Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,198)

Search Parameters:
Keywords = free oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1253 KiB  
Article
Effect of Modification Methods on Composition and Technological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Pomace
by Gabrielė Kaminskytė, Jolita Jagelavičiūtė, Loreta Bašinskienė, Michail Syrpas and Dalia Čižeikienė
Appl. Sci. 2025, 15(15), 8722; https://doi.org/10.3390/app15158722 (registering DOI) - 7 Aug 2025
Abstract
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the [...] Read more.
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the study was to evaluate the impact of modification methods, such as enzymatic hydrolysis and supercritical carbon dioxide extraction (SFE-CO2), on the chemical composition and technological properties of SBP. SBP and SBP obtained after SFE-CO2 (SBP-CO2) were enzymatically modified using Pectinex® Ultra Tropical, Viscozyme® L, and Celluclast® 1.5 L (Novozyme A/S, Bagsværd, Denmark). The SBP’s main constituent was insoluble dietary fiber (IDF), followed by crude proteins and lipids (respectively, 58.7, 21.1 and 12.6 g/100 in d.m.). SFE-CO2 reduced the lipid content (by 85.7%) in the pomace while increasing protein and TDF content. Enzymatic hydrolysis decreased the content of both soluble dietary fiber (SDF) and IDF, and increased the content of mono- and oligosaccharides as well as free phenolics, depending on the commercial enzyme preparation used in SBP and SBP-CO2 samples. Celluclast® 1.5 L was the most effective in hydrolyzing IDF, while Viscozyme® L and Pectinex® Ultra Tropical were the most effective in degrading SDF. Enzymatic treatment improved water swelling capacity, water retention capacity, water solubility index, oil retention capacity of SBP and SBP-CO2; however, it did not have a significant effect on the stability of the emulsions. Modification of SBP by SFE-CO2 effectively increased WSC and WSI, however it reduced WRC. These findings highlight the potential of targeted modifications to enhance the nutritional and technological properties of SBP for functional food applications. Full article
Show Figures

Figure 1

23 pages, 3106 KiB  
Article
Preparation of a Nanomaterial–Polymer Dynamic Cross-Linked Gel Composite and Its Application in Drilling Fluids
by Fei Gao, Peng Xu, Hui Zhang, Hao Wang, Xin Zhao, Xinru Li and Jiayi Zhang
Gels 2025, 11(8), 614; https://doi.org/10.3390/gels11080614 - 5 Aug 2025
Viewed by 25
Abstract
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order [...] Read more.
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order to reduce the wellbore instability caused by drilling fluid intrusion into the formation, this study proposed a method of forming a dynamic hydrogen bond cross-linked network weak gel structure with modified nano-silica and P(AM-AAC). The plugging performance of the drilling fluid and the performance of inhibiting the hydration of shale were evaluated through various experimental methods. The results show that the gel composite system (GCS) effectively optimizes the plugging performance of drilling fluid. The 1% GCS can reduce the linear expansion rate of cuttings to 14.8% and increase the recovery rate of cuttings to 96.7%, and its hydration inhibition effect is better than that of KCl and polyamines. The dynamic cross-linked network structure can significantly increase the viscosity of drilling fluid. Meanwhile, by taking advantage of the liquid-phase viscosity effect and the physical blocking effect, the loss of drilling fluid can be significantly reduced. Mechanism studies conducted using zeta potential measurement, SEM analysis, contact angle measurement and capillary force assessment have shown that modified nano-silica stabilizes the wellbore by physically blocking the nano-pores of shale and changing the wettability of the shale surface from hydrophilic to hydrophobic when the contact angle exceeds 60°, thereby reducing capillary force and surface free energy. Meanwhile, the dynamic cross-linked network can reduce the seepage of free water into the formation, thereby significantly lowering the fluid loss of the drilling fluid. This research provides new insights into improving the stability of the wellbore in drilling fluids. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

