Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,660)

Search Parameters:
Keywords = fruiting bodies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4075 KiB  
Article
Biological Characteristics and Domestication of a Wild Hericium coralloides
by Ji-Ling Song, Ya Xin, Zu-Fa Zhou, Xue-Ping Kang, Yang Zhang, Wei-Dong Yuan and Bin Yu
Horticulturae 2025, 11(8), 917; https://doi.org/10.3390/horticulturae11080917 (registering DOI) - 5 Aug 2025
Abstract
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected [...] Read more.
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected from the Changbaishan Nature Reserve (Jiling, China). Optimal conditions for mycelial growth included mannose as the preferred carbon source, peptone as the nitrogen source, 30 °C incubation temperature, pH 5.5, and magnesium sulfate as the essential inorganic salt. The fruiting bodies had a protein content of 2.43% g/100 g (fresh sample meter). Total amino acids comprised 53.3% of the total amino acid profile, while essential amino acids accounted for 114.11% relative to non-essential amino acids, indicating high nutritional value. Under optimized domestication conditions—70% hardwood chips, 20% cottonseed hulls, 8% bran, 1% malic acid, and 1% gypsum—bags reached full colonization in 28 days, with a 15-day maturation phase and initial fruiting occurring after 12–14 days. The interval between flushes was 10–12 days. The average yield reached 318.65 ± 31.74 g per bag, with a biological conversion rate of 63.73%. These findings demonstrate that Hericium coralloides possesses significant potential for edible and commercial applications. This study provides a robust theoretical foundation and resource reference for its artificial cultivation, supporting its broader industrial and economic utilization. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

14 pages, 3099 KiB  
Article
Identification of Keystone Plant Species for Avian Foraging and Nesting in Beijing’s Forest Ecosystems: Implications for Urban Forest Bird Conservation
by Lele Lin, Yongjian Zhao, Chao Yuan, Yushu Zhang, Siyu Qiu and Jixin Cao
Animals 2025, 15(15), 2271; https://doi.org/10.3390/ani15152271 - 4 Aug 2025
Viewed by 52
Abstract
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. [...] Read more.
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. Our aim was to identify keystone taxa critical for avian foraging and nesting during the breeding season. We performed a network analysis linking bird species, their diets, and nest plants. Dietary components were detected using DNA metabarcoding conducted with avian fecal samples. Nest plants were identified via transect surveys. Two indices of the network, degree and weighted mean degree, were calculated to evaluate the importance of the dietary and nest plant species. We identified 13 bird host species from 107 fecal samples and 14 bird species from 107 nest observations. Based on the degree indices, fruit trees Morus and Prunus were detected as key food sources, exhibiting both the highest degree (degree = 9, 9) and weighted mean degree (lnwMD = 5.21, 4.63). Robinia pseudoacacia provided predominant nesting sites, with a predominant degree of 7. A few taxa, such as Styphnolobium japonicum and Rhamnus parvifolia, served dual ecological significance as both essential food sources and nesting substrates. Scrublands, as a unique habitat type, provided nesting sites and food for small-bodied birds. Therefore, targeted management interventions are recommended to sustain or enhance these keystone resource species and to maintain the multi-layered vertical vegetation structure to preserve the diverse habitats of birds. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

