High Carbon Dioxide Concentration Inhibits Pileus Growth of Flammulina velutipes by Downregulating Cyclin Gene Expression
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Strain and Cultivation Conditions
2.2. Morphological Analysis
2.3. RNA Extraction and Sequencing
2.4. Differential Gene Expression and Enrichment Analysis
2.5. Quantitative Real-Time PCR Validation
3. Results
3.1. Elevated CO2 Concentration Significantly Reduces Pileus Size in F. velutipes
3.2. CO2-Induced Transcriptomic Changes in F. velutipes
3.3. CO2-Responsive Transcriptomic Profiling of CAZyme Genes
3.4. Transcriptome Profiling Reveals Downregulation of Cell Cycle-Related Genes Under Elevated CO2 Conditions
3.5. Evolutionary Conservation of Cyclin Sequences Among Basidiomycota
3.6. Validation and Tissue-Specific Regulation of CO2-Induced Cyclin Gene Repression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, Y.J.; Baek, J.H.; Lee, S.; Kim, C.; Rhee, H.; Kim, H.; Seo, J.S.; Park, H.R.; Yoon, D.E.; Nam, J.Y.; et al. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLoS ONE 2014, 9, e93560. [Google Scholar] [CrossRef]
- Kim, E.S.; Woo, S.I.; Oh, M.J.; Oh, Y.L.; Shin, P.G.; Jang, K.Y.; Kong, W.S.; Lee, C.S. Characteristics of ‘Baekjung’, a variety adaptable to high temperature in Flammulina velutipes. J. Mushroom 2015, 13, 203–206. [Google Scholar] [CrossRef]
- Kong, W.S.; Jang, K.Y.; Lee, C.Y.; Gu, J.S.; Shin, P.G.; Jhune, C.S.; Oh, Y.L.; Yoo, Y.B.; Suh, J.S. Breeding progress and characterization of a Korean white variety ‘Baek-A’ in Flammulina velutipes. J. Mushroom 2013, 11, 159–163. [Google Scholar] [CrossRef]
- Ye, S.; Gao, Y.; Hu, X.; Cai, J.; Sun, S.; Jiang, J. Research progress and future development potential of Flammulina velutipes polysaccharides in the preparation process, structure analysis, biology, and pharmacology: A review. Int. J. Biol. Macromol. 2024, 267, 131467. [Google Scholar] [CrossRef]
- Lu, Y.P.; Chen, R.L.; Long, Y.; Li, X.; Jiang, Y.J.; Xie, B.G. A Jacalin-related lectin regulated the formation of aerial mycelium and fruiting body in Flammulina velutipes. Int. J. Mol. Sci. 2016, 17, 1884. [Google Scholar] [CrossRef]
- Sakamoto, Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol. Rev. 2018, 32, 236–248. [Google Scholar] [CrossRef]
- Yan, J.J.; Tong, Z.J.; Liu, Y.Y.; Li, Y.N.; Zhao, C.; Mukhtar, I.; Tao, Y.X.; Chen, B.Z.; Deng, Y.J.; Xie, B.G. Comparative transcriptomics of Flammulina filiformis suggests a elevated CO2 concentration inhibits early pileus expansion by decreasing cell division control pathways. Int. J. Mol. Sci. 2019, 20, 5923. [Google Scholar] [CrossRef]
- Kinugawa, K.; Tanesaka, E. Changes in the rate of CO2 release from cultures of three basidiomycetes during cultivation. Trans. Mycol. Soc. Jpn. 1990, 31, 489–500. [Google Scholar]
- Kinugawa, K.; Suzuki, A.; Takamatsu, Y.; Kato, M.; Tanaka, K. Effects of concentrated carbon dioxide on the fruiting of several cultivated basidiomycetes (II). Mycoscience 1994, 35, 345–352. [Google Scholar] [CrossRef]
- Jang, K.Y.; Jhune, C.S.; Park, J.S.; Cho, S.M.; Weon, H.Y.; Cheong, J.C.; Choi, S.G.; Sung, J.M. Characterization of fruitbody morphology on various environmental conditions in Pleurotus ostreatus. Mycobiology 2003, 31, 145–150. [Google Scholar] [CrossRef]
- Lin, R.; Zhang, L.; Yang, X.; Li, Q.; Zhang, C.; Guo, L.; Yu, H.; Yu, H. Responses of the mushroom Pleurotus ostreatus under different CO2 concentration by comparative proteomic analyses. J. Fungi 2022, 8, 652. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. A Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, e550. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Alexa, A.; Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. 2024. Available online: https://bioconductor.org/packages/release/bioc/html/topGO.html (accessed on 3 May 2025).
