Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,556)

Search Parameters:
Keywords = friction wear resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9214 KiB  
Article
Tribological Performance of Direct Metal Laser Sintered 20MnCr5 Tool Steel Countersamples Designed for Sheet Metal Forming Applications
by Krzysztof Żaba, Marcin Madej, Beata Leszczyńska-Madej, Tomasz Trzepieciński and Ryszard Sitek
Appl. Sci. 2025, 15(15), 8711; https://doi.org/10.3390/app15158711 (registering DOI) - 6 Aug 2025
Abstract
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block [...] Read more.
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block tribotester. The samples were sheet metals made of materials with significantly different properties: Inconel 625, titanium-stabilised stainless steel 321, EN AW-6061 T0 aluminium alloy, and pure copper. The samples and countersamples were analysed in terms of their wear resistance, coefficient of friction (COF), changes in friction force during testing, and surface morphology after tribological contact under dry friction conditions. The tests were performed on DMLSed countersamples in the as-received state. The largest gain of countersample mass was observed for the 20MnCr5/EN AW-6061 T0 friction pair. The sample mass loss in this combination was also the largest, amounting to 19.96% of the initial mass. On the other hand, in the 20MnCr5/Inconel 625 friction pair, no significant changes in the mass of materials were recorded. For the Inconel 625 sample, a mass loss of 0.04% was observed. The basic wear mechanism of the samples was identified as abrasive wear. The highest friction forces were observed in the 20MnCr5/Cu friction pair (COF = 0.913) and 20MnCr5/EN AW-6061 T0 friction pair (COF = 1.234). The other two samples (Inconel 625, 321 steel) showed a very stable value of the friction force during the roller-block test resulting in a COF between 0.194 and 0.213. Based on the changes in friction force, COFs, and mass changes in friction pair components during wear tests, it can be concluded that potential tools in the form of inserts or working layers manufactured using 3D printing technology, the DMLS method, without additional surface treatment can be successfully used for forming sheets of 321 steel and Inconel 625. Full article
Show Figures

Figure 1

18 pages, 9049 KiB  
Article
Study on the Wear Performance of 20CrMnTi Gear Steel with Different Penetration Gradient Positions
by Yingtao Zhang, Shaokui Wei, Wuxin Yang, Jiajian Guan and Gong Li
Materials 2025, 18(15), 3685; https://doi.org/10.3390/ma18153685 - 6 Aug 2025
Abstract
This study investigates the wear performance of 20CrMnTi steel, a commonly used material for spiral bevel gears, after heat treatment, with a focus on the microstructural evolution and wear behavior in both the surface and gradient direction of the carburized layer. The results [...] Read more.
This study investigates the wear performance of 20CrMnTi steel, a commonly used material for spiral bevel gears, after heat treatment, with a focus on the microstructural evolution and wear behavior in both the surface and gradient direction of the carburized layer. The results show that the microstructure composition in the gradient direction of the carburized layer gradually transitions from martensite and residual austenite to a martensite–bainite mixed structure, and eventually transforms to fully bainitic in the matrix. With the extension of carburizing time, both the effective carburized layer depth and the hardened layer depth significantly increase. Wear track morphology analysis reveals that the wear track depth gradually becomes shallower and narrower, and the wear rate increases significantly with increasing load. However, the friction coefficient shows little sensitivity to changes in carburizing time and load. Further investigations show that as the carburized layer depth increases, the carbon concentration and hardness of the samples gradually decrease, resulting in an increase in the average wear rate and a progressive worsening of wear severity. After the wear tests, different depths of plowing grooves, spalling, and fish-scale-like features were observed in the wear regions. Additionally, with the increase in load and carburized layer depth, both the width and depth of the wear tracks significantly increased. The research results provide a theoretical basis for optimizing the surface carburizing process of 20CrMnTi steel and improving its wear resistance. Full article
Show Figures