19 pages, 1050 KiB  
Article
Fungal Communities in Soils Contaminated with Persistent Organic Pollutants: Adaptation and Potential for Mycoremediation
by Lazaro Alexis Pedroso Guzman, Lukáš Mach, Jiřina Marešová, Jan Wipler, Petr Doležal, Jiřina Száková and Pavel Tlustoš
Appl. Sci. 2025, 15(15), 8607; https://doi.org/10.3390/app15158607 (registering DOI) - 4 Aug 2025
Viewed by 101
Abstract
The main objective of this study was to select indigenous fungal species suitable for the potential mycoremediation of the soils polluted by organic pollutants. As a sampling area, Litvínov City (North Bohemia, Czech Republic) was selected. The city is characterized by intensive coal [...] Read more.
The main objective of this study was to select indigenous fungal species suitable for the potential mycoremediation of the soils polluted by organic pollutants. As a sampling area, Litvínov City (North Bohemia, Czech Republic) was selected. The city is characterized by intensive coal mining, coal processing, and the chemical industry, predominantly petrochemistry. The elevated contents of persistent organic pollutants (POPs) such as polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were identified in urban soils due to the long-term industrial pollution. The results confirmed elevated contents of PAHs in all the analyzed soil samples with high variability ranging between 0.5 and 23.3 mg/kg regardless of the position of the sampling area on the city map. PCBs and PCDD/Fs exceeded the detection limits in the soil at the sampling points, and several hotspots were revealed at some locations. All the sampling points contained a diverse community of saprotrophic and mycorrhizal fungi, as determined according to abundant basidiomycetes. Fungal species with a confirmed ability to degrade organic pollutants were found, such as species representing the genera Agaricus from the Agaricaceae family, Coprinopsis from the Psathyrellaceae family, Hymenogaster from the Hymenogasteraceae family, and Pluteus from the Pluteaceae family. These species are accustomed to particular soil conditions as well as the elevated contents of the POPs in them. Therefore, these species could be taken into account when developing potential bioremediation measures to apply in the most polluted areas, and their biodegradation ability should be elucidated in further research. The results of this study contribute to the investigation of the potential use of fungal species for mycoremediation of the areas polluted by a wide spectrum of organic pollutants. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

25 pages, 904 KiB  
Review
Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems
by Juan Carlos Ferrer Romero, Oana Bianca Oprea, Liviu Gaceu, Siannah María Más Diego, Humberto J. Morris Quevedo, Laura Galindo Alonso, Lilianny Rivero Ramírez and Mihaela Badea
Processes 2025, 13(8), 2452; https://doi.org/10.3390/pr13082452 - 2 Aug 2025
Viewed by 300
Abstract
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of [...] Read more.
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of the great variety of edible mushrooms identified worldwide, less than 2% are traded on the market. Although mushrooms have been valued for their multiple nutritional and healing benefits, some cultures perceive them as toxic and do not accept them in their culinary practices. Despite the existing skepticism, several researchers are promoting the potential of edible mushrooms. There are two main methods of mushroom cultivation: solid-state fermentation and submerged fermentation. The former is the most widely used and simplest, since the fungus grows in its natural environment; in the latter, the fungus grows suspended without developing a fruiting body. In addition, submerged fermentation is easily monitored and scalable. Both systems are important and have their limitations. This article discusses the main methods used to increase the performance of submerged fermentation with emphasis on the modes of operation used, types of bioreactors and application of morphological bioengineering of filamentous fungi, and especially the use of intelligent automatic control technologies and the use of non-invasive monitoring in fermentation systems thanks to the development of machine learning (ML), neural networks, and the use of big data, which will allow more accurate decisions to be made in the fermentation of filamentous fungi in submerged environments with improvements in production yields. Full article
Show Figures

Figure 1

12 pages, 1010 KiB  
Article
Effects of Yeast on the Growth and Development of Drosophila melanogaster and Pardosa pseudoannulata (Araneae: Lycsidae) Through the Food Chain
by Yaqi Peng, Rui Liu, Wei Li, Yao Zhao and Yu Peng
Insects 2025, 16(8), 795; https://doi.org/10.3390/insects16080795 - 31 Jul 2025
Viewed by 186
Abstract
Pardosa pseudoannulata plays an important role in the biological control of insect pests. The inclusion of yeast in the culture medium is very important for the growth, development, and reproduction of Drosophila melanogaster, but there have been few studies on the influence [...] Read more.
Pardosa pseudoannulata plays an important role in the biological control of insect pests. The inclusion of yeast in the culture medium is very important for the growth, development, and reproduction of Drosophila melanogaster, but there have been few studies on the influence of nutrients in the culture medium on spider development. In order to explore the effects of different yeast treatments on the growth and development of D. melanogaster and as a predator, P.  pseudoannulata, three treatments (no yeast, active yeast added, and inactivated yeast added) were adopted to modify the conventional D. melanogaster culture medium. The addition of yeast to the medium shortened the development time from larva to pupation in D. melanogaster. The emergence and larval developmental times of D. melanogaster reared with activated yeast were shorter than those of the group without yeast addition, which promoted D. melanogaster emergence and increased body weight. The addition of yeast to the medium increased the fat, protein, and glucose content in D. melanogaster. The addition of activated yeast shortened the developmental time of P.  pseudoannulata at the second instar stage but had no effect on other instars. Different yeast treat-ments in the medium had no effect on the body length or body weight of P.  pseudoannulata. Adding yeast to D. melanogaster culture medium can increase the total fat content in P.  pseudoannulata, but it has no effect on glucose and total protein in P.  pseudoannulata. Our study shows the importance of yeast to the growth and development of fruit flies. Full article
(This article belongs to the Section Other Arthropods and General Topics)
Show Figures

