Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (380)

Search Parameters:
Keywords = fraudulence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 873 KiB  
Article
Try It Before You Buy It: A Non-Invasive Authenticity Assessment of a Purported Phoenician Head-Shaped Pendant (Cáceres, Spain)
by Valentina Lončarić, Pedro Barrulas, José Miguel González Bornay and Mafalda Costa
Heritage 2025, 8(8), 308; https://doi.org/10.3390/heritage8080308 (registering DOI) - 1 Aug 2025
Viewed by 1
Abstract
Museums may acquire archaeological artefacts discovered by non-specialists or amateur archaeologists, holding the potential to promote the safeguarding of cultural heritage by integrating the local community in their activities. However, this also creates an opportunity for the fraudulent sale of modern forgeries presented [...] Read more.
Museums may acquire archaeological artefacts discovered by non-specialists or amateur archaeologists, holding the potential to promote the safeguarding of cultural heritage by integrating the local community in their activities. However, this also creates an opportunity for the fraudulent sale of modern forgeries presented as archaeological artefacts, resulting in the need for a critical assessment of the artefact’s authenticity prior to acquisition by the museum. In 2019, the regional museum in Cáceres (Spain) was offered the opportunity to acquire a Phoenician-Punic head pendant, allegedly discovered in the vicinity of the city. The artefact’s authenticity was assessed by traditional approaches, including typological analysis and analysis of manufacture technique, which raised doubts about its purported age. VP-SEM-EDS analysis of the chemical composition of the different glass portions comprising the pendant was used for non-invasive determination of glassmaking recipes, enabling the identification of glass components incompatible with known Iron Age glassmaking recipes from the Mediterranean. Further comparison with historical and modern glassmaking recipes allowed for the identification of the artefact as a recent forgery made from glasses employing modern colouring and opacifying techniques. Full article
24 pages, 668 KiB  
Article
Empowered to Detect: How Vigilance and Financial Literacy Shield Us from the Rising Tide of Financial Frauds
by Rizky Yusviento Pelawi, Eduardus Tandelilin, I Wayan Nuka Lantara and Eddy Junarsin
J. Risk Financial Manag. 2025, 18(8), 425; https://doi.org/10.3390/jrfm18080425 (registering DOI) - 1 Aug 2025
Viewed by 161
Abstract
According to the literature, the advancement of information and communication technology (ICT) has increased individual exposure to scams, turning fraud victimization into a significant concern. While prior research has primarily focused on socio-demographic predictors of fraud victimization, this study adopts a behavioral perspective [...] Read more.
According to the literature, the advancement of information and communication technology (ICT) has increased individual exposure to scams, turning fraud victimization into a significant concern. While prior research has primarily focused on socio-demographic predictors of fraud victimization, this study adopts a behavioral perspective that is grounded in the Signal Detection Theory (SDT) to investigate the likelihood determinants of individuals becoming fraud victims. Using survey data of 671 Indonesian respondents analyzed with the Partial Least Squares Structural Equation Modeling (PLS-SEM), we explored the roles of vigilance and financial literacy in moderating the relationship between fraud exposure and victimization. Our findings substantiate the notion that higher exposure to fraudulent activity significantly increases the likelihood of victimization. The results also show that vigilance negatively moderates the relationship between fraud exposure and fraud victimization, suggesting that individuals with higher vigilance are better at identifying scams, thereby decreasing their likelihood of becoming fraud victims. Furthermore, financial literacy is positively related to vigilance, indicating that financially literate individuals are more aware of potential scams. However, the predictive power of financial literacy on vigilance is relatively low. Hence, while literacy helps a person sharpen their indicators for detecting fraud, psychological, behavioral, and contextual factors may also affect their vigilance and decision-making. Full article
(This article belongs to the Section Risk)
Show Figures