Figure 1

26 pages, 8019 KiB  
Article
Tribo-Dynamic Investigation of Cryogenic Ball Bearings Considering Varying Traction Parameters
by Shijie Zhang, Shuangshuang Jia, Yuhao Zhao, Jing Wei and Yanyang Zi
Lubricants 2025, 13(8), 352; https://doi.org/10.3390/lubricants13080352 - 5 Aug 2025
Abstract
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and [...] Read more.
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and raceway depends on factors such as contact material, relative sliding velocity, and contact pressure. However, existing traction curve models for CSLBBs typically consider only one or two of these factors, limiting the accuracy and applicability of theoretical predictions. In this study, a novel traction model for CSLBBs is proposed, which incorporates the combined effects of contact material, relative sliding velocity, and contact pressure. Based on this model, a tribo-dynamic framework is developed to investigate the tribological and dynamic behavior of CSLBBs. The model is validated through both theoretical analysis and experimental data. Results show that the inclusion of solid lubricant effects significantly alters the relative sliding and frictional forces between the rolling elements and the raceway. These changes in turn influence the impact dynamics between the rolling elements and the cage, leading to notable variations in the bearing’s vibrational response. The findings may offer valuable insights for the wear resistance and vibration reduction design of CSLBBs. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

18 pages, 8192 KiB  
Article
Microstructure, Mechanical Properties, and Tribological Behavior of Friction Stir Lap-Welded Joints Between SiCp/Al–Fe–V–Si Composites and an Al–Si Alloy
by Shunfa Xiao, Pinming Feng, Xiangping Li, Yishan Sun, Haiyang Liu, Jie Teng and Fulin Jiang
Materials 2025, 18(15), 3589; https://doi.org/10.3390/ma18153589 - 30 Jul 2025
Viewed by 267
Abstract
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of [...] Read more.
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of brake disks, this study fabricated a bimetallic structure of SiCp/Al–Fe–V–Si aluminum matrix composite and cast ZL101 alloy using friction stir lap welding (FSLW). Then, the microstructural evolution, mechanical properties, and tribological behavior of the FSLW joints were studied by XRD, SEM, TEM, tensile testing, and tribological tests. The results showed that the FSLW process homogenized the distribution of SiC particle reinforcements in the SiCp/Al–Fe–V–Si composites. The Al12(Fe,V)3Si heat-resistant phase was not decomposed or coarsened, and the mechanical properties were maintained. The FSLW process refined the grains of the ZL101 aluminum alloy through recrystallization and fragmented eutectic silicon, improving elongation to 22%. A metallurgical bond formed at the joint interface. Tensile fracture occurred within the ZL101 matrix, demonstrating that the interfacial bond strength exceeded the alloy’s load-bearing capacity. In addition, the composites exhibited significantly enhanced wear resistance after FSLW, with their wear rate reduced by approximately 40% compared to the as-received materials, which was attributed to the homogenized SiC particle distribution and the activation of an oxidative wear mechanism. Full article
Show Figures

Figure 1

30 pages, 3838 KiB  
Review
Advances in the Tribological Performance of Graphene Oxide and Its Composites
by Mayur B. Wakchaure and Pradeep L. Menezes
Materials 2025, 18(15), 3587; https://doi.org/10.3390/ma18153587 - 30 Jul 2025
Viewed by 313
Abstract
Graphene oxide (GO), a derivative of graphene, has attracted significant attention in tribological applications due to its unique structural, mechanical, and chemical properties. This review highlights the influence of GO and its composites on friction and wear performance across various engineering systems. The [...] Read more.
Graphene oxide (GO), a derivative of graphene, has attracted significant attention in tribological applications due to its unique structural, mechanical, and chemical properties. This review highlights the influence of GO and its composites on friction and wear performance across various engineering systems. The paper explores GO’s key properties, such as its high surface area, layered morphology, and abundant functional groups. These features contribute to reduced shear resistance, tribofilm formation, and improved load-bearing capacity. A detailed analysis of GO-based composites, including polymer, metal, and ceramic matrices, reveals those small additions of GO (typically 0.1–2 wt%) result in substantial reductions in coefficient of friction and wear rate, with improvements ranging between 30–70%, depending on the application. The tribological mechanisms, including self-lubrication, dispersion, thermal stability, and interface interactions, are discussed to provide insights into performance enhancement. Furthermore, the effects of electrochemical environment, functional group modifications, and external loading conditions on GO’s tribological behavior are examined. Despite these advantages, challenges such as scalability, agglomeration, and material compatibility persist. Overall, the paper demonstrates that GO is a promising additive for advanced tribological systems, while also identifying key limitations and future research directions. Full article
(This article belongs to the Special Issue Tribology in Advanced Materials)
Show Figures