Figure 1

19 pages, 573 KiB  
Article
Dietary Habits and Obesity in Middle-Aged and Elderly Europeans—The Survey of Health, Ageing, and Retirement in Europe (SHARE)
by Manuela Maltarić, Jasenka Gajdoš Kljusurić, Mirela Kolak, Šime Smolić, Branko Kolarić and Darija Vranešić Bender
Nutrients 2025, 17(15), 2525; https://doi.org/10.3390/nu17152525 - 31 Jul 2025
Viewed by 224
Abstract
Background/Objectives: Understanding the impact of dietary habits in terms of obesity, health outcomes, and functional decline is critical in Europe’s growing elderly population. This study analyzed trends in Mediterranean diet (MD) adherence, obesity prevalence, and grip strength among middle-aged and elderly Europeans [...] Read more.
Background/Objectives: Understanding the impact of dietary habits in terms of obesity, health outcomes, and functional decline is critical in Europe’s growing elderly population. This study analyzed trends in Mediterranean diet (MD) adherence, obesity prevalence, and grip strength among middle-aged and elderly Europeans using data from the Survey of Health, Ageing and Retirement in Europe (SHARE). Methods: Data from four SHARE waves (2015–2022) across 28 countries were analyzed. Dietary patterns were assessed through food frequency questionnaires classifying participants as MD-adherent or non-adherent where adherent implies daily consumption of fruits and vegetables and occasional (3–6 times/week) intake of eggs, beans, legumes, meat, fish, or poultry (an unvalidated definition of the MD pattern). Handgrip strength, a biomarker of functional capacity, was categorized into low, medium, and high groups. Body mass index (BMI), self-perceived health (SPHUS), chronic disease prevalence, and CASP-12 scores (control, autonomy, self-realization, and pleasure evaluated on the 12-item version) were also evaluated. Statistical analyses included descriptive methods, logistic regressions, and multiple imputations to address missing data. Results: A significant majority (74–77%) consumed fruits and vegetables daily, which is consistent with MD principles; however, the high daily intake of dairy products (>50%) indicates limited adherence to the MD, which advocates for moderate consumption of dairy products. Logistic regression indicated that individuals with two or more chronic diseases were more likely to follow the MD (odds ratio [OR] = 1.21, confidence interval [CI] = 1.11–1.32), as were those individuals who rated their SPHUS as very good/excellent ([OR] = 1.42, [CI] = 1.20–1.69). Medium and high maximal handgrip were also strongly and consistently associated with higher odds of MD adherence (Medium: [OR] = 1.44, [CI] = 1.18–1.74; High: [OR] = 1.27, [CI] = 1.10–1.48). Conclusions: The findings suggest that middle-aged and older adults are more likely to adhere to the MD dietary pattern if they have more than two chronic diseases, are physically active, and have a medium or high handgrip. Although an unvalidated definition of the MD dietary pattern was used, the results highlight the importance of implementing targeted dietary strategies for middle-aged and elderly adults. Full article
(This article belongs to the Special Issue Food Insecurity, Nutritional Status, and Human Health)
Show Figures