- Paysan-Lafosse, T.; Andreeva, A.; Blum, M.; Chuguransky, S.R.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Llinares-López, F.; Meng-Papaxanthos, L.; et al. The Pfam protein families database: Embracing AI/ML. Nucleic Acids Res. 2025, 53, D523–D534. [Google Scholar] [CrossRef]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The conserved domain database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef]
- Huang, R.; Ding, Q.; Xiang, Y.; Gu, T.; Li, Y.; Li, Y. Comparative analysis of DNA methyltransferase gene family in fungi: A focus on Basidiomycota. Front. Plant Sci. 2016, 7, 1556. [Google Scholar] [CrossRef]
- Kim, M.S.; Ko, Y.J.; Maeng, S.; Floyd, A.; Heitman, J.; Bahn, Y.S. Comparative transcriptome analysis of the CO2 sensing pathway via differential expression of carbonic anhydrase in Cryptococcus neoformans. Genetics 2010, 185, 1207–1219. [Google Scholar] [CrossRef]
- Chadwick, B.J.; Lin, X. Effects of CO2 in fungi. Curr. Opin. Microbiol. 2024, 79, 102488. [Google Scholar] [CrossRef]
- Perlin, M.H.; Andrews, J.M.; Toh, S.S. Essential letters in the fungal alphabet: ABC and MFS transporters and their roles in survival and pathogenicity. Adv. Genet. 2014, 85, 201–253. [Google Scholar] [CrossRef]
- Chabert, V.; Kim, G.D.; Qiu, D.; Liu, G.; Michaillat Mayer, L.; Jamsheer, K.M.; Jessen, H.J.; Mayer, A. Inositol pyrophosphate dynamics reveals control of the yeast phosphate starvation program through 1,5-IP8 and the SPX domain of Pho81. eLife 2023, 12, RP87956. [Google Scholar] [CrossRef] [PubMed]
- Mosavi, L.K.; Cammett, T.J.; Desrosiers, D.C.; Peng, Z.Y. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 2004, 13, 1435–1448. [Google Scholar] [CrossRef] [PubMed]
- Jain, B.P.; Pandey, S. WD40 repeat proteins: Signaling scaffold with diverse functions. Protein J. 2018, 37, 391–406. [Google Scholar] [CrossRef]
- Kappel, L.; Münsterkötter, M.; Sipos, G.; Escobar Rodriguez, C.; Gruber, S. Chitin and chitosan remodeling defines vegetative development and Trichoderma biocontrol. PLoS Pathog. 2020, 16, e1008320. [Google Scholar] [CrossRef]
- Gow, N.A.R.; Latge, J.P.; Munro, C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectr. 2017, 5, 28513415. [Google Scholar] [CrossRef]
- Robledo-Briones, M.; Ruiz-Herrera, J. Regulation of genes involved in cell wall synthesis and structure during Ustilago maydis dimorphism. FEMS Yeast Res. 2013, 13, 74–84. [Google Scholar] [CrossRef]
- Masuo, S.; Terabayashi, Y.; Shimizu, M.; Fujii, T.; Kitazume, T.; Takaya, N. Global gene expression analysis of Aspergillus nidulans reveals metabolic shift and transcription suppression under hypoxia. Mol. Genet. Genom. 2010, 284, 415–424. [Google Scholar] [CrossRef]
- Chung, H.; Lee, Y.H. Hypoxia: A double-edged sword during fungal pathogenesis? Front. Microbiol. 2020, 11, 1920. [Google Scholar] [CrossRef]