Figure 1

15 pages, 4423 KiB  
Article
Effect of B Element Doping on High-Temperature Tribological Properties of WS2-Based Composite Coatings
by Songmin Zhang, Xiaopeng Zhang, Haichao Cai, Zixuan Huang, Yujun Xue, Lulu Pei and Bowei Kang
Lubricants 2025, 13(8), 332; https://doi.org/10.3390/lubricants13080332 - 30 Jul 2025
Viewed by 210
Abstract
WS2 coating, as a solid lubricating material, plays a significant role in the lubrication of rotating components in spacecraft. During the launch process, however, spacecraft are exposed to high-temperature and humid atmospheric environments, which can lead to oxidative failure in the coating, [...] Read more.
WS2 coating, as a solid lubricating material, plays a significant role in the lubrication of rotating components in spacecraft. During the launch process, however, spacecraft are exposed to high-temperature and humid atmospheric environments, which can lead to oxidative failure in the coating, thereby limiting its engineering applications. By doping with B elements, B/WS2 was successfully prepared as a composite coating. The results demonstrate that the fabricated coating exhibits excellent high-temperature tribological performance in atmospheric environments. The mechanism through which B doping improves the high-temperature friction and wear properties of the WS2 composite coating was revealed through high-temperature friction and wear tests. With the incorporation of B elements, the average friction coefficient of the coating was 0.071, and the wear rate was 7.63 × 10−7 mm3·N−1·m−1, with the wear mechanisms identified as abrasive wear and spalling. Due to high-temperature oxidation, thermal decomposition effects, and the formation of WB4 during sputtering, the wear resistance and anti-plastic deformation capability of the coating were further improved. Compared to room-temperature test conditions, the B/WS2 composite coating at different high temperatures exhibited superior friction coefficients and wear rates. Notably, at 150 °C, the average friction coefficient was as low as 0.015, and the wear forms were abrasive wear and adhesive wear. Full article
Show Figures

Figure 1

14 pages, 2733 KiB  
Article
Study on Microstructure and Wear Resistance of Multi-Layer Laser Cladding Fe901 Coating on 65 Mn Steel
by Yuzhen Yu, Weikang Ding, Xi Wang, Donglu Mo and Fan Chen
Materials 2025, 18(15), 3505; https://doi.org/10.3390/ma18153505 - 26 Jul 2025
Viewed by 271
Abstract
65 Mn is a high-quality carbon structural steel that exhibits excellent mechanical properties and machinability. It finds broad applications in machinery manufacturing, agricultural tools, and mining equipment, and is commonly used for producing mechanical parts, springs, and cutting tools. Fe901 is an iron-based [...] Read more.
65 Mn is a high-quality carbon structural steel that exhibits excellent mechanical properties and machinability. It finds broad applications in machinery manufacturing, agricultural tools, and mining equipment, and is commonly used for producing mechanical parts, springs, and cutting tools. Fe901 is an iron-based alloy that exhibits excellent hardness, structural stability, and wear resistance. It is widely used in surface engineering applications, especially laser cladding, due to its ability to form dense and crack-free metallurgical coatings. To enhance the surface hardness and wear resistance of 65 Mn steel, this study employs a laser melting process to deposit a multi-layer Fe901 alloy coating. The phase composition, microstructure, microhardness, and wear resistance of the coatings are investigated using X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), Vickers hardness testing, and friction-wear testing. The results show that the coatings are dense and uniform, without visible defects. The main phases in the coating include solid solution, carbides, and α-phase. The microstructure comprises dendritic, columnar, and equiaxed crystals. The microhardness of the cladding layer increases significantly, with the multilayer coating reaching 3.59 times the hardness of the 65 Mn substrate. The coatings exhibit stable and relatively low friction coefficients ranging from 0.38 to 0.58. Under identical testing conditions, the wear resistance of the coating surpasses that of the substrate, and the multilayer coating shows better wear performance than the single-layer one. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