Figure 1

17 pages, 7377 KiB  
Article
Comparative Untargeted Metabolomic Analysis of Fruiting Bodies from Three Sanghuangporus Species
by Zixuan Jiang, Shimao Chen, Jia Song, Tao Xie, Yu Xue and Qingshan Yang
J. Fungi 2025, 11(8), 558; https://doi.org/10.3390/jof11080558 - 28 Jul 2025
Viewed by 391
Abstract
Sanghuangporus spp. are medicinal fungi with significant therapeutic value, but their taxonomic ambiguity and frequent market adulteration have hindered their standardized utilization. In this study, untargeted metabolomics based on UPLC-Q-TOF-MS was employed to systematically analyze the metabolic profiles of three Sanghuangporus species: Sanghuangporus [...] Read more.
Sanghuangporus spp. are medicinal fungi with significant therapeutic value, but their taxonomic ambiguity and frequent market adulteration have hindered their standardized utilization. In this study, untargeted metabolomics based on UPLC-Q-TOF-MS was employed to systematically analyze the metabolic profiles of three Sanghuangporus species: Sanghuangporus. sanghuang (SS), Sanghuangporus. vaninii (SV), and Sanghuangporus. baumii (SB). A total of 788 metabolites were identified and classified into 16 categories, among which 97 were common differential metabolites, including bioactive compounds such as flavonoids, polysaccharides, and terpenoids. Multivariate statistical analyses (PCA and OPLS-DA) revealed distinct metabolic patterns among the species. KEGG pathway enrichment analysis showed that the differential metabolites were mainly involved in flavonoid and isoflavonoid biosynthesis. Notably, SV and SB exhibited significantly higher levels of several key bioactive compounds, including Apigenin and D-glucuronolactone, compared to SS. These findings highlight substantial interspecies differences in metabolic composition and pharmacological potential, providing a scientific basis for species authentication, quality control, and medicinal development of Sanghuangporus. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites from Fungi)
Show Figures

Figure 1

25 pages, 1903 KiB  
Article
Pesticide Residues in Fruits and Vegetables from Cape Verde: A Multi-Year Monitoring and Dietary Risk Assessment Study
by Andrea Acosta-Dacal, Ricardo Díaz-Díaz, Pablo Alonso-González, María del Mar Bernal-Suárez, Eva Parga-Dans, Lluis Serra-Majem, Adriana Ortiz-Andrellucchi, Manuel Zumbado, Edson Santos, Verena Furtado, Miriam Livramento, Dalila Silva and Octavio P. Luzardo
Foods 2025, 14(15), 2639; https://doi.org/10.3390/foods14152639 - 28 Jul 2025
Viewed by 318
Abstract
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African [...] Read more.
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African island nation increasingly reliant on imported produce. A total of 570 samples of fruits and vegetables—both locally produced and imported—were collected from major markets across the country between 2017 and 2020 and analyzed using validated multiresidue methods based on gas chromatography coupled to Ion Trap mass spectrometry (GC-IT-MS/MS), and both gas and liquid chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS and LC-QqQ-MS/MS). Residues were detected in 63.9% of fruits and 13.2% of vegetables, with imported fruits showing the highest contamination levels and diversity of compounds. Although only one sample exceeded the maximum residue limits (MRLs) set by the European Union, 80 different active substances were quantified—many of them not authorized under the current EU pesticide residue legislation. Dietary exposure was estimated using median residue levels and real consumption data from the national nutrition survey (ENCAVE 2019), enabling a refined risk assessment based on actual consumption patterns. The cumulative hazard index for the adult population was 0.416, below the toxicological threshold of concern. However, when adjusted for children aged 6–11 years—taking into account body weight and relative consumption—the cumulative index approached 1.0, suggesting a potential health risk for this vulnerable group. A limited number of compounds, including omethoate, oxamyl, imazalil, and dithiocarbamates, accounted for most of the risk. Many are banned or heavily restricted in the EU, highlighting regulatory asymmetries in global food trade. These findings underscore the urgent need for strengthened residue monitoring in Cape Verde, particularly for imported products, and support the adoption of risk-based food safety policies that consider population-specific vulnerabilities and mixture effects. The methodological framework used here can serve as a model for other low-resource countries seeking to integrate analytical data with dietary exposure in a One Health context. Full article
(This article belongs to the Special Issue Risk Assessment of Hazardous Pollutants in Foods)
Show Figures