16 pages, 1504 KiB  
Article
Tuning the Activity of NbOPO4 with NiO for the Selective Conversion of Cyclohexanone as a Model Intermediate of Lignin Pyrolysis Bio-Oils
by Abarasi Hart and Jude A. Onwudili
Energies 2025, 18(15), 4106; https://doi.org/10.3390/en18154106 - 2 Aug 2025
Viewed by 172
Abstract
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds [...] Read more.
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds in the final upgraded liquid products. The present work involved a systematic study of solvent-free catalytic reactions of cyclohexanone in the presence of hydrogen gas at 160 °C for 3 h in a batch reactor. Cyclohexanone can be produced from biomass through the selective hydrogenation of lignin-derived phenolics. Three types of catalysts comprising undoped NbOPO4, 10 wt% NiO/NbOPO4, and 30 wt% NiO/NbOPO4 were studied. Undoped NbOPO4 promoted both aldol condensation and the dehydration of cyclohexanol, producing fused ring aromatic hydrocarbons and hard char. With 30 wt% NiO/NbOPO4, extensive competitive hydrogenation of cyclohexanone to cyclohexanol was observed, along with the formation of C6 cyclic hydrocarbons. When compared to NbOPO4 and 30 wt% NiO/NbOPO4, the use of 10 wt% NiO/NbOPO4 produced superior selectivity towards bi-cycloalkanones (i.e., C12) at cyclohexanone conversion of 66.8 ± 1.82%. Overall, the 10 wt% NiO/NbOPO4 catalyst exhibited the best performance towards the production of precursor compounds that can be further hydrodeoxygenated into energy-dense aviation fuel hydrocarbons. Hence, the presence and loading of NiO was able to tune the activity and selectivity of NbOPO4, thereby influencing the final products obtained from the same cyclohexanone feedstock. This study underscores the potential of lignin-derived pyrolysis oils as important renewable feedstocks for producing replacement hydrocarbon solvents or feedstocks and high-density sustainable liquid hydrocarbon fuels via sequential and selective catalytic upgrading. Full article
Show Figures

Figure 1

24 pages, 3243 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 235
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

23 pages, 2345 KiB  
Article
From Waste to Biocatalyst: Cocoa Bean Shells as Immobilization Support and Substrate Source in Lipase-Catalyzed Hydrolysis
by Luciana Lordelo Nascimento, Bruna Louise de Moura Pita, César de Almeida Rodrigues, Paulo Natan Alves dos Santos, Yslaine Andrade de Almeida, Larissa da Silveira Ferreira, Maira Lima de Oliveira, Lorena Santos de Almeida, Cleide Maria Faria Soares, Fabio de Souza Dias and Alini Tinoco Fricks
Molecules 2025, 30(15), 3207; https://doi.org/10.3390/molecules30153207 - 30 Jul 2025
Viewed by 187
Abstract
This study reports the development of a sustainable biocatalyst system for free fatty acid (FFA) production from cocoa bean shell (CBS) oil using Burkholderia cepacia lipase (BCL). CBS was explored as both a support material and a reaction substrate. Six immobilized [...] Read more.
This study reports the development of a sustainable biocatalyst system for free fatty acid (FFA) production from cocoa bean shell (CBS) oil using Burkholderia cepacia lipase (BCL). CBS was explored as both a support material and a reaction substrate. Six immobilized systems were prepared using organic (CBS), inorganic (silica), and hybrid (CBS–silica) supports via physical adsorption or covalent binding. Among them, the covalently immobilized enzyme on CBS (ORG-CB) showed the most balanced performance, achieving a catalytic efficiency (Ke) of 0.063 mM−1·min−1 (18.6% of the free enzyme), broad pH–temperature tolerance, and over 50% activity retention after eight reuse cycles. Thermodynamic analysis confirmed enhanced thermal resistance for ORG-CB (Ed = 32.3 kJ mol−1; ΔH‡ = 29.7 kJ mol−1), while kinetic evaluation revealed that its thermal deactivation occurred faster than for the free enzyme under prolonged heating. In application trials, ORG-CB reached 60.1% FFA conversion from CBS oil, outperforming the free enzyme (49.9%). These findings validate CBS as a dual-function material for enzyme immobilization and valorization of agro-industrial waste. The results also reinforce the impact of immobilization chemistry and support composition on the operational and thermal performance of biocatalysts, contributing to the advancement of green chemistry strategies in enzyme-based processing. Full article
(This article belongs to the Special Issue Biotechnology and Biomass Valorization)
Show Figures