Figure 1

26 pages, 5549 KiB  
Article
Intrusion Detection and Real-Time Adaptive Security in Medical IoT Using a Cyber-Physical System Design
by Faeiz Alserhani
Sensors 2025, 25(15), 4720; https://doi.org/10.3390/s25154720 (registering DOI) - 31 Jul 2025
Viewed by 187
Abstract
The increasing reliance on Medical Internet of Things (MIoT) devices introduces critical cybersecurity vulnerabilities, necessitating advanced, adaptive defense mechanisms. Recent cyber incidents—such as compromised critical care systems, modified therapeutic device outputs, and fraudulent clinical data inputs—demonstrate that these threats now directly impact life-critical [...] Read more.
The increasing reliance on Medical Internet of Things (MIoT) devices introduces critical cybersecurity vulnerabilities, necessitating advanced, adaptive defense mechanisms. Recent cyber incidents—such as compromised critical care systems, modified therapeutic device outputs, and fraudulent clinical data inputs—demonstrate that these threats now directly impact life-critical aspects of patient security. In this paper, we introduce a machine learning-enabled Cognitive Cyber-Physical System (ML-CCPS), which is designed to identify and respond to cyber threats in MIoT environments through a layered cognitive architecture. The system is constructed on a feedback-looped architecture integrating hybrid feature modeling, physical behavioral analysis, and Extreme Learning Machine (ELM)-based classification to provide adaptive access control, continuous monitoring, and reliable intrusion detection. ML-CCPS is capable of outperforming benchmark classifiers with an acceptable computational cost, as evidenced by its macro F1-score of 97.8% and an AUC of 99.1% when evaluated with the ToN-IoT dataset. Alongside classification accuracy, the framework has demonstrated reliable behaviour under noisy telemetry, maintained strong efficiency in resource-constrained settings, and scaled effectively with larger numbers of connected devices. Comparative evaluations, radar-style synthesis, and ablation studies further validate its effectiveness in real-time MIoT environments and its ability to detect novel attack types with high reliability. Full article
Show Figures

Figure 1

28 pages, 7241 KiB  
Systematic Review
Anomaly Detection in Blockchain: A Systematic Review of Trends, Challenges, and Future Directions
by Ruslan Shevchuk, Vasyl Martsenyuk, Bogdan Adamyk, Vladlena Benson and Andriy Melnyk
Appl. Sci. 2025, 15(15), 8330; https://doi.org/10.3390/app15158330 - 26 Jul 2025
Viewed by 316
Abstract
Blockchain technology’s increasing adoption across diverse sectors necessitates robust security measures to mitigate rising fraudulent activities. This paper presents a comprehensive bibliometric analysis of anomaly detection research in blockchain networks from 2017 to 2024, conducted under the PRISMA paradigm. Using CiteSpace 6.4.R1, we [...] Read more.
Blockchain technology’s increasing adoption across diverse sectors necessitates robust security measures to mitigate rising fraudulent activities. This paper presents a comprehensive bibliometric analysis of anomaly detection research in blockchain networks from 2017 to 2024, conducted under the PRISMA paradigm. Using CiteSpace 6.4.R1, we systematically map the knowledge domain based on 363 WoSCC-indexed articles. The analysis encompasses collaboration networks, co-citation patterns, citation bursts, and keyword trends to identify emerging research directions, influential contributors, and persistent challenges. The study reveals geographical concentrations of research activity, key institutional players, the evolution of theoretical frameworks, and shifts from basic security mechanisms to sophisticated machine learning and graph neural network approaches. This research summarizes the state of the field and highlights future directions essential for blockchain security. Full article
Show Figures