Figure 1

18 pages, 2432 KiB  
Article
High Carbon Dioxide Concentration Inhibits Pileus Growth of Flammulina velutipes by Downregulating Cyclin Gene Expression
by Kwan-Woo Lee, Che-Hwon Park, Seong-Chul Lee, Ju-Hyeon Shin and Young-Jin Park
J. Fungi 2025, 11(8), 551; https://doi.org/10.3390/jof11080551 - 24 Jul 2025
Viewed by 345
Abstract
Flammulina velutipes is a widely cultivated edible mushroom in East Asia, recognized for its nutritional benefits and distinct morphology characterized by a long stipe and a compact, hemispherical pileus. The pileus not only plays a critical biological role in reproduction through spore formation [...] Read more.
Flammulina velutipes is a widely cultivated edible mushroom in East Asia, recognized for its nutritional benefits and distinct morphology characterized by a long stipe and a compact, hemispherical pileus. The pileus not only plays a critical biological role in reproduction through spore formation but also serves as a key commercial trait influencing consumer preference and market value. Despite its economic importance, pileus development in F. velutipes is highly sensitive to environmental factors, among which carbon dioxide (CO2) concentration is particularly influential under indoor cultivation conditions. While previous studies have reported that elevated CO2 levels can inhibit pileus expansion in other mushroom species, the molecular mechanisms by which CO2 affects pileus growth in F. velutipes remain poorly understood. In this study, we investigated the impact of CO2 concentration on pileus morphology and gene expression in F. velutipes by cultivating fruiting bodies under two controlled atmospheric conditions: low (1000 ppm) and high (10,000 ppm) CO2. Morphometric analysis revealed that elevated CO2 levels significantly suppressed pileus expansion, reducing the average diameter by more than 50% compared to the low CO2 condition. To elucidate the underlying genetic response, we conducted RNA sequencing and identified 102 differentially expressed genes (DEGs), with 78 being downregulated under elevated CO2. Functional enrichment analysis highlighted the involvement of cyclin-dependent protein kinase regulatory pathways in this response. Two cyclin genes were found to be significantly downregulated under elevated CO2 conditions, and their suppression was validated through quantitative real-time PCR. These genes, possessing conserved cyclin_N domains, are implicated in the regulation of the eukaryotic cell cycle, particularly in mitotic growth. These results indicate that CO2-induced downregulation of cyclin genes may underlie cell cycle arrest, contributing to inhibited pileus development. This study is the first to provide transcriptomic evidence that elevated CO2 concentrations specifically repress PHO80-like cyclin genes in F. velutipes, revealing a molecular mechanism by which CO2 stress inhibits pileus development. These findings suggest that elevated CO2 triggers a morphogenetic checkpoint by repressing PHO80-like cyclins, thereby modulating cell cycle progression during fruiting body development. This study provides the first evidence of such a transcriptional response in edible mushrooms and offers promising molecular targets for breeding CO2-resilient strains and optimizing commercial cultivation conditions. Full article
(This article belongs to the Special Issue Molecular Biology of Mushroom)
Show Figures

