The Tailored Surface Oxygen Vacancies and Reduced Optical Band Gap of NiO During the Development of NiO@Polyaniline Hybrid Materials for the Efficient Asymmetric and Oxygen Evolution Reaction Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure, Shape Orientation, Surface Chemical Composition, and Optical Investigations of NiO/PANI Composites
2.2. Electrochemical Energy Storage Performance Evaluation of Reduced NiO Optical Band Gap and Polyaniline Composites
2.3. Asymmetric Supercapacitor Device Application of NiO/Polyaniline (B4) Composites
2.4. Oxygen Evolution Reaction Performance of Wheat-Peel-Extract Mediated NiO@PANI Composites
3. Experimental Section
3.1. Chemicals
3.2. Synthesis of NiO/PANI Composites Using Hydrothermal and Chemical Oxidation Polymerization
3.3. Characterization
3.4. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, G.Z. Supercapacitor and supercapattery as emerging electrochemical energy stores. Int. Mater. Rev. 2017, 62, 173–202. [Google Scholar] [CrossRef]
- Krishnasamy, K.; Purushothaman, K.K. Preparation and characterisation of MnS@ Mn3O4/C nanoflakes for hybrid supercapacitor applications. Mater. Technol. 2022, 37, 63–70. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ray, A.; Mandal, M.; Das, S.; Bhattacharya, S.K. Synthesis and characterization of CuO-NiO nanocomposites for electrochemical supercapacitors. J. Mater. Eng. Perform. 2020, 29, 8036–8048. [Google Scholar] [CrossRef]
- Sidhu, N.K.; Rastogi, A.C. Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage. Nanoscale Res. Lett. 2014, 9, 453. [Google Scholar] [CrossRef]
- Nuamah, R.A.; Noormohammed, S.; Sarkar, D.K. Pulsed reverse potential electrodeposition of carbon-free Ni/Nio nanocomposite thin film electrode for energy storage supercapacitor electrodes. Coatings 2021, 11, 780. [Google Scholar] [CrossRef]
- Kumar, R.; Abdel-Galeil, M.M.; Matsuda, A.; Moshkalev, S.A. One step synthesis Pd/NiO@ rGO/CNTs nanocomposite for energy storage as supercapacitor application. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1461, p. 012109. [Google Scholar]
- Nguyen, T.V.; Nguyen, T.D.; Pham, N.V.; Nguyen, T.A. Ta DV Monodisperse and size-tunable high-quality factor microsphere biolasers. Opt. Lett. 2021, 46, 2517–2520. [Google Scholar] [CrossRef]
- Shi, H.H.; Naguib, H.E. Fabrication and characterization of polyaniline-graphene nanoplatelets composite electrode materials for hybrid supercapacitor applications. In Behavior and Mechanics of Multifunctional Materials and Composites; SPIE: Bellingham, WA, USA, 2015; Volume 9432, pp. 189–197. [Google Scholar]
- Payami, E.; Teimuri-Mofrad, R. A novel ternary Fe3O4@ Fc-GO/PANI nanocomposite for outstanding supercapacitor performance. Electrochim. Acta 2021, 383, 138296. [Google Scholar] [CrossRef]
- Sookhakian, M.; Basirun, W.J.; Teridi, M.A.; Mahmoudian, M.R.; Azarang, M.; Zalnezhad, E.; Yoon, G.H.; Alias, Y. Prussian blue-nitrogen-doped graphene nanocomposite as hybrid electrode for energy storage applications. Electrochim. Acta 2017, 230, 316–323. [Google Scholar] [CrossRef]
- Aljaafari, A.; Parveen, N.; Ahmad, F.; Alam, M.W.; Ansari, S.A. Self-assembled cube-like copper oxide derived from a metal-organic framework as a high-performance electrochemical supercapacitive electrode material. Sci. Rep. 2019, 9, 9140. [Google Scholar] [CrossRef]