Figure 1

11 pages, 2406 KiB  
Article
Surfactant-Free Electrosprayed Alginate Beads for Oral Delivery of Hydrophobic Compounds
by Hye-Seon Jeong, Hyo-Jin Kim, Sung-Min Kang and Chang-Hyung Choi
Polymers 2025, 17(15), 2098; https://doi.org/10.3390/polym17152098 - 30 Jul 2025
Viewed by 207
Abstract
Oral delivery of hydrophobic compounds remains challenging due to their poor aqueous solubility and the potential toxicity associated with conventional surfactant-based emulsions. To address these issues, we present a surfactant-free encapsulation strategy using electrosprayed alginate hydrogel beads for the stable and controlled delivery [...] Read more.
Oral delivery of hydrophobic compounds remains challenging due to their poor aqueous solubility and the potential toxicity associated with conventional surfactant-based emulsions. To address these issues, we present a surfactant-free encapsulation strategy using electrosprayed alginate hydrogel beads for the stable and controlled delivery of hydrophobic oils. Hydrophobic compounds were dispersed in high-viscosity alginate solutions without surfactants via ultrasonication, forming kinetically stable oil-in-water dispersions. These mixtures were electrosprayed into calcium chloride baths, yielding monodisperse hydrogel beads. Higher alginate concentrations improved droplet sphericity and suppressed phase separation by enhancing matrix viscosity. The resulting beads exhibited stimuli-responsive degradation and controlled release behavior in response to physiological ionic strength. Dense alginate networks delayed ion exchange and prolonged structural integrity, while elevated external ionic conditions triggered rapid disintegration and immediate payload release. This simple and scalable system offers a biocompatible platform for the oral delivery of lipophilic active compounds without the need for surfactants or complex fabrication steps. Full article
Show Figures

Figure 1

12 pages, 708 KiB  
Article
Techno-Functional and Nutraceutical Assessment of Unprocessed and Germinated Amaranth Flours and Hydrolysates: Impact of the Reduction of Hydrolysis Time
by Alvaro Montoya-Rodríguez, Maribel Domínguez-Rodríguez, Eslim Sugey Sandoval-Sicairos, Evelia Maria Milán-Noris, Jorge Milán-Carrillo and Ada Keila Milán-Noris
Foods 2025, 14(15), 2666; https://doi.org/10.3390/foods14152666 - 29 Jul 2025
Viewed by 264
Abstract
Amaranth is a nutritional and naturally gluten-free pseudocereal with several food applications. The germination and pepsin/pancreatin hydrolysis in amaranth releases antioxidant and anti-inflammatory compounds but the hydrolysis times (270 or 360 min) are too long to scale up in the development of amaranth [...] Read more.
Amaranth is a nutritional and naturally gluten-free pseudocereal with several food applications. The germination and pepsin/pancreatin hydrolysis in amaranth releases antioxidant and anti-inflammatory compounds but the hydrolysis times (270 or 360 min) are too long to scale up in the development of amaranth functional ingredients. The aim of this study was to estimate the influence of the germination and pepsin/pancreatin hydrolysis reduction time on the techno-functional properties and nutraceutical potential of amaranth flours and hydrolysates. The germination process increased 12.5% soluble protein (SP), 23.7% total phenolics (TPC), 259% water solubility, and 26% oil absorption in germinated amaranth flours (GAFs) compared to ungerminated amaranth flours (UAFs). The ungerminated (UAFH) and germinated (GAFH) amaranth hydrolysates showed values of degree of hydrolysis up to 50% with 150 min of sequential (pepsin + pancreatin) hydrolysis. The enzymatic hydrolysis released 1.5-fold SP and 14-fold TPC in both amaranth flours. The water solubility was higher in both hydrolysates than in their unhydrolyzed flour counterparts. The reduction in hydrolysis time did not significantly affect the nutraceutical potential of GAFH, enhancing its potential for further investigations. Finally, combining germination and enzymatic hydrolysis in amaranth enhances nutraceutical and techno-functional properties, increasing the seed. Consequently, GAF or GAFH could be used to elaborate on functional or gluten-free food products. Full article
Show Figures