Figure 1

23 pages, 737 KiB  
Article
Influence of Plant-Based Substrate Composition and Extraction Method on Accumulation of Bioactive Compounds in Hericium erinaceus (Bull.) Pers. Fruiting Bodies
by Katarzyna Kała, Małgorzata Cicha-Jeleń, Katarzyna Sułkowska-Ziaja, Beata Ostachowicz, Ewa Węgrzynowicz, Jan Lazur, Agnieszka Szewczyk and Bożena Muszyńska
Molecules 2025, 30(15), 3094; https://doi.org/10.3390/molecules30153094 - 24 Jul 2025
Viewed by 357
Abstract
The selection of plant-based substrates for mushroom cultivation is a key factor influencing their growth and metabolism. The aim of this study was to demonstrate, in an innovative approach, differences in the content of biologically active compounds, bioelements, and antioxidant properties of Hericium [...] Read more.
The selection of plant-based substrates for mushroom cultivation is a key factor influencing their growth and metabolism. The aim of this study was to demonstrate, in an innovative approach, differences in the content of biologically active compounds, bioelements, and antioxidant properties of Hericium erinaceus (Bull.) Pers. cultivated on various plant-based substrates derived from waste materials, specifically hemp straw and beech sawdust. Another objective was to compare various extraction methods in terms of their impact on the concentration of these compounds. Elemental analysis was performed using the TXRF method, while bioactive constituents were determined using the DAD/UV RP-HPLC technique. The plant-based substrate and extraction method influenced the levels of obtained metabolites. Dual extraction with moderate ethanol concentrations was most effective for isolating key bioactive compounds from H. erinaceus—notably ergothioneine, lovastatin, L-phenylalanine, and ergosterol—while antioxidant activity did not correlate with the concentration of the solvent used. Although dual extracts enhanced certain antioxidants and metabolites, whole fruiting bodies contained higher levels of bioelements. Overall, fruiting bodies grown on beech sawdust had greater amounts of most bioactive compounds compared to those cultivated on hemp straw, emphasizing that both substrate choice and extraction method critically influence the mushroom’s bioactive profile and its potential health benefits. Full article
Show Figures

Figure 1

15 pages, 1273 KiB  
Article
Screening of Substrates and Optimization of Formulations for Exogenous Nutrient Bags of Morchella sextelata (Black Morel)
by Qi Yan, Weidong Zhang, Qi Wang, Tonghui Yang, Peng Wang, Ya Yu, Xiao Tan, Xueping Kang and Jiawei Wen
Horticulturae 2025, 11(7), 863; https://doi.org/10.3390/horticulturae11070863 - 21 Jul 2025
Viewed by 224
Abstract
In the artificial cultivation of Morchella sextelata (Black Morel), exogenous nutrient bags (ENBs) commonly employ wheat grains as the primary substrate raw material. However, this approach is costly and runs counter to the “non-grain” development direction advocated by the edible mushroom industry. Under [...] Read more.
In the artificial cultivation of Morchella sextelata (Black Morel), exogenous nutrient bags (ENBs) commonly employ wheat grains as the primary substrate raw material. However, this approach is costly and runs counter to the “non-grain” development direction advocated by the edible mushroom industry. Under controlled field conditions, twelve self-made formulations were set up and compared with a conventional market formulation to comprehensively analyze their impacts on the agronomic traits, yield, soil physicochemical properties, and economic benefits of M. sextelata fruiting bodies. The research findings indicate that the nutrient bag formulations have a significant effect on soil available nutrients. Specifically, the contents of alkali-hydrolysable nitrogen (AN) and available potassium (AK) exhibit a significantly negative correlation with M. sextelata yield (r = −0.60, p < 0.05; r = −0.72, p < 0.01, respectively). Among all the treatment groups, the KY1 formulation (comprising 30% wheat grains, 5% rice bran, 60% corncobs, 2% rice husks, 1% lime, and 1% gypsum) achieved the highest yield of 915.13 kg per 667 m2, which was 16.1% higher than that of the control group. The net economic benefit per unit area (667 m2) reached CNY 75,282.15, representing a 20.7% increase compared to the traditional wheat grains-based formulation. In conclusion, partially substituting wheat grains with rice bran in ENBs can not only reduce reliance on staple food resources but also enhance yield and economic efficiency. Due to the differences in cultivated strains and environmental conditions, the impact on morel yield is substantial; therefore, the results of this study need further validation through pilot trials. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