14 pages, 4696 KiB  
Article
Effects of Ultrasonic Nanocrystal Surface Modification on the Formation of a Nitride Layer in Ti-6Al-4V Alloy
by Bauyrzhan Rakhadilov, Nurtoleu Magazov, Zarina Aringozhina, Gulzhaz Uazyrkhanova, Zhuldyz Uazyrkhanova and Auezhan Amanov
Materials 2025, 18(15), 3487; https://doi.org/10.3390/ma18153487 - 25 Jul 2025
Viewed by 247
Abstract
This study investigates the effects of ultrasonic nanocrystalline surface modification (UNSM) on the formation of nitride layers in Ti-6Al-4V alloy during ion-plasma nitriding (IPN). Various UNSM parameters, including vibration amplitude, static load, and processing temperature, were systematically varied to evaluate their influence on [...] Read more.
This study investigates the effects of ultrasonic nanocrystalline surface modification (UNSM) on the formation of nitride layers in Ti-6Al-4V alloy during ion-plasma nitriding (IPN). Various UNSM parameters, including vibration amplitude, static load, and processing temperature, were systematically varied to evaluate their influence on microstructure, hardness, elastic modulus, and tribological behavior. The results reveal that pre-treatment with optimized UNSM conditions significantly enhances nitrogen diffusion, leading to the formation of dense and uniform TiN/Ti2N layers. Samples pre-treated under high-load and elevated-temperature UNSM exhibited the greatest improvements in surface hardness (up to 25%), elastic modulus (up to 18%), and wear resistance, with a reduced and stabilized friction coefficient (~0.55). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses confirmed microstructural densification, grain refinement, and increased nitride phase intensity. These findings demonstrate not only the scientific relevance but also the practical potential of UNSM as an effective surface activation technique. The hybrid UNSM + IPN approach may serve as a promising method for extending the service life of load-bearing biomedical implants and engineering components subjected to intensive wear. Full article
Show Figures

Figure 1

20 pages, 7139 KiB  
Article
Synergistic Effects of CuO and ZnO Nanoadditives on Friction and Wear in Automotive Base Oil
by Ádám István Szabó and Rafiul Hasan
Appl. Sci. 2025, 15(15), 8258; https://doi.org/10.3390/app15158258 - 24 Jul 2025
Viewed by 373
Abstract
Efficient lubrication lowers friction, wear, and energy losses in automotive drivetrain components. Advanced lubricants are key to sustainable transportation performance, durability, and efficiency. This study analyzes the tribological performance of Group III base oil with CuO and ZnO nanoadditive mixtures. These additives enhance [...] Read more.
Efficient lubrication lowers friction, wear, and energy losses in automotive drivetrain components. Advanced lubricants are key to sustainable transportation performance, durability, and efficiency. This study analyzes the tribological performance of Group III base oil with CuO and ZnO nanoadditive mixtures. These additives enhance the performance of Group III base oils, making them highly relevant for automotive lubricant applications. An Optimol SRV5 tribometer performed ball-on-disk sliding contact tests with 100Cr6 steel specimens subjected to a 50 N force and a temperature of 100 °C. The test settings are designed to mimic the boundary and mixed lubrication regimes commonly seen in the automobile industry. During the tests, the effect of nanoparticles on friction was measured. Microscopic wear analysis was performed on the worn specimens. The results demonstrate that adding 0.3 wt% CuO nanoparticles to Group III base oil achieves a 19% reduction in dynamic friction and a 47% decrease in disk wear volume compared to additive-free oil. Notably, a 2:1 CuO-to-ZnO mixture produced synergy, delivering up to a 27% friction reduction and a 54% decrease in disk wear. The results show the synergistic effect of CuO and ZnO in reducing friction and wear on specimens. This study highlights the potential of nanoparticles for lubricant development and automotive applications. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