- Çıplak, Z.; Yıldız, A.; Yıldız, N. Green preparation of ternary reduced graphene oxide-au@ polyaniline nanocomposite for supercapacitor application. J. Energy Storage 2020, 32, 101846. [Google Scholar] [CrossRef]
- Kanaujiya, N.; Kumar, N.; Singh, M.; Sharma, Y.; Varma, G.D. CoMn2O4 nanoparticles decorated on 2D MoS2 frame: A synergetic energy storage composite material for practical supercapacitor applications. J. Energy Storage 2021, 35, 102302. [Google Scholar] [CrossRef]
- Tuichai, W.; Karaphun, A.; Ruttanapun, C. Ag nanomaterials deposited reduced graphene oxide nanocomposite as an advanced hybrid electrode material for asymmetric supercapacitor device. J. Alloys Compd. 2020, 849, 156516. [Google Scholar] [CrossRef]
- Li, C.K.; Lin, L.; Xiong, S.L.; Ge, M.Y.; Li, X.B.; Li, T.P.; Lu, F.J.; Zhang, S.N.; Tuo, Y.L.; Nang, Y.; et al. HXMT identification of a non-thermal X-ray burst from SGR J1935+ 2154 and with FRB 200428. Nat. Astron. 2021, 5, 378–384. [Google Scholar] [CrossRef]
- Kalusulingam, R.; Ravi, K.; Mathi, S.; Mikhailova, T.S.; Srinivasan, K.; Biradar, A.V.; Myasoedova, T.N. Bagasse derived N-doped graphitic carbon encapsulated cobalt nanoparticles as an efficient bifunctional catalyst for water splitting reactions. Colloids Surf. A Physicochem. Eng. Asp. 2024, 692, 133959. [Google Scholar] [CrossRef]
- Bhadu, G.R.; Parmar, B.; Patel, P.; Paul, A.; Chaudhari, J.C.; Srivastava, D.N.; Suresh, E. Co@ N-doped carbon nanomaterial derived by simple pyrolysis of mixed-ligand MOF as an active and stable oxygen evolution electrocatalyst. Appl. Surf. Sci. 2020, 529, 147081. [Google Scholar] [CrossRef]
- Jamesh, M.I.; Harb, M. Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction (OER) to achieve efficient alkaline water splitting—A review. J. Energy Chem. 2021, 56, 299–342. [Google Scholar] [CrossRef]
- Li, J.; Du, X.; Zhang, X. Controlled synthesis of NiWO4 combined with NiSe2 with heterostructure on nickel foam for efficient overall water splitting. J. Alloys Compd. 2023, 951, 169941. [Google Scholar] [CrossRef]
- Zhong, X.; Shu, C.; Su, X.; Wang, W.; Gong, J. Insight into improved oxygen evolution reaction on electronic modulation of phosphorus doped NiCo2O4. Mater. Today Commun. 2022, 31, 103708. [Google Scholar] [CrossRef]
- Patel, K.B.; Parmar, B.; Ravi, K.; Patidar, R.; Chaudhari, J.C.; Srivastava, D.N.; Bhadu, G.R. Metal-organic framework derived core-shell nanoparticles as high performance bifunctional electrocatalysts for HER and OER. Appl. Surf. Sci. 2023, 616, 156499. [Google Scholar] [CrossRef]
- Özhava, D.; Özkar, S. Nanoceria supported rhodium (0) nanoparticles as catalyst for hydrogen generation from methanolysis of ammonia borane. Appl. Catal. B Environ. 2018, 237, 1012–1020. [Google Scholar] [CrossRef]
- Aneggi, E.; de Leitenburg, C.; Trovarelli, A. Influence of nanoscale surface arrangements on the oxygen transfer ability of ceria–zirconia mixed oxide. Inorganics 2020, 8, 34. [Google Scholar] [CrossRef]
- Liu, Z.; Li, N.; Zhao, H.; Zhang, Y.; Huang, Y.; Yin, Z.; Du, Y. Regulating the active species of Ni(OH)2 using CeO2: 3D CeO2/Ni(OH)2/carbon foam as an efficient electrode for the oxygen evolution reaction. Chem. Sci. 2017, 8, 3211–3217. [Google Scholar] [CrossRef]