Figure 1

20 pages, 949 KiB  
Article
Exploring the Antioxidant and Preservative Potential of Lippia origanoides Kunth Essential Oil in Pure and Encapsulated Forms for Cosmetic Applications
by M. Fernanda Lopes, Sandra M. Gomes, Wanderley P. Oliveira and Lúcia Santos
Cosmetics 2025, 12(4), 160; https://doi.org/10.3390/cosmetics12040160 - 28 Jul 2025
Viewed by 500
Abstract
The increasing demand for sustainable and safer alternatives in the cosmetic industry has driven the search for multifunctional natural ingredients. Essential oils (EOs), known for their antimicrobial and antioxidant activities, are promising candidates with which to replace synthetic preservatives and antioxidants. This study [...] Read more.
The increasing demand for sustainable and safer alternatives in the cosmetic industry has driven the search for multifunctional natural ingredients. Essential oils (EOs), known for their antimicrobial and antioxidant activities, are promising candidates with which to replace synthetic preservatives and antioxidants. This study aimed to evaluate the preservative and antioxidant potential of Lippia origanoides Kunth essential oil, in pure and encapsulated in β-cyclodextrin form, for cosmetic applications. The EO exhibited strong antioxidant activity, with low IC50 values in DPPH and ABTS assays, and demonstrated antimicrobial efficacy, particularly against Escherichia coli and Staphylococcus aureus. Six cosmetic cream formulations were developed and tested for physicochemical and microbiological stability. Formulations with pure EO maintained high antioxidant performance and remained free of bacterial and fungal contamination over time, outperforming the commercial preservatives. In contrast, formulations with encapsulated EO exhibited delayed antioxidant and antimicrobial activity, indicating gradual release. Overall, Lippia origanoides EO proved to be an effective natural alternative to synthetic preservatives and antioxidants. This approach aligns with the current trend of eco-friendly formulations, offering a sustainable solution by incorporating plant-derived bioactives into cosmetic products. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

19 pages, 8002 KiB  
Article
3D Forward Simulation of Borehole-Surface Transient Electromagnetic Based on Unstructured Finite Element Method
by Jiayi Liu, Tianjun Cheng, Lei Zhou, Xinyu Wang and Xingbing Xie
Minerals 2025, 15(8), 785; https://doi.org/10.3390/min15080785 - 26 Jul 2025
Viewed by 157
Abstract
The time-domain electromagnetic method has been widely applied in mineral exploration, oil, and gas fields in recent years. However, its response characteristics remain unclear, and there is an urgent need to study the response characteristics of the borehole-surface transient electromagnetic(BSTEM) field. This study [...] Read more.
The time-domain electromagnetic method has been widely applied in mineral exploration, oil, and gas fields in recent years. However, its response characteristics remain unclear, and there is an urgent need to study the response characteristics of the borehole-surface transient electromagnetic(BSTEM) field. This study starts from the time-domain electric field diffusion equation and discretizes the calculation area in space using tetrahedral meshes. The Galerkin method is used to derive the finite element equation of the electric field, and the vector interpolation basis function is used to approximate the electric field in any arbitrary tetrahedral mesh in the free space, thus achieving the three-dimensional forward simulation of the BSTEM field based on the finite element method. Following validation of the numerical simulation method, we further analyze the electromagnetic field response excited by vertical line sources.. Through comparison, it is concluded that measuring the radial electric field is the most intuitive and effective layout method for BSTEM, with a focus on the propagation characteristics of the electromagnetic field in both low-resistance and high-resistance anomalies at different positions. Numerical simulations reveal that BSTEM demonstrates superior resolution capability for low-resistivity anomalies, while showing limited detectability for high-resistivity anomalies Numerical simulation results of BSTEM with realistic orebody models, the correctness of this rule is further verified. This has important implications for our understanding of the propagation laws of BSTEM as well as for subsequent data processing and interpretation. Full article
(This article belongs to the Special Issue Geoelectricity and Electrical Methods in Mineral Exploration)
Show Figures