18 pages, 4701 KiB  
Article
Investigation of the Wear Resistance of Hard Anodic Al2O3/IF-WS2 Coatings Deposited on Aluminium Alloys
by Joanna Korzekwa, Adam Jarząbek, Marek Bara, Mateusz Niedźwiedź, Krzysztof Cwynar and Dariusz Oleszak
Materials 2025, 18(15), 3471; https://doi.org/10.3390/ma18153471 - 24 Jul 2025
Viewed by 273
Abstract
The anodic oxide layer’s porosity is considered a functional feature, acting as a reservoir of lubricants. This feature enables the design of self-lubricating systems that effectively reduce friction and wear. To improve the tribological performance of Al2O3 anodic coatings on [...] Read more.
The anodic oxide layer’s porosity is considered a functional feature, acting as a reservoir of lubricants. This feature enables the design of self-lubricating systems that effectively reduce friction and wear. To improve the tribological performance of Al2O3 anodic coatings on EN AW 5251 aluminium alloys, this paper presents a modification of the coating with tungsten disulfide (IF-WS2) nanopowder and its effect on coating resistance. The wear properties of Al2O3/IF-WS2 coatings in contact with a cast iron pin were investigated. The results include the analysis of the friction coefficient in the reciprocating motion without oil lubrication at two loads, the analysis of the wear intensity of the cast iron pin, the characterisation of wear scars, and the analysis of SGP parameters. Two-level factorial analysis showed that load and nanomodification significantly affected the load-bearing parameter Rk. Incorporation of the modifier, especially under higher loads, reduced the Rk value, thus improving the tribological durability of the contact pair. Both load and nanomodification had a notable impact on the coefficient of friction. The use of IF-WS2-modified coatings reduced the coefficient, and higher loads further enhanced this effect, by approximately 9% at a load of 0.3 MPa and 15% at a load of 0.6 MPa, indicating improved lubricating conditions under greater contact stress. Full article
(This article belongs to the Special Issue Surface Engineering in Materials (2nd Edition))
Show Figures

Figure 1

20 pages, 3625 KiB  
Article
Improvement in the Corrosion and Wear Resistance of ZrO2-Ag Coatings on 316LVM Stainless Steel Under Tribocorrosive Conditions
by Willian Aperador and Giovany Orozco-Hernández
Coatings 2025, 15(8), 862; https://doi.org/10.3390/coatings15080862 - 22 Jul 2025
Viewed by 346
Abstract
This study investigates the development of silver (Ag)-doped zirconia (ZrO2) coatings deposited on 316LVM stainless steel via the unbalanced magnetron sputtering technique. The oxygen content in the Ar/O2 gas mixture was systematically varied (12.5%, 25%, 37.5%, and 50%) to assess [...] Read more.
This study investigates the development of silver (Ag)-doped zirconia (ZrO2) coatings deposited on 316LVM stainless steel via the unbalanced magnetron sputtering technique. The oxygen content in the Ar/O2 gas mixture was systematically varied (12.5%, 25%, 37.5%, and 50%) to assess its influence on the resulting coating properties. In response to the growing demand for biomedical implants with improved durability and biocompatibility, the objective was to develop coatings that enhance both wear and corrosion resistance in physiological environments. The effects of silver incorporation and oxygen concentration on the structural, tribological, and electrochemical behavior of the coatings were systematically analyzed. X-ray diffraction (XRD) was employed to identify crystalline phases, while atomic force microscopy (AFM) was used to characterize surface topography prior to wear testing. Wear resistance was evaluated using a ball-on-plane tribometer under simulated prosthetic motion, applying a 5 N load with a bone pin as the counter body. Corrosion resistance was assessed through electrochemical impedance spectroscopy (EIS) in a physiological solution. Additionally, tribocorrosive performance was investigated by coupling tribological and electrochemical tests in Ringer’s lactate solution, simulating dynamic in vivo contact conditions. The results demonstrate that Ag doping, combined with increased oxygen content in the sputtering atmosphere, significantly improves both wear and corrosion resistance. Notably, the ZrO2-Ag coating deposited with 50% O2 exhibited the lowest wear volume (0.086 mm3) and a minimum coefficient of friction (0.0043) under a 5 N load. This same coating also displayed superior electrochemical performance, with the highest charge transfer resistance (38.83 kΩ·cm2) and the lowest corrosion current density (3.32 × 10−8 A/cm2). These findings confirm the high structural integrity and outstanding tribocorrosive behavior of the coating, highlighting its potential for application in biomedical implant technology. Full article
Show Figures