14 pages, 5892 KiB  
Article
Isolation and Structural Characterization of Melanins from Red and Yellow Varieties of Stropharia rugosoannulata
by Zhen-Fei Xie, Wei-Wei Zhang, Shun-Yin Zhao, Xiao-Han Zhang, Shu-Ning You, Chun-Mei Liu and Guo-Qing Zhang
Int. J. Mol. Sci. 2025, 26(14), 6985; https://doi.org/10.3390/ijms26146985 - 21 Jul 2025
Viewed by 274
Abstract
Melanin is a complex natural pigment that imparts a variety of colors to the fruiting bodies of edible fungi, influencing both their nutritional quality and commercial value. Stropharia rugosoannulata is an emerging type of edible fungus that has been widely cultivated in recent [...] Read more.
Melanin is a complex natural pigment that imparts a variety of colors to the fruiting bodies of edible fungi, influencing both their nutritional quality and commercial value. Stropharia rugosoannulata is an emerging type of edible fungus that has been widely cultivated in recent years. It can be categorized into red and yellow varieties based on cap color, while its pigment characteristics remain unclear. In this study, the melanins from the two varieties were obtained using an alkaline extraction and acid precipitation method, followed by comprehensive characterization of their chemical properties and ultrastructural features. Both melanins displayed distinct absorption maxima at approximately 211 nm. The melanin extracted from the red variety consisted of 55.63% carbon (C), 7.40% hydrogen (H), 30.23% oxygen (O), 5.99% nitrogen (N), and 0.64% sulfur (S), whereas the yellow variety comprised 52.22% C, 6.74% H, 29.70% O, 5.91% N, and 0.99% S. Both types of melanin included eumelanin and phaeomelanin forms, with eumelanin being the predominant type. Variations in the quantities and relative proportions of eumelanin and phaeomelanin contributed to the observed color differences in the mushroom caps. Ultrastructural micrographs revealed the melanins were primarily localized in the cell wall, consistent with findings in other fungal species. These findings contribute valuable insights into fundamental knowledge and potential applications of mushroom pigments. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 3830 KiB  
Article
Enhancing the Yield of Pleurotus ostreatus Through the Addition of Nucleotides and Nucleosides
by Chenmin Tang, Yixuan Gao, Zhiguo An, Abdul Qadeer Sajid, Hanjie Ying, Zhenyu Wang and Dong Liu
J. Fungi 2025, 11(7), 537; https://doi.org/10.3390/jof11070537 - 18 Jul 2025
Viewed by 434
Abstract
Pleurotus ostreatus is a mushroom species renowned for its abundant nutritional and medicinal properties. Nevertheless, the yield of its fruiting bodies has long remained at a standstill, making it arduous to achieve substantial improvements. Because the traditional composting approach for enhancing the yield [...] Read more.
Pleurotus ostreatus is a mushroom species renowned for its abundant nutritional and medicinal properties. Nevertheless, the yield of its fruiting bodies has long remained at a standstill, making it arduous to achieve substantial improvements. Because the traditional composting approach for enhancing the yield of Pleurotus ostreatus has drawbacks such as a long duration and a high susceptibility to mold contamination, incorporating nutritional supplements into the culture medium of P. ostreatus has emerged as a relatively straightforward yet effective approach to enhancing its yield. This study was predicated on the roles of nucleotides and nucleosides in cellular metabolism and signal transduction. These substances were applied during the cultivation process of P. ostreatus to investigate their impact on the growth and nutritional composition of this mushroom. The findings of this study demonstrate that the supplementation of nucleotides and nucleosides not only improved the yield and biological efficiency of P. ostreatus but also increased its dietary fiber content and amino acids. Furthermore, this research has disclosed that nucleotides and nucleosides exert a notable influence on the lignocellulolytic enzyme system. This investigation provides a scientific foundation for the development of novel yields—enhancing agents for P. ostreatus and offering new insights into cultivation techniques for the progress of P. ostreatus cultivation techniques in both academic and practical arenas. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Bioprocesses)
Show Figures