Figure 1

26 pages, 3038 KiB  
Article
Profiling Hydrophilic Cucurbita pepo Seed Extracts: A Study of European Cultivar Variability
by Adina-Elena Grasu, Roman Senn, Christiane Halbsguth, Alexander Schenk, Veronika Butterweck and Anca Miron
Plants 2025, 14(15), 2308; https://doi.org/10.3390/plants14152308 - 26 Jul 2025
Viewed by 212
Abstract
Cucurbita pepo (CP) seeds are traditionally used to alleviate lower urinary tract symptoms associated with benign prostatic hyperplasia and overactive bladder. While these effects are often attributed to lipophilic constituents, recent studies have highlighted the therapeutic potential of oil-free hydroethanolic extracts. However, their [...] Read more.
Cucurbita pepo (CP) seeds are traditionally used to alleviate lower urinary tract symptoms associated with benign prostatic hyperplasia and overactive bladder. While these effects are often attributed to lipophilic constituents, recent studies have highlighted the therapeutic potential of oil-free hydroethanolic extracts. However, their composition remains insufficiently characterized, considering the species’ significant phenotypic and phytochemical variability. This study aimed to characterize the phytochemical profile of hydrophilic hydroethanolic seed extracts from ten CP cultivars originating from different European regions, with a focus on compositional variability. The elemental composition, along with primary and secondary metabolites, was analyzed using established spectroscopic and chromatographic methods. The extracts showed considerable variation in protein (45.39 to 114.58 mg/g dw) and free amino acid content (46.51 to 111.10 mg/g dw), as well as differences in elemental composition. Principal component analysis revealed distinct clustering patterns, with several samples displaying metabolite profiles comparable to the Cucurbita pepo var. styriaca variety currently recommended by the European Pharmacopoeia (Ph. Eur.) and the Committee on Herbal Medicinal Products (HMPC). These findings open the possibility of using other CP varieties as alternative sources for extract preparation and offer novel insights into the composition of less explored hydrophilic extracts derived from CP seeds. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

29 pages, 8648 KiB  
Article
Design and Experimentation of Comb-Spiral Impact Harvesting Device for Camellia oleifera Fruit
by Fengxin Yan, Yaoyao Zhu, Xujie Li, Yu Zhang, Komil Astanakulov and Naimov Alisher
Agriculture 2025, 15(15), 1616; https://doi.org/10.3390/agriculture15151616 - 25 Jul 2025
Viewed by 294
Abstract
Camellia oleifera is one of the four largest woody oil species in the world, with more than 5 million hectares planted in China alone. Reducing bud damage and improving harvesting net rate and efficiency have become the key challenges to mechanized harvesting of [...] Read more.
Camellia oleifera is one of the four largest woody oil species in the world, with more than 5 million hectares planted in China alone. Reducing bud damage and improving harvesting net rate and efficiency have become the key challenges to mechanized harvesting of Camellia oleifera fruits. This paper presents a novel comb-spiral impact harvesting device primarily composed of four parts, which are lifting mechanism, picking mechanism, rotating mechanism, and tracked chassis. The workspace of the four-degree-of-freedom lifting mechanism was simulated, and the harvesting reachable area was maximized using MATLAB R2021a software. The picking mechanism, which includes dozens of spirally arranged impact pillars, achieves high harvesting efficiency through impacting, brushing, and dragging, while maintaining a low bud shedding rate. The rotary mechanism provides effective harvesting actions, and the tracked chassis guarantees free movement of the equipment. Simulation experiments and field validation experiments indicate that optimal performance can be achieved when the brushing speed is set to 21.45 r/min, the picking finger speed is set to 341.27 r/min, and the picking device tilt angle is set to 1.0°. With these parameters, the harvesting quantity of Camellia oleifera fruits is 119.75 kg/h, fruit shedding rate 92.30%, and bud shedding rate as low as 9.16%. This new model for fruit shedding and the comb-spiral impact harvesting principle shows promise as a mechanized harvesting solution for nut-like fruits. Full article
Show Figures