Figure 1

24 pages, 911 KiB  
Article
Integrated Process-Oriented Approach for Digital Authentication of Honey in Food Quality and Safety Systems—A Case Study from a Research and Development Project
by Joanna Katarzyna Banach, Przemysław Rujna and Bartosz Lewandowski
Appl. Sci. 2025, 15(14), 7850; https://doi.org/10.3390/app15147850 - 14 Jul 2025
Viewed by 316
Abstract
The increasing scale of honey adulteration poses a significant challenge for modern food quality and safety management systems. Honey authenticity, defined as the conformity of products with their declared botanical and geographical origin, is challenging to verify solely through documentation and conventional physicochemical [...] Read more.
The increasing scale of honey adulteration poses a significant challenge for modern food quality and safety management systems. Honey authenticity, defined as the conformity of products with their declared botanical and geographical origin, is challenging to verify solely through documentation and conventional physicochemical analyses. This study presents an integrated, process-oriented approach for digital honey authentication, building on initial findings from an interdisciplinary research and development project. The approach includes the creation of a comprehensive digital pollen database and the application of AI-driven image segmentation and classification methods. The developed system is designed to support decision-making processes in quality assessment and VACCP (Vulnerability Assessment and Critical Control Points) risk evaluation, enhancing the operational resilience of honey supply chains against fraudulent practices. This study aligns with current trends in the digitization of food quality management and the use of Industry 4.0 technologies in the agri-food sector, demonstrating the practical feasibility of integrating AI-supported palynological analysis into industrial workflows. The results indicate that the proposed approach can significantly improve the accuracy and efficiency of honey authenticity assessments, supporting the integrity and transparency of global honey markets. Full article
(This article belongs to the Special Issue Advances in Safety Detection and Quality Control of Food)
Show Figures

Figure 1

18 pages, 1199 KiB  
Article
Adaptive, Privacy-Enhanced Real-Time Fraud Detection in Banking Networks Through Federated Learning and VAE-QLSTM Fusion
by Hanae Abbassi, Saida El Mendili and Youssef Gahi
Big Data Cogn. Comput. 2025, 9(7), 185; https://doi.org/10.3390/bdcc9070185 - 9 Jul 2025
Viewed by 752
Abstract
Increased digital banking operations have brought about a surge in suspicious activities, necessitating heightened real-time fraud detection systems. Conversely, traditional static approaches encounter challenges in maintaining privacy while adapting to new fraudulent trends. In this paper, we provide a unique approach to tackling [...] Read more.
Increased digital banking operations have brought about a surge in suspicious activities, necessitating heightened real-time fraud detection systems. Conversely, traditional static approaches encounter challenges in maintaining privacy while adapting to new fraudulent trends. In this paper, we provide a unique approach to tackling those challenges by integrating VAE-QLSTM with Federated Learning (FL) in a semi-decentralized architecture, maintaining privacy alongside adapting to emerging malicious behaviors. The suggested architecture builds on the adeptness of VAE-QLSTM to capture meaningful representations of transactions, serving in abnormality detection. On the other hand, QLSTM combines quantum computational capability with temporal sequence modeling, seeking to give a rapid and scalable method for real-time malignancy detection. The designed approach was set up through TensorFlow Federated on two real-world datasets—notably IEEE-CIS and European cardholders—outperforming current strategies in terms of accuracy and sensitivity, achieving 94.5% and 91.3%, respectively. This proves the potential of merging VAE-QLSTM with FL to address fraud detection difficulties, ensuring privacy and scalability in advanced banking networks. Full article
Show Figures