Figure 1

23 pages, 1826 KiB  
Article
From Waste to Value: Investigating Mushroom Stems from Pleurotus ostreatus Grown on Mealworm Frass as a Nutritional Source for Aquaculture Feed
by Soukaina Hilali, Emilie Stierlin, María Luisa Tello Martín, Diogo Amaral, Margarita Pérez-Clavijo, Mariana Girão, Maria de Fátima Carvalho, Andrea María Pérez Bonilla, Sabas de Diego, Pablo Ramírez and Rodrigo Ozorio
Sustainability 2025, 17(14), 6496; https://doi.org/10.3390/su17146496 - 16 Jul 2025
Viewed by 752
Abstract
This study investigated mealworm frass as a sustainable substrate for Pleurotus ostreatus cultivation while valorizing mushroom stems as aquaculture feed. Mushrooms were grown on substrates containing 0–15% frass, and nutritional analyses were conducted on both fruiting bodies (for human consumption) and stems (for [...] Read more.
This study investigated mealworm frass as a sustainable substrate for Pleurotus ostreatus cultivation while valorizing mushroom stems as aquaculture feed. Mushrooms were grown on substrates containing 0–15% frass, and nutritional analyses were conducted on both fruiting bodies (for human consumption) and stems (for fish feed). Increasing frass levels significantly enhanced protein content, rising from 7.78% to 22.31% in stems and 24.74% to 30.99% in fruiting bodies. Lipid concentrations showed minor fluctuations while, in contrast, β-glucan content declined with high frass inclusion percentages. Essential amino acid levels peaked at 7.37% in stems (15% frass) and 8.08% in fruiting bodies (12.5% frass). Polyunsaturated fatty acids dominated the fatty acid profile, increasing with high frass levels. Mushroom bodies and stems were additionally investigated for their antimicrobial activity to determine whether they could offer protection against common fish and human pathogens. Antimicrobial assays revealed that dichloromethane extracts from stems grown on 12.5% and 15% frass exhibited inhibitory activity (inhibition zones of 10–11 mm) against Tenacibaculum maritimum, a microorganism that poses a significant threat to aquaculture. These findings highlight mealworm frass as a promising substrate for enhancing mushroom nutritional value while providing a sustainable, protein-rich feed ingredient for aquaculture. Full article
Show Figures

Figure 1

23 pages, 1341 KiB  
Review
Microbial Fermentation Affects the Structure–Activity Relationship of Bioactive Compounds in Ginseng and Its Applications in Fermentation Products: A Review
by Juan Bai, Zixian Zhu, Wei Luo, Miran Jang, Beibei Pan, Ying Zhu, Jiayan Zhang, Yansheng Zhao and Xiang Xiao
Foods 2025, 14(14), 2473; https://doi.org/10.3390/foods14142473 - 15 Jul 2025
Viewed by 753
Abstract
Microbial fermentation technology has emerged as a pivotal approach for enhancing ginseng efficacy through the transformation of active ingredient molecular structures. This paper reviews the impact of microbial fermentation on the structure–activity relationship of ginseng bioactive compounds and advances in its application. Bibliometric [...] Read more.
Microbial fermentation technology has emerged as a pivotal approach for enhancing ginseng efficacy through the transformation of active ingredient molecular structures. This paper reviews the impact of microbial fermentation on the structure–activity relationship of ginseng bioactive compounds and advances in its application. Bibliometric analysis indicates that Panax species (Panax ginseng, Panax notoginseng) are primarily fermented using lactic acid bacteria and Aspergillus spp., with research predominantly focused on conversion efficiency to rare ginsenosides (Compound K, Rg3, and Rh2). Specifically, this review details the biotransformation pathways of these rare ginsenosides and the resultant bioactivity enhancements. Additionally, it summarizes the effects of other microorganisms, such as fungal fruiting bodies, on additional ginseng constituents like polysaccharides and polyphenols. Microbial fermentation has been successfully implemented in functional products, including ginseng vinegar, wine, and fermented milk. This review subsequently examines these applications, emphasizing fermentation’s potential to enhance product functionality. However, challenges remain in strain screening, process standardization, and analysis of multi-component synergistic mechanisms. In summary, this review synthesizes recent advancements in understanding the mechanisms of microbial fermentation on ginseng and its translational applications in functional foods and pharmaceuticals. Full article
Show Figures

Figure 1

Back to TopTop