- Hillmann, F.; Shekhova, E.; Shekhova, E.; Kniemeyer, O.; Kniemeyer, O. Insights into the cellular responses to hypoxia in filamentous fungi. Curr. Genet. 2015, 61, 441–455. [Google Scholar] [CrossRef]
- Zheng, J.; Ge, Q.; Yan, Y.; Zhang, X.; Huang, L.; Yin, Y. dbCAN3: Automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res. 2023, 51, W115–W121. [Google Scholar] [CrossRef]
- Yu, H.W.; Im, J.H.; Kong, W.S.; Park, Y.J. Comparative analysis of carbohydrate active enzymes in the Flammulina velutipes var. lupinicola Genome. Microorganisms 2020, 9, 20. [Google Scholar] [CrossRef]
- Mattila, H.K.; Mäkinen, M.; Mäkinen, M.; Lundell, T. Hypoxia is regulating enzymatic wood decomposition and intracellular carbohydrate metabolism in filamentous white rot fungus. Biotechnol. Biofuels 2020, 13, 26. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Friesen, H.; Andrews, B.J. Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast. Mol. Microbiol. 2007, 66, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Hadwiger, J.A.; Wittenberg, C.; Richardson, H.E.; de Barros Lopes, M.; Reed, S.I. A family of cyclin homologs that control the G1 phase in yeast. Proc. Natl. Acad. Sci. USA. 1989, 86, 6255–6259. [Google Scholar] [CrossRef]
- Lents, N.H.; Piszczatowski, R.T. Cyclins, Cyclin-Dependent Kinases, and Cyclin-Dependent Kinase Inhibitors. In Encyclopedia of Cell Biology, 2nd ed.; Bradshaw, R.A., Hart, G.W., Stahl, P.D., Eds.; Academic Press: Oxford, UK, 2023; Volume 5, pp. 224–234. [Google Scholar] [CrossRef]
- Barnum, K.J.; O’Connell, M.J. Cell cycle regulation by checkpoints. Methods Mol. Biol. 2014, 1170, 29–40. [Google Scholar] [CrossRef]
- Pelkmans, J.F.; Lugones, L.G.; Wösten, H.A.B. Fruiting Body Formation in Basidiomycetes. In The mycota, 3rd ed.; Wendland, J., Ed.; Springer: Cham, Switzerland, 2016; Volume 1, pp. 387–405. [Google Scholar] [CrossRef]
- Coelho, M.A.; Bakkeren, G.; Sun, S.; Hood, M.E.; Giraud, T. Fungal sex: The Basidiomycota. Microbiol. Spectr. 2017, 5, 147–175. [Google Scholar] [CrossRef]
- Nagy, L. Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiol. Mol. Biol. Rev. 2022, 86, e0001921. [Google Scholar] [CrossRef]
- Malumbres, M.; Harlow, E.; Hunt, T.; Hunter, T.; Lahti, J.M.; Manning, G.; Morgan, D.O.; Tsai, L.H.; Wolgemuth, D.J. Cyclin-dependent kinases: A family portrait. Nat. Cell Biol. 2009, 11, 1275–1276. [Google Scholar] [CrossRef]
- Heitz, F.; Morris, M.C.; Fesquet, D.; Cavadore, J.C.; Dorée, M.; Divita, G. Interactions of cyclins with cyclin-dependent kinases: A common interactive mechanism. Biochemistry 1997, 36, 4995–5003. [Google Scholar] [CrossRef]
- Neganova, I.; Lako, M. G1 to S phase cell cycle transition in somatic and embryonic stem cells. J. Anat. 2008, 213, 30–44. [Google Scholar] [CrossRef]