- Flores-Melo, L.M.; Arce-Estrada, E.; Trujillo-Olivares, I.; Sandoval-Pineda, J.M.; Reyes-Rodríguez, J.L.; de Guadalupe González-Huerta, R. Influence of CeO2 nanoparticles in the stability of electrodeposited Ni anodes for alkaline electrolysers. Int. J. Hydrogen Energy 2023, 48, 18141–18153. [Google Scholar] [CrossRef]
- Rui, N.; Zhang, X.; Zhang, F.; Liu, Z.; Cao, X.; Xie, Z.; Zou, R.; Senanayake, S.D.; Yang, Y.; Rodriguez, J.A.; et al. Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization. Appl. Catal. B Environ. 2021, 282, 119581. [Google Scholar] [CrossRef]
- Tao, Y.; Gong, F.H.; Wang, H.; Wu, H.P.; Tao, G.L. Microwave-assisted preparation of cerium dioxide nanocubes. Mater. Chem. Phys. 2008, 112, 973–976. [Google Scholar] [CrossRef]
- Saha, E.; Bhadu, G.R.; Mitra, J. Ni (II) supramolecular gel-derived Ni (0) nanoclusters decorated with optimal N, O-doped graphitized carbon as bifunctional electrocatalysts for oxygen and hydrogen evolution reactions. Int. J. Hydrogen Energy 2023, 48, 8115–8126. [Google Scholar] [CrossRef]
- Okafor, O.B.; Popoola, A.P.; Popoola, O.M.; Adeosun, S.O. Review on the recent development on polyaniline and transition metal oxides composite electrode for supercapacitor application. Next Mater. 2025, 6, 100389. [Google Scholar] [CrossRef]
- Patel, K.B.; Mariyaselvakumar, M.; Vyas, G.; Chaudhari, J.C.; Patidar, R.; Srinivasan, K.; Srivastava, D.N.; Bhadu, G.R. Nickel oxide doped ceria nanoparticles (NiO@CeO2) for boosting oxygen evolution reaction and enhancing stability. Appl. Surf. Sci. 2024, 649, 159212. [Google Scholar] [CrossRef]
- Deraz, N.M. Effect of NiO content on structural, surface and catalytic characteristics of nano-crystalline NiO/CeO2 system. Ceram. Int. 2012, 38, 747–753. [Google Scholar] [CrossRef]
- Kotomin, E.A.; Eglitis, R.I.; Popov, A.I. Charge distribution and optical properties of and F centres in crystals. J. Phys. Condens. Matter 1997, 9, L315. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 2005, 87, 122102. [Google Scholar] [CrossRef]
- Muñoz Ramo, D.; Gavartin, J.L.; Shluger, A.L.; Bersuker, G. Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory. Phys. Rev. B—Condens. Matter Mater. Phys. 2007, 75, 205336. [Google Scholar] [CrossRef]
- Chen, H.; Yang, S. Methods and strategies for achieving high-performance carbon-based perovskite solar cells without hole transport materials. J. Mater. Chem. A 2019, 7, 15476–15490. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, X.; Shi, Y.; Hou, X.; Li, F.; Zhang, Q.; Tai, Q.; Liu, P.; Zhao, X.Z. Optimized crystallization and defect passivation with Yttrium (III) doped MAPbBr3 film for highly efficient and stable hole-transport-layer-free carbon-based perovskite solar cells. J. Alloys Compd. 2022, 890, 161909. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, F.; Yang, Z.; Huang, S. One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J. Power Sources 2013, 243, 555–561. [Google Scholar] [CrossRef]
- Azari-Hamidian, S.; Harbach, R.E. Arthropod-borne and arthropod-related viruses in Iran and neighboring countries. Parazitologiâ 2023, 57, 356–440. [Google Scholar] [CrossRef]
- Poyyamozhi, N.; Kumar, S.S.; Kumar, R.A.; Soundararajan, G. An investigation into enhancing energy storage capacity of solar ponds integrated with nanoparticles through PCM coupling and RSM optimization. Renew. Energy 2024, 221, 119733. [Google Scholar] [CrossRef]