Figure 1

20 pages, 7139 KiB  
Article
Synergistic Effects of CuO and ZnO Nanoadditives on Friction and Wear in Automotive Base Oil
by Ádám István Szabó and Rafiul Hasan
Appl. Sci. 2025, 15(15), 8258; https://doi.org/10.3390/app15158258 - 24 Jul 2025
Viewed by 373
Abstract
Efficient lubrication lowers friction, wear, and energy losses in automotive drivetrain components. Advanced lubricants are key to sustainable transportation performance, durability, and efficiency. This study analyzes the tribological performance of Group III base oil with CuO and ZnO nanoadditive mixtures. These additives enhance [...] Read more.
Efficient lubrication lowers friction, wear, and energy losses in automotive drivetrain components. Advanced lubricants are key to sustainable transportation performance, durability, and efficiency. This study analyzes the tribological performance of Group III base oil with CuO and ZnO nanoadditive mixtures. These additives enhance the performance of Group III base oils, making them highly relevant for automotive lubricant applications. An Optimol SRV5 tribometer performed ball-on-disk sliding contact tests with 100Cr6 steel specimens subjected to a 50 N force and a temperature of 100 °C. The test settings are designed to mimic the boundary and mixed lubrication regimes commonly seen in the automobile industry. During the tests, the effect of nanoparticles on friction was measured. Microscopic wear analysis was performed on the worn specimens. The results demonstrate that adding 0.3 wt% CuO nanoparticles to Group III base oil achieves a 19% reduction in dynamic friction and a 47% decrease in disk wear volume compared to additive-free oil. Notably, a 2:1 CuO-to-ZnO mixture produced synergy, delivering up to a 27% friction reduction and a 54% decrease in disk wear. The results show the synergistic effect of CuO and ZnO in reducing friction and wear on specimens. This study highlights the potential of nanoparticles for lubricant development and automotive applications. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

12 pages, 3116 KiB  
Article
Dual-Component Beat-Frequency Quartz-Enhanced Photoacoustic Spectroscopy Gas Detection System
by Hangyu Xu, Yiwen Feng, Zihao Chen, Zhenzhao Zhuang, Jinbao Xia, Yiyang Zhao and Sasa Zhang
Photonics 2025, 12(8), 747; https://doi.org/10.3390/photonics12080747 - 24 Jul 2025
Viewed by 248
Abstract
This study designed and validated a dual-component beat-frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) gas detection system utilizing time-division multiplexing (TDM). By applying TDM to drive distributed feedback lasers, the system achieved the simultaneous detection of acetylene and methane. Its key innovation lies in exploiting [...] Read more.
This study designed and validated a dual-component beat-frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) gas detection system utilizing time-division multiplexing (TDM). By applying TDM to drive distributed feedback lasers, the system achieved the simultaneous detection of acetylene and methane. Its key innovation lies in exploiting the transient response of the quartz tuning fork (QTF) to acquire gas concentrations while concurrently capturing the QTF resonant frequency and quality factor in real-time. Owing to the short beat period and rapid system response, this approach significantly reduces time-delay constraints in time-division measurements, eliminating the need for periodic calibration inherent in conventional methods and preventing detection interruptions. The experimental results demonstrate minimum detection limits of 5.69 ppm for methane and 0.60 ppm for acetylene. Both gases exhibited excellent linear responses over the concentration range of 200 ppm to 4000 ppm, with the R2 value for methane being 0.996 and for acetylene being 0.997. The system presents a viable solution for the real-time, calibration-free monitoring of dissolved gases in transformer oil. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensing Technology)
Show Figures