- Turnaev, I.I.; Gunbin, K.V.; Kolchanov, N.A. The evolution of key cell cycle proteins correlates with an increase in the complexity of eukaryotic organisms. Dokl. Biochem. Biophys. 2009, 426, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Measday, V.; Moore, L.; Retnakaran, R.; Lee, J.; Donoviel, M.; Neiman, A.M.; Andrews, B. A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. Mol. Cell. Biol. 1997, 17, 1212–1223. [Google Scholar] [CrossRef] [PubMed]
- Mukhin, V.A.; Diyarova, D.K. Eco-Physiological Adaptations of the Xylotrophic Basidiomycetes Fungi to CO2 and O2 Mode in the Woody Habitat. J. Fungi 2022, 8, 1296. [Google Scholar] [CrossRef] [PubMed]
- Camilo, C.M.; Gomes, S.L. Transcriptional response to hypoxia in the aquatic fungus Blastocladiella emersonii. Eukaryot. Cell 2010, 9, 915–925. [Google Scholar] [CrossRef]
- Bonaccorsi, E.D.; Ferreira, A.J.; Chambergo, F.S.; Ramos, A.S.; Mantovani, M.C.; Farah, J.P.; Sorio, C.S.; Gombert, A.K.; Tonso, A.; El-Dorry, H. Transcriptional response of the obligatory aerobe Trichoderma reesei to hypoxia and transient anoxia: Implications for energy production and survival in the absence of oxygen. Biochemistry 2006, 45, 3912–3924. [Google Scholar] [CrossRef]
- Chun, C.D.; Liu, O.W.; Madhani, H.D. A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathog. 2007, 3, e22. [Google Scholar] [CrossRef]
- Maček, I. Fungi in Hypoxic Soils and Aquatic Sediments. In Extremophilic Fungi, 1st ed.; Sahay, S., Ed.; Springer: Singapore, 2022; pp. 219–243. [Google Scholar] [CrossRef]
- Chi, J.H.; Kim, J.H.; Ju, Y.; Seo, G.S.; Kang, H.W. Effects of Elevated Carbon Dioxide on the Fruiting Initiation and Development of Grifola frondosa. Korean J. Mycol. 2009, 37, 60–64. [Google Scholar] [CrossRef]
Predicted Gene ID | FPKM 1 | log2 Fold Change | InterPro Database | Pfam Database | ||||
---|---|---|---|---|---|---|---|---|
10,000 ppm | 1000 ppm | |||||||
ID | Description | ID | Description | |||||
Downregulated genes | DN3193_c0_g1_i20 | 0.00 | 130.17 | −9.50 | IPR002554 | Protein phosphatase 2A, regulatory B subunit, B56 | PF01603.24 | Protein phosphatase 2A regulatory B subunit (B56 family) |
DN3913_c0_g1_i9 | 0.00 | 81.14 | −8.82 | IPR045338 | Domain of unknown function DUF6535 | PF20153.3 | Family of unknown function (DUF6535) | |
DN3419_c0_g2_i10 | 0.00 | 49.18 | −8.09 | – | – | – | – | |
DN7237_c0_g2_i21 | 0.00 | 36.92 | −7.68 | – | – | – | – | |
DN28_c0_g1_i39 | 0.00 | 35.68 | −7.63 | IPR036396 | Cytochrome P450 superfamily | PF00067.26 | Cytochrome P450 | |
DN1624_c0_g1_i1 | 0.00 | 32.71 | −7.51 | – | – | PF01483.24 | Proprotein convertase P-domain | |
DN4990_c0_g1_i119 | 0.00 | 32.65 | −7.51 | – | – | PF03105.23 | SPX domain | |
DN1803_c0_g1_i17 | 0.00 | 28.99 | −7.33 | – | – | PF07690.20 | Major Facilitator Superfamily | |
DN11963_c0_g1_i7 | 0.00 | 27.47 | −7.25 | – | – | – | – | |
DN9534_c0_g1_i5 | 0.00 | 26.86 | −7.22 | – | – | – | – | |
Upregulated genes | DN3909_c0_g1_i7 | 14.33 | 0.00 | 6.28 | – | – | – | – |
DN5300_c0_g1_i51 | 19.79 | 0.00 | 6.75 | – | – | PF00067.26 | Cytochrome P450 | |