- Ayad, M.; El-Hefnawy, G.; Zaghlol, S. Facile synthesis of polyaniline nanoparticles; its adsorption behavior. Chem. Eng. J. 2013, 217, 460–465. [Google Scholar] [CrossRef]
- Keerthana, S.P.; Yuvakkumar, R.; Kumar, P.S.; Ravi, G.; Velauthapillai, D. Rare earth metal (Sm) doped zinc ferrite (ZnFe2O4) for improved photocatalytic elimination of toxic dye from aquatic system. Environ. Res. 2021, 197, 111047. [Google Scholar] [CrossRef]
- Hassanien, A.S.; Akl, A.A. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 2016, 89, 153–169. [Google Scholar] [CrossRef]
- Sakamoto, K.; Hayashi, F.; Sato, K.; Hirano, M.; Ohtsu, N. XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3. Appl. Surf. Sci. 2020, 526, 146729. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Z.; Meng, T.; Han, Y.; Wang, X.; Zhang, Q. Effects of silicon doping on the performance of tin oxide thin film transistors. Phys. Status Solidi (A) 2016, 13, 1010–1015. [Google Scholar] [CrossRef]
- Liu, W.; Lu, C.; Wang, X.; Liang, K.; Tay, B.K. In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage. J. Mater. Chem. A 2015, 3, 624–633. [Google Scholar] [CrossRef]
- Myasoedova, T.N.; Grigoryev, M.N.; Mikhailova, T.S. Effect of nickel and manganese doping on the structure, morphology and the electrochemical performance of the silicon-carbon films. J. Alloys Compd. 2021, 855, 157504. [Google Scholar] [CrossRef]
- Soudagar, N.M.; Pardeshi, A.R.; Padvi, M.A.; Pandit, V.K.; Joshi, S.S. The performance studies of polyaniline-functionalized carbon nanotube supercapacitor at room temperature. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2024; Volume 3139. [Google Scholar]
- Zhang, M.; Nautiyal, A.; Du, H.; Wei, Z.; Zhang, X.; Wang, R. Electropolymerization of polyaniline as high-performance binder free electrodes for flexible supercapacitor. Electrochim. Acta 2021, 376, 138037. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Lu, C.; Hu, Y.X.; Zhang, B.M.; Li, J.; Tian, C.Y.; Zhang, D.T.; Kong, L.B.; Liu, M.C. Assemble from 0D to 3D: Anchored 0D molybdenum carbide on 3D octahedral amorphous carbon with excellent capacitive properties. J. Mater. Sci. 2020, 55, 15562–15573. [Google Scholar] [CrossRef]
- Han, L.; Cui, S.; Yu, H.Y.; Song, M.; Zhang, H.; Grishkewich, N.; Huang, C.; Kim, D.; Tam, K.M. Self-healable conductive nanocellulose nanocomposites for biocompatible electronic skin sensor systems. ACS Appl. Mater. Interfaces 2019, 11, 44642–44651. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, H.; Chen, P.; Bao, Y.; Jiang, X.; Chen, Y. Electrochemical performance of polyaniline-coated γ-MnO2 on carbon cloth as flexible electrode for supercapacitor. Electrochim. Acta 2022, 413, 140146. [Google Scholar] [CrossRef]
- Mao, N.; Chen, W.; Meng, J.; Li, Y.; Zhang, K.; Qin, X.; Zhang, H.; Zhang, C.; Qiu, Y.; Wang, S. Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification. J. Power Sources 2018, 399, 406–413. [Google Scholar] [CrossRef]
- Li, K.; Liu, X.; Chen, S.; Pan, W.; Zhang, J. A flexible solid-state supercapacitor based on graphene/polyaniline paper electrodes. J. Energy Chem. 2019, 32, 166–173. [Google Scholar] [CrossRef]
- Yang, X.; Qiu, Y.; Zhang, M.; Zhang, L.; Li, H. Facile fabrication of polyaniline/graphene composite fibers as electrodes for fiber-shaped supercapacitors. Appl. Sci. 2021, 11, 8690. [Google Scholar] [CrossRef]