Figure 1

31 pages, 3723 KiB  
Review
Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies
by Chandra Prakash and Rohit Mahar
Foods 2025, 14(14), 2417; https://doi.org/10.3390/foods14142417 - 9 Jul 2025
Viewed by 601
Abstract
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR [...] Read more.
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR is widely applied for precise quantification of metabolites, authentication of food products, and monitoring of food quality. Low-field 1H-NMR relaxometry is an important technique for investigating the most abundant components of intact foodstuffs based on relaxation times and amplitude of the NMR signals. In particular, information on water compartments, diffusion, and movement can be obtained by detecting proton signals because of H2O in foodstuffs. Saffron adulterations with calendula, safflower, turmeric, sandalwood, and tartrazine have been analyzed using benchtop NMR, an alternative to the high-field NMR approach. The fraudulent addition of Robusta to Arabica coffee was investigated by 1H-NMR Spectroscopy and the marker of Robusta coffee can be detected in the 1H-NMR spectrum. MRI images can be a reliable tool for appreciating morphological differences in vegetables and fruits. In kiwifruit, the effects of water loss and the states of water were investigated using MRI. It provides informative images regarding the spin density distribution of water molecules and the relationship between water and cellular tissues. 1H-NMR spectra of aqueous extract of kiwifruits affected by elephantiasis show a higher number of small oligosaccharides than healthy fruits do. One of the frauds that has been detected in the olive oil sector reflects the addition of hazelnut oils to olive oils. However, using the NMR methodology, it is possible to distinguish the two types of oils, since, in hazelnut oils, linolenic fatty chains and squalene are absent, which is also indicated by the 1H-NMR spectrum. NMR has been applied to detect milk adulterations, such as bovine milk being spiked with known levels of whey, urea, synthetic urine, and synthetic milk. In particular, T2 relaxation time has been found to be significantly affected by adulteration as it increases with adulterant percentage. The 1H spectrum of honey samples from two botanical species shows the presence of signals due to the specific markers of two botanical species. NMR generates large datasets due to the complexity of food matrices and, to deal with this, chemometrics (multivariate analysis) can be applied to monitor the changes in the constituents of foodstuffs, assess the self-life, and determine the effects of storage conditions. Multivariate analysis could help in managing and interpreting complex NMR data by reducing dimensionality and identifying patterns. NMR spectroscopy followed by multivariate analysis can be channelized for evaluating the nutritional profile of food products by quantifying vitamins, sugars, fatty acids, amino acids, and other nutrients. In this review, we summarize the importance of NMR spectroscopy in chemical profiling and quality assessment of food products employing magnetic resonance technologies and multivariate statistical analysis. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

24 pages, 1917 KiB  
Article
Empirical Evaluation of the Relative Range for Detecting Outliers
by Dania Dallah, Hana Sulieman, Ayman Al Zaatreh and Firuz Kamalov
Entropy 2025, 27(7), 731; https://doi.org/10.3390/e27070731 - 7 Jul 2025
Viewed by 339
Abstract
Outlier detection plays a key role in data analysis by improving data quality, uncovering data entry errors, and spotting unusual patterns, such as fraudulent activities. Choosing the right detection method is essential, as some approaches may be too complex or ineffective depending on [...] Read more.
Outlier detection plays a key role in data analysis by improving data quality, uncovering data entry errors, and spotting unusual patterns, such as fraudulent activities. Choosing the right detection method is essential, as some approaches may be too complex or ineffective depending on the data distribution. In this study, we explore a simple yet powerful approach using the range distribution to identify outliers in univariate data. We compare the effectiveness of two range statistics: we normalize the range by the standard deviation (σ) and the interquartile range (IQR) across different types of distributions, including normal, logistic, Laplace, and Weibull distributions, with varying sample sizes (n) and error rates (α). An evaluation of the range behavior across multiple distributions allows for the determination of threshold values for identifying potential outliers. Through extensive experimental work, the accuracy of both statistics in detecting outliers under various contamination strategies, sample sizes, and error rates (α=0.1,0.05,0.01) is investigated. The results demonstrate the flexibility of the proposed statistic, as it adapts well to different underlying distributions and maintains robust detection performance under a variety of conditions. Our findings underscore the value of an adaptive method for reliable anomaly detection in diverse data environments. Full article
(This article belongs to the Special Issue Information-Theoretic Methods in Data Analytics, 2nd Edition)
Show Figures