Figure 1

15 pages, 4083 KiB  
Article
Tribological and Corrosion Effects from Electrodeposited Ni-hBN over SS304 Substrate
by Suresh Velayudham, Elango Natarajan, Kalaimani Markandan, Kaviarasan Varadaraju, Santhosh Mozhuguan Sekar, Gérald Franz and Anil Chouhan
Lubricants 2025, 13(7), 318; https://doi.org/10.3390/lubricants13070318 - 21 Jul 2025
Viewed by 431
Abstract
The aim of the present study is to investigate the influence of Nickel–Hexagonal Boron Nitride (Ni-hBN) nanocomposite coatings, deposited using the pulse reverse current electrodeposition technique. This experimental study focuses on assessing the tribological and corrosion properties of the produced coatings on the [...] Read more.
The aim of the present study is to investigate the influence of Nickel–Hexagonal Boron Nitride (Ni-hBN) nanocomposite coatings, deposited using the pulse reverse current electrodeposition technique. This experimental study focuses on assessing the tribological and corrosion properties of the produced coatings on the SS304 substrate. The microhardness of the as-deposited (AD) sample and heat-treated (HT) sample were 49% and 83.8% higher compared to the control sample. The HT sample exhibited a grain size which was approximately 9.7% larger than the AD sample owing to the expansion–contraction mechanism of grains during heat treatment and sudden quenching. Surface roughness reduced after coating, where the Ni-hBN-coated sample measured a roughness of 0.43 µm compared to 0.48 µm for the bare surface. The average coefficient of friction for the AD sample was 42.4% lower than the bare surface owing to the self-lubricating properties of nano hBN. In particular, the corrosion rate of the AD sample was found to be 0.062 mm/year, which was lower than values reported in other studies. As such, findings from the present study can be particularly beneficial for applications in the automotive and aerospace industries, where enhanced wear resistance, reduced friction, and superior corrosion protection are critical for components such as engine parts, gears, bearings and shafts. Full article
Show Figures

Figure 1

15 pages, 3416 KiB  
Article
The Study of Tribological Characteristics of YSZ/NiCrAlY Coatings and Their Resistance to CMAS at High Temperatures
by Dastan Buitkenov, Zhuldyz Sagdoldina, Aiym Nabioldina and Cezary Drenda
Appl. Sci. 2025, 15(14), 8109; https://doi.org/10.3390/app15148109 - 21 Jul 2025
Viewed by 297
Abstract
This paper presents the results of a comprehensive study of the structure, phase composition, thermal corrosion, and tribological properties of multilayer gradient coatings based on YSZ/NiCrAlY obtained using detonation spraying. X-ray phase analysis showed that the coatings consist entirely of metastable tetragonal zirconium [...] Read more.
This paper presents the results of a comprehensive study of the structure, phase composition, thermal corrosion, and tribological properties of multilayer gradient coatings based on YSZ/NiCrAlY obtained using detonation spraying. X-ray phase analysis showed that the coatings consist entirely of metastable tetragonal zirconium dioxide (t’-ZrO2) phase stabilized by high temperature and rapid cooling during spraying. SEM analysis confirmed the multilayer gradient phase distribution and high density of the structure. Wear resistance, optical profilometry, wear quantification, and coefficient of friction measurements were used to evaluate the operational stability. The results confirm that the structural parameters of the coating, such as porosity and phase gradient, play a key role in improving its resistance to thermal corrosion and CMAS melt, which makes such coatings promising for use in high-temperature applications. It is shown that a dense and thick coating effectively prevents the penetration of aggressive media, providing a high barrier effect and minimal structural damage. Tribological tests in the temperature range from 21 °C to 650 °C revealed that the best characteristics are observed at 550 °C: minimum coefficient of friction (0.63) and high stability in the stage of stable wear. At room temperature and at 650 °C, there is an increase in wear due to the absence or destabilization of the protective layer. Full article
Show Figures