DN8316_c0_g1_i22 | 22.59 | 0.00 | 6.94 | IPR015943 | WD40/YVTN repeat-like-containing domain superfamily | PF10282.13 | Lactonase, 7-bladed beta-propeller | |
DN2442_c0_g1_i161 | 25.08 | 0.00 | 7.09 | – | – | PF20152.3 | Family of unknown function (DUF6534) | |
DN4525_c0_g1_i41 | 27.28 | 0.00 | 7.21 | IPR001663 | Aromatic-ring-hydroxylating dioxygenase, alpha subunit | PF00355.30 | Rieske [2Fe-2S] domain | |
DN2524_c0_g1_i6 | 30.20 | 0.00 | 7.36 | IPR036770 | Ankyrin repeat-containing domain superfamily | PF13606.10 | Ankyrin repeat | |
DN985_c0_g1_i3 | 33.34 | 0.00 | 7.50 | – | – | PF00724.24 | NADH:flavin oxidoreductase/NADH oxidase family | |
DN95_c0_g1_i7 | 39.11 | 0.00 | 7.73 | – | – | PF00012.24 | Hsp70 protein | |
DN3185_c0_g1_i20 | 52.63 | 0.00 | 8.16 | – | – | PF10017.13 | Histidine-specific methyltransferase, SAM-dependent | |
DN10178_c0_g1_i55 | 67.72 | 0.00 | 8.52 | – | – | PF13639.10 | Ring finger domain |
Predicted Gene ID | CAZyme | DB | Signalp 1 | FPKM 2 | log2 Fold Change | |
---|---|---|---|---|---|---|
10,000 ppm | 1000 ppm | |||||
DN1427_c0_g1_i11 | AA9 | DIAMOND | N | 1865.41 | 3876.84 | −1.06 |
DN15530_c0_g2_i10 | GH114 | HMMER, dbCAN_sub | Y(1–22) | 38.65 | 6.22 | 2.63 |
DN269_c0_g1_i1 | CE8 | DIAMOND | N | 0.00 | 26.33 | −7.19 |
DN1441_c0_g1_i11 | GH71 | HMMER, dbCAN_sub, DIAMOND | N | 30.81 | 321.88 | −3.39 |
DN106_c0_g1_i6 | CBM48 + GH13_8 | DIAMOND | N | 242.03 | 540.92 | −1.16 |
DN1722_c0_g1_i20 | PL38 | HMMER, dbCAN_sub | Y(1–26) | 164.19 | 670.24 | −2.03 |
Enrichment Tool | GO Term | GO ID | Description | Gene Count | Strength | −log10 (FDR) | Identified Genes |
---|---|---|---|---|---|---|---|
STRING database | Biological process | GO:0000079 | Regulation of cyclin-dependent protein serine/threonine kinase activity | 2 | 2.61 | 0.0321 | DN1560_c0_g1_i9, DN6954_c0_g1_i2 |
Molecular function | GO:0016538 | Cyclin-dependent protein serine/threonine kinase regulator activity | 2 | 2.61 | 0.0157 | ||
GO:0019901 | Protein kinase binding | 2 | 2.39 | 0.0213 | |||
Cellular component | GO:0000307 | Cyclin-dependent protein kinase holoenzyme complex | 2 | 2.59 | 0.0078 | ||
topGO | Biological process | GO:0000079 | regulation of cyclin-dependent protein serine/threonine kinase activity | 15 | 2.33 | 0.007 | DN1560_c0_g1_i4, DN1560_c0_g1_i9, DN6292_c0_g1_i2, DN6292_c0_g1_i3, DN6292_c0_g1_i4, DN690_c0_g2_i1, DN6954_c0_g1_i2, DN8407_c0_g1_i1, DN8407_c0_g1_i17, DN857_c0_g1_i1, DN9546_c0_g2_i1, DN9546_c0_g2_i2, DN978_c0_g2_i1, DN978_c0_g2_i2, DN978_c0_g2_i6 |
Molecular function | GO:0019901 | protein kinase binding | 15 | 2.27 | 0.0058 | DN1560_c0_g1_i4, DN1560_c0_g1_i9, DN3195_c0_g1_i1,DN5489_c0_g1_i5,DN5489_c0_g1_i8, DN690_c0_g2_i1, DN6954_c0_g1_i2, DN8407_c0_g1_i14, DN8407_c0_g1_i17, DN857_c0_g1_i1, DN9546_c0_g2_i1, DN9546_c0_g2_i2, DN978_c0_g2_i1, DN978_c0_g2_i2, DN978_c0_g2_i6 |
Predicted Gene ID | Length (Amino Acid) | e-Value | Accession No. | Description |
---|---|---|---|---|