- Shao, F.; Niu, Y.; Li, B.; Li, G.; Yang, Z.; Su, Y.; Zhang, Y.; Hu, N. Binary nanosheet frameworks of graphene/polyaniline composite for high-areal flexible supercapacitors. Mater. Chem. Phys. 2021, 273, 125128. [Google Scholar] [CrossRef]
- Zheng, X.; Ye, Y.; Yang, Q.; Geng, B.; Zhang, X. Ultrafine nickel–copper carbonate hydroxide hierarchical nanowire networks for high-performance supercapacitor electrodes. Chem. Eng. J. 2016, 290, 353–360. [Google Scholar] [CrossRef]
- Ji, S.H.; Chodankar, N.R.; Kim, D.H. Aqueous asymmetric supercapacitor based on RuO2-WO3 electrodes. Electrochim. Acta 2019, 325, 134879. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhang, G.F.; Nasser, R.; Jiang, T.T.; Cao, Q.W.; Gong, M.Z.; Li, X.Y.; Song, J.M. Controllable synthesis of Co/Ni basic carbonate composite via regulating Co/Ni ratio with super rate performance for asymmetric solid-state supercapacitor. J. Alloys Compd. 2022, 906, 164270. [Google Scholar] [CrossRef]
- Du, W.; Wang, X.; Zhan, J.; Sun, X.; Kang, L.; Jiang, F.; Zhang, X.; Shao, Q.; Dong, M.; Liu, H.; et al. Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim. Acta 2019, 296, 907–915. [Google Scholar] [CrossRef]
- Zhu, D.; Sun, X.; Yu, J.; Liu, Q.; Liu, J.; Chen, R.; Zhang, H.; Li, R.; Yu, J.; Wang, J. Rationally designed CuCo2O4@Ni(OH)2 with 3D hierarchical core-shell structure for flexible energy storage. J. Colloid Interface Sci. 2019, 557, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, W.; Liang, R.; Tjandra, R.; Yu, A. Graphene quantum dot induced tunable growth of nanostructured MnCo2O4.5 composites for high-performance supercapacitors. Sustain. Energy Fuels 2019, 3, 2499–2508. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Yu, Z.; Wei, L.; Guo, X. Mesoporous NiMoO4 microspheres decorated by Ag quantum dots as cathode material for asymmetric supercapacitors: Enhanced interfacial conductivity and capacitive storage. Appl. Surf. Sci. 2020, 505, 144513. [Google Scholar] [CrossRef]
- Ding, S.; Li, X.; Jiang, X.; Hu, Q.; Yan, Y.; Zheng, Q.; Lin, D. Core-shell nanostructured ZnO@ CoS arrays as advanced electrode materials for high-performance supercapacitors. Electrochim. Acta 2020, 354, 136711. [Google Scholar] [CrossRef]
- Xuan, H.; Li, H.; Yang, J.; Liang, X.; Xie, Z.; Han, P.; Wu, Y. Rational design of hierarchical core-shell structured CoMoO4@CoS composites on reduced graphene oxide for supercapacitors with enhanced electrochemical performance. Int. J. Hydrogen Energy 2020, 45, 6024–6035. [Google Scholar] [CrossRef]
- Kumar, S.; Satpathy, B.K.; Pradhan, D. Morphology-controlled synthesis of a NiCo-carbonate layered double hydroxide as an electrode material for solid-state asymmetric supercapacitors. Mater. Adv. 2024, 5, 2271–2284. [Google Scholar] [CrossRef]
- Liu, P.F.; Zhang, L.; Zheng, L.R.; Yang, H.G. Surface engineering of nickel selenide for an enhanced intrinsic overall water splitting ability. Mater. Chem. Front. 2018, 2, 1725–1731. [Google Scholar] [CrossRef]
- Nagajyothi, P.C.; Ramaraghavulu, R.; Munirathnam, K.; Yoo, K.; Shim, J. One-pot hydrothermal synthesis: Enhanced MOR and OER performance using low-cost Mn3O4 electrocatalyst. Int. J. Hydrogen Energy 2021, 46, 13946–13951. [Google Scholar] [CrossRef]