Figure 1

19 pages, 9988 KiB  
Article
Research on Modification Technology of Laser Cladding Stellite6/Cu Composite Coating on the Surface of 316L Stainless Steel Plow Teeth
by Wenhua Wang, Qilang He, Wenqing Shi and Weina Wu
Micromachines 2025, 16(7), 827; https://doi.org/10.3390/mi16070827 - 20 Jul 2025
Viewed by 318
Abstract
Plow loosening machines are essential agricultural machinery in the agricultural production process. Improving the surface strengthening process and extending the working life of the plow teeth of the plow loosening machine are of great significance. In this paper, the preparation of Stellite6/Cu composite [...] Read more.
Plow loosening machines are essential agricultural machinery in the agricultural production process. Improving the surface strengthening process and extending the working life of the plow teeth of the plow loosening machine are of great significance. In this paper, the preparation of Stellite6/Cu composite coating on the surface of 316L steel substrate intended for strengthening the plow teeth of a plow loosening machine using laser cladding technology was studied. The influence of different laser process parameters on the microstructure and properties of Stellite6/Cu composite coating was investigated. The composite coating powder was composed of Stellite6 powder with a different weight percent of copper. Microstructural analysis, phase composition, elemental distribution, microhardness, wear resistance, and corrosion resistance of the composite coatings on the plow teeth were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), microhardness testing, energy dispersive spectroscopy (EDS), friction and wear testing, and electrochemical workstation measurements. The results showed that (1) When the laser power was 1000 W, the average hardness of the prepared Stellite6/Cu composite layer achieved the highest hardness, approximately 1.36 times higher than the average hardness of the substrate, and the composite coating prepared exhibited the best wear resistance; (2) When the scanning speed was 800 mm/min, the composite coating exhibited the lowest average friction coefficient and the optimal corrosion resistance in a 3.5% wt.% NaCl solution with a self-corrosion current density of −7.55 µA/cm2; (3) When the copper content was 1 wt.%, the composite coating achieved the highest average hardness with 515.2 HV, the lowest average friction coefficient with 0.424, and the best corrosion resistance with a current density of −8.878 µA/cm2. Full article
Show Figures

Figure 1

17 pages, 2870 KiB  
Article
Influence of Magnetorheological Finishing on Surface Topography and Functional Performance of Shoulder Joint Cap Surface
by Manpreet Singh, Gagandeep Singh, Riyad Abu-Malouh, Sumika Chauhan and Govind Vashishtha
Materials 2025, 18(14), 3397; https://doi.org/10.3390/ma18143397 - 20 Jul 2025
Viewed by 362
Abstract
The surface quality of biomedical implants, such as shoulder joint caps, plays a critical role in their performance, longevity, and biocompatibility. Most biomedical shoulder joints fail to reach their optimal functionality when finished through conventional techniques like grinding and lapping due to their [...] Read more.
The surface quality of biomedical implants, such as shoulder joint caps, plays a critical role in their performance, longevity, and biocompatibility. Most biomedical shoulder joints fail to reach their optimal functionality when finished through conventional techniques like grinding and lapping due to their inability to achieve nanometer-grade smoothness, which results in greater wear and friction along with potential failure. The advanced magnetorheological finishing (MRF) approach provides enhanced surface quality through specific dimensional control material removal. This research evaluates how MRF treatment affects the surface roughness performance and microhardness properties and wear resistance behavior of cobalt–chromium alloy shoulder joint caps which have biocompatible qualities. The study implements a magnetorheological finishing system built with an electromagnetic tool to achieve the surface roughness improvements from 0.35 µm to 0.03 µm. The microhardness measurements show that MRF applications lead to a rise from HV 510 to HV 560 which boosts the wear protection of samples. After MRF finishing, the coefficient of friction demonstrates a decrease from 0.12 to 0.06 which proves improved tribological properties of these implants. The results show that MRF technology delivers superior benefits for biomedical use as it extends implant life span and decreases medical complications leading to better patient health outcomes. The purposeful evaluation of finishing techniques and their effects on implant functionality demonstrates MRF is an advanced technology for upcoming orthopedic implants while yielding high precision and enhanced durability and functional output. Full article
Show Figures

Figure 1

Back to TopTop