DN1046_c0_g1_i2 | 384 | 1.20 × 10−44 | IPR039361 | Cyclin |
DN1046_c0_g1_i5 | 568 | 2.10 × 10−90 | IPR039361 | Cyclin |
DN1254_c0_g1_i4 | 602 | 7.30 × 10−92 | IPR039361 | Cyclin |
DN1560_c0_g1_i4 | 486 | 9.10 × 10−49 | IPR013922 | Cyclin PHO80-like |
DN1560_c0_g1_i9 | 470 | 4.80 × 10−51 | IPR013922 | Cyclin PHO80-like |
DN2615_c0_g1_i1 | 390 | 2.90 × 10−123 | IPR050108 | Cyclin-dependent kinase |
DN2615_c0_g1_i18 | 200 | 1.90 × 10−71 | IPR050108 | Cyclin-dependent kinase |
DN2662_c0_g1_i1 | 636 | 7.50 × 10−83 | IPR039361 | Cyclin |
DN2961_c0_g3_i11 | 284 | 4.80 × 10−64 | IPR043198 | Cyclin/Cyclin-like subunit Ssn8 |
DN3855_c0_g1_i2 | 282 | 1.60 × 10−84 | IPR050108 | Cyclin-dependent kinase |
DN3855_c0_g1_i4 | 419 | 3.93 × 10−178 | IPR045267 | Cyclin-dependent kinase 11/PITSLRE, catalytic domain |
DN4255_c0_g1_i14 | 421 | 7.90 × 10−53 | IPR039361 | Cyclin |
DN4440_c0_g1_i2 | 337 | 2.20 × 10−120 | IPR050108 | Cyclin-dependent kinase |
DN4820_c0_g1_i1 | 520 | 2.20 × 10−156 | IPR039361 | Cyclin |
DN6293_c0_g1_i18 | 196 | 1.10 × 10−87 | IPR050108 | Cyclin-dependent kinase |
DN6307_c0_g1_i10 | 372 | 0 | IPR037770 | Cyclin-dependent kinase 7 |
DN6605_c0_g3_i2 | 323 | 1.10 × 10−52 | IPR043198 | Cyclin/Cyclin-like subunit Ssn8 |
DN6605_c0_g3_i5 | 346 | 9.80 × 10−54 | IPR043198 | Cyclin/Cyclin-like subunit Ssn8 |
DN6605_c0_g3_i7 | 245 | 1.20 × 10−22 | IPR043198 | Cyclin/Cyclin-like subunit Ssn8 |
DN6954_c0_g1_i2 | 473 | 1.50 × 10−50 | IPR013922 | Cyclin PHO80-like |
DN8407_c0_g1_i14 | 297 | 2.70 × 10−33 | IPR013922 | Cyclin PHO80-like |
DN950_c0_g2_i2 | 564 | 1.63 × 10−6 | IPR036915 | Cyclin-like superfamily |
DN978_c0_g2_i1 | 600 | 2.70 × 10−28 | IPR013922 | Cyclin PHO80-like |
DN978_c0_g2_i2 | 486 | 2.50 × 10−28 | IPR013922 | Cyclin PHO80-like |
DN978_c0_g2_i6 | 482 | 2.40 × 10−28 | IPR013922 | Cyclin PHO80-like |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-W.; Park, C.-H.; Lee, S.-C.; Shin, J.-H.; Park, Y.-J. High Carbon Dioxide Concentration Inhibits Pileus Growth of Flammulina velutipes by Downregulating Cyclin Gene Expression. J. Fungi 2025, 11, 551. https://doi.org/10.3390/jof11080551
Lee K-W, Park C-H, Lee S-C, Shin J-H, Park Y-J. High Carbon Dioxide Concentration Inhibits Pileus Growth of Flammulina velutipes by Downregulating Cyclin Gene Expression. Journal of Fungi. 2025; 11(8):551. https://doi.org/10.3390/jof11080551
Chicago/Turabian StyleLee, Kwan-Woo, Che-Hwon Park, Seong-Chul Lee, Ju-Hyeon Shin, and Young-Jin Park. 2025. "High Carbon Dioxide Concentration Inhibits Pileus Growth of Flammulina velutipes by Downregulating Cyclin Gene Expression" Journal of Fungi 11, no. 8: 551. https://doi.org/10.3390/jof11080551
APA StyleLee, K.-W., Park, C.-H., Lee, S.-C., Shin, J.-H., & Park, Y.-J. (2025). High Carbon Dioxide Concentration Inhibits Pileus Growth of Flammulina velutipes by Downregulating Cyclin Gene Expression. Journal of Fungi, 11(8), 551. https://doi.org/10.3390/jof11080551