Figure 1

18 pages, 2562 KiB  
Article
Enhancing the Solubility and Oral Bioavailability of Trimethoprim Through PEG-PLGA Nanoparticles: A Comprehensive Evaluation of In Vitro and In Vivo Performance
by Yaxin Zhou, Guonian Dai, Jing Xu, Weibing Xu, Bing Li, Shulin Chen and Jiyu Zhang
Pharmaceutics 2025, 17(8), 957; https://doi.org/10.3390/pharmaceutics17080957 - 24 Jul 2025
Viewed by 283
Abstract
Background/Objectives: Trimethoprim (TMP), a sulfonamide antibacterial synergist, is widely used in antimicrobial therapy owing to its broad-spectrum activity and clinical efficacy in treating respiratory, urinary tract, and gastrointestinal infections. However, its application is limited due to poor aqueous solubility, a short elimination half-life [...] Read more.
Background/Objectives: Trimethoprim (TMP), a sulfonamide antibacterial synergist, is widely used in antimicrobial therapy owing to its broad-spectrum activity and clinical efficacy in treating respiratory, urinary tract, and gastrointestinal infections. However, its application is limited due to poor aqueous solubility, a short elimination half-life (t1/2), and low bioavailability. In this study, we proposed TMP loaded by PEG-PLGA polymer nanoparticles (NPs) to increase its efficacy. Methods: We synthesized and thoroughly characterized PEG-PLGA NPs loaded with TMP using an oil-in-water (O/W) emulsion solvent evaporation method, denoted as PEG-PLGA/TMP NPs. Drug loading capacity (LC) and encapsulation efficiency (EE) were quantified by ultra-performance liquid chromatography (UPLC). Comprehensive investigations were conducted on the stability of PEG-PLGA/TMP NPs, in vitro drug release profiles, and in vivo pharmacokinetics. Results: The optimized PEG-PLGA/TMP NPs displayed a high LC of 34.0 ± 1.6%, a particle size of 245 ± 40 nm, a polydispersity index (PDI) of 0.103 ± 0.019, a zeta potential of −23.8 ± 1.2 mV, and an EE of 88.2 ± 4.3%. The NPs remained stable at 4 °C for 30 days and under acidic conditions. In vitro release showed sustained biphasic kinetics and enhanced cumulative release, 86% at pH 6.8, aligning with first-order models. Pharmacokinetics in rats revealed a 2.82-fold bioavailability increase, prolonged half-life 2.47 ± 0.19 h versus 0.72 ± 0.08 h for free TMP, and extended MRT 3.10 ± 0.11 h versus 1.27 ± 0.11 h. Conclusions: PEG-PLGA NPs enhanced the solubility and oral bioavailability of TMP via high drug loading, stability, and sustained-release kinetics, validated by robust in vitro-in vivo correlation, offering a promising alternative for clinical antimicrobial therapy. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

16 pages, 1005 KiB  
Article
Camelina sativa: An Emerging Feedstuff for Laying Hens to Improve the Nutritional Quality of Eggs and Meat
by Yazavinder Singh, Antonella Dalle Zotte, Bianca Palumbo and Marco Cullere
Animals 2025, 15(15), 2173; https://doi.org/10.3390/ani15152173 - 23 Jul 2025
Viewed by 180
Abstract
Camelina sativa (CS) is an emerging sustainable oilseed crop with interesting feed application potentialities. The research assessed the potentiality of Camelina sativa (CS) in the diet for free-range laying hens, aiming at reaching a nutritional claim. To this purpose, two feeding groups of [...] Read more.
Camelina sativa (CS) is an emerging sustainable oilseed crop with interesting feed application potentialities. The research assessed the potentiality of Camelina sativa (CS) in the diet for free-range laying hens, aiming at reaching a nutritional claim. To this purpose, two feeding groups of hens (n = 100 Livorno hens, n = 25 hens/pen) were farmed outdoor and received either a Control diet, which was a commercial diet for laying hens, or a CS diet. The latter was formulated to include the 5% CS cake and 1% CS oil, replacing conventional feedstuffs. Diets were isoprotein and isoenergy and were available ad libitum throughout the laying period (February–September). At day 1, n = 12 eggs/diet were sampled to assess the initial proximate composition and FA profile. Every 7 days the sampling was repeated to analyze the eggs’ FA profile, up to day 35. At the end of the laying season, n = 6 hens/dietary treatment were slaughtered and subjected to meat quality evaluations. Results highlighted that a 28-day feeding was the period required to obtain 227 mg of C18:3 n-3 and 81 mg of C20:5 n-3 + C22:6 n-3/100 g egg, whereas a further 7 days of feeding trial were ineffective in further enhancing the omega-3 FA content of eggs. CS eggs were comparable to Control ones for overall physical traits, proximate composition, and shelf-life. In addition, at the end of the laying period, the meat of CS hens was also found to be healthier than that of Control ones, thanks to a higher omega-3 FA proportion (p < 0.01), which was, however, not sufficient to reach any nutritional claim. Instead, the proximate composition of CS meat was overall comparable to Control hens. In conclusion, the present research demonstrated that feeding Camelina sativa meal and oil to laying hens is feasible and allows to reach the nutritional claim in eggs “rich in omega-3 FA” after a feeding period of 28 days, without any negative effects on other eggs’ quality trials. Camelina sativa can thus be defined as a promising sustainable feedstuff for the poultry sector for diversification purposes and to enhance the nutritional quality of eggs. Full article
(This article belongs to the Section Animal Products)
Show Figures

Figure 1

Back to TopTop