- He, J.; Wang, M.; Wang, W.; Miao, R.; Zhong, W.; Chen, S.Y.; Poges, S.; Jafari, T.; Song, W.; Liu, J.; et al. Hierarchical mesoporous NiO/MnO2@ PANI core–shell microspheres, highly efficient and stable bifunctional electrocatalysts for oxygen evolution and reduction reactions. ACS Appl. Mater. Interfaces 2017, 9, 42676–42687. [Google Scholar] [CrossRef]
- Bhushan, M.; Mani, M.; Singh, A.K.; Panda, A.B.; Shahi, V.K. Self-standing polyaniline membrane containing quaternary ammonium groups loaded with hollow spherical NiCo2O4 electrocatalyst for alkaline water electrolyser. J. Mater. Chem. A 2020, 8, 17089–17097. [Google Scholar] [CrossRef]
- Saddeler, S.; Bendt, G.; Salamon, S.; Haase, F.T.; Landers, J.; Timoshenko, J.; Rettenmaier, C.; Jeon, H.S.; Bergmann, A.; Wende, H.; et al. Influence of the cobalt content in cobalt iron oxides on the electrocatalytic OER activity. J. Mater. Chem. A 2021, 9, 25381–25390. [Google Scholar] [CrossRef]
- Wang, C.; Wang, R.; Peng, Y.; Chen, J.; Chen, Z.; Yin, H.; Li, J. Nb-incorporated Fe (oxy) hydroxide derived from structural transformation for efficient oxygen evolution electrocatalysis. J. Mater. Chem. A 2020, 8, 24598–24607. [Google Scholar] [CrossRef]
- Ouyang, T.; Ye, Y.Q.; Wu, C.Y.; Xiao, K.; Liu, Z.Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem. Int. Ed. 2019, 58, 4923–4928. [Google Scholar] [CrossRef]
Material | Specific Capacitance (Fg−1) | Current Density (Ag−1) | Energy Density (Wh kg−1) | Power Density (W kg−1) | Columbic Efficiency % | Capacitance Retention (%) |
---|---|---|---|---|---|---|
B2 | 404.81 | 4 | 140.36 | 3160.00 | 86.9% | 97.9 |
173.21 | 4.5 | 60.82 | 3577.50 | |||
96.23 | 5 | 33.79 | 3975.00 | |||
72.33 | 10 | 25.40 | 7950.00 | |||
27.36 | 15 | 9.61 | 11,925.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, F.; Dars, W.; Kanwal, R.; Parmar, J.; Das, G.; Raza, A.; Kumar, H.; Mangi, R.; Bhellar, M.A.; Meghwar, A.; et al. The Tailored Surface Oxygen Vacancies and Reduced Optical Band Gap of NiO During the Development of NiO@Polyaniline Hybrid Materials for the Efficient Asymmetric and Oxygen Evolution Reaction Applications. Catalysts 2025, 15, 508. https://doi.org/10.3390/catal15060508
Hussain F, Dars W, Kanwal R, Parmar J, Das G, Raza A, Kumar H, Mangi R, Bhellar MA, Meghwar A, et al. The Tailored Surface Oxygen Vacancies and Reduced Optical Band Gap of NiO During the Development of NiO@Polyaniline Hybrid Materials for the Efficient Asymmetric and Oxygen Evolution Reaction Applications. Catalysts. 2025; 15(6):508. https://doi.org/10.3390/catal15060508
Chicago/Turabian StyleHussain, Fida, Wanhinyal Dars, Rabia Kanwal, Jethanand Parmar, Ghansham Das, Ahmed Raza, Haresh Kumar, Rameez Mangi, Masroor Ali Bhellar, Ambedker Meghwar, and et al. 2025. "The Tailored Surface Oxygen Vacancies and Reduced Optical Band Gap of NiO During the Development of NiO@Polyaniline Hybrid Materials for the Efficient Asymmetric and Oxygen Evolution Reaction Applications" Catalysts 15, no. 6: 508. https://doi.org/10.3390/catal15060508
APA StyleHussain, F., Dars, W., Kanwal, R., Parmar, J., Das, G., Raza, A., Kumar, H., Mangi, R., Bhellar, M. A., Meghwar, A., Ali, K., Tahira, A., Bhatti, M. A., Dawi, E., Ibrahim, R. M., Vigolo, B., & Ibupoto, Z. H. (2025). The Tailored Surface Oxygen Vacancies and Reduced Optical Band Gap of NiO During the Development of NiO@Polyaniline Hybrid Materials for the Efficient Asymmetric and Oxygen Evolution Reaction Applications. Catalysts, 15(6), 508. https://doi.org/10.3390/catal15060508