. Conducting research on DC-DC converters with good energy flow management and high integration is a trend to solve such problems. Based on the analysis of the basic functional structure of the converter, this paper designs a buffering unit circuit with energy collection and distribution functions and appropriately connects it with the pulse unit circuit of the converter. Through device optimization reuse and power transmission path integration, a class of non-isolated four-port DC-DC converters is constructed, which consists of an auxiliary energy charging module, input energy source control module, braking energy feedback module and forward bootstrap boost circuit. This converter has two bi-directional ports, a uni-directional input and a bi-directional output, for separate connection to the power batteries, supercapacitors, fuel cells and DC bus. It can adapt to the fluctuation of the vehicle’s driving condition while achieving dynamic and flexible regulation of power flow and can flexibly allocate power according to the load current and voltage level of energy. It can realize a total of 14 operation modes, including six output power supply operation modes, five auxiliary power charging operation modes, and three braking energy regeneration operation modes. Furthermore, the mathematical model of this converter is constructed using the state-average method and the small-signal modeling method in order to achieve the responsiveness and stability of switching multiple operating modalities. The PI control parameters are optimized using the particle swarm optimization algorithm to achieve optimized control of the converter. The simulation system is set up using MATLAB R2024a to verify that the proposed converter topology and algorithm can dynamically allocate appropriate current paths to manipulate the power flow under various operating conditions, effectively improving the utilization rate and efficiency of energy. The converter has the characteristics of high gain and high power density, which is suitable for three-energy fuel cell hybrid electric vehicles. Full article
Show Figures

Figure 1

34 pages, 7437 KiB  
Review
Beyond Organic Electrolytes: An Analysis of Ionic Liquids for Advanced Lithium Rechargeable Batteries
by Karthik Vishweswariah, Anil Kumar Madikere Raghunatha Reddy and Karim Zaghib
Batteries 2024, 10(12), 436; https://doi.org/10.3390/batteries10120436 - 7 Dec 2024
Cited by 6 | Viewed by 5554
Abstract
The fast-growing area of battery technology requires the availability of highly stable, energy-efficient batteries for everyday applications. This, in turn, calls for research into new battery materials, especially with regard to a battery’s main component: the electrolytes. Besides the demands associated with solid [...] Read more.
The fast-growing area of battery technology requires the availability of highly stable, energy-efficient batteries for everyday applications. This, in turn, calls for research into new battery materials, especially with regard to a battery’s main component: the electrolytes. Besides the demands associated with solid ionic conduction and appropriate electrochemical behaviour, considerable effort will be necessary to thoroughly reduce safety risks in terms of flammability, leakage, and thermal runaway. Consequently, completely new classes of electrolytes need to be developed that are compatible with energy storage systems. Despite the progress made in solid polymer electrolytes, such materials have suffered from limitations to their real-world application. Now, ionic liquids are considered a class of electrolytes with the most potential for the creation of more advanced and safer lithium–ion batteries. In recent decades, ILs have been widely explored as potential electrolytes in the search for new breakthroughs in the ESS field, such those associated with fuel cells, lithium–ion batteries, and supercapacitors. The present review will discuss ILs that present high ionic conductivity, a lower melting point below 100 °C, and which feature up to 5–6 V wide electrochemical potential windows vs. Li+/Li. Furthermore, ILs exhibit good thermal stability, non-flammability, and low volatility—all of which are attributes realized by appropriate cation–anion combinations. This paper seeks to review the status of research concerning ILs, along with the advantages and challenges yet to be overcome in their development. Full article
Show Figures

Graphical abstract

Back to TopTop