Figure 1

20 pages, 8725 KiB  
Article
Formal Analysis of Rational Exchange Protocols Based on the Improved Buttyan Model
by Meihua Xiao, Lina Chen, Ke Yang and Zehuan Li
Symmetry 2025, 17(7), 1033; https://doi.org/10.3390/sym17071033 - 1 Jul 2025
Viewed by 233
Abstract
A rational exchange protocol is a type of e-commerce protocol that aims to maximize the participants’ own interests. The Buttyan model is commonly used to analyze the security of such protocols. However, this model has limitations in dealing with uncertainties and false messages [...] Read more.
A rational exchange protocol is a type of e-commerce protocol that aims to maximize the participants’ own interests. The Buttyan model is commonly used to analyze the security of such protocols. However, this model has limitations in dealing with uncertainties and false messages in rational exchanges. To address these shortcomings, this paper proposes a formal analysis method based on Bayesian games. By incorporating participants’ types and beliefs, the Buttyan model is extended to enhance its ability to express uncertainties. Additionally, attack messages are introduced to simulate the potential fraudulent behaviors that participants may exploit through the security vulnerabilities in the protocol. Finally, the improved model is applied to conduct a formal analysis of a rational electronic contract signing protocol, and it is found that the protocol meets the usability requirements. The results show that this method can be effectively applied to the security analysis of rational exchange protocols, thereby enhancing the security of the e-commerce transaction process. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

36 pages, 4108 KiB  
Article
Innovative AIoT Solutions for PET Waste Collection in the Circular Economy Towards a Sustainable Future
by Cosmina-Mihaela Rosca and Adrian Stancu
Appl. Sci. 2025, 15(13), 7353; https://doi.org/10.3390/app15137353 - 30 Jun 2025
Viewed by 413
Abstract
Recycling plastic waste has emerged as one of the most pressing environmental challenges of the 21st century. One of the biggest challenges in polyethylene terephthalate (PET) recycling is the requirement to return bottles in their original, undeformed state. This necessitates storing large volumes [...] Read more.
Recycling plastic waste has emerged as one of the most pressing environmental challenges of the 21st century. One of the biggest challenges in polyethylene terephthalate (PET) recycling is the requirement to return bottles in their original, undeformed state. This necessitates storing large volumes of waste and takes up substantial space. Therefore, this paper seeks to address this issue and introduces a novel AIoT-based infrastructure that integrates the PET Bottle Identification Algorithm (PBIA), which can accurately recognize bottles regardless of color or condition and distinguish them from other waste. A detailed study of Azure Custom Vision services for PET bottle identification is conducted, evaluating its object recognition capabilities and overall performance within an intelligent waste management framework. A key contribution of this work is the development of the Algorithm for Citizens’ Trust Level by Recycling (ACTLR), which assigns trust levels to individuals based on their recycling behavior. This paper also details the development of a cost-effective prototype of the AIoT system, demonstrating its low-cost feasibility for real-world implementation, using the Asus Tinker Board as the primary hardware. The software application is designed to monitor the collection process across multiple recycling points, offering Microsoft Azure cloud-hosted data and insights. The experimental results demonstrate the feasibility of integrating this prototype on a large scale at minimal cost. Moreover, the algorithm integrates the allocation points for proper recycling and penalizes fraudulent activities. This innovation has the potential to streamline the recycling process, reduce logistical burdens, and significantly improve public participation by making it more convenient to store and return used plastic bottles. Full article
Show Figures

Figure 1

19 pages, 929 KiB  
Article
Online Banking Fraud Detection Model: Decentralized Machine Learning Framework to Enhance Effectiveness and Compliance with Data Privacy Regulations
by Hisham AbouGrad and Lakshmi Sankuru
Mathematics 2025, 13(13), 2110; https://doi.org/10.3390/math13132110 - 27 Jun 2025
Viewed by 530
Abstract
In such a dynamic and increasingly digitalized financial sector, many sophisticated fraudulent and cybercrime activities continue to challenge conventional detection systems. This research study explores a decentralized anomaly detection framework using deep autoencoders, designed to meet the dual imperatives of fraud detection effectiveness [...] Read more.
In such a dynamic and increasingly digitalized financial sector, many sophisticated fraudulent and cybercrime activities continue to challenge conventional detection systems. This research study explores a decentralized anomaly detection framework using deep autoencoders, designed to meet the dual imperatives of fraud detection effectiveness and user data privacy. Instead of relying on centralized aggregation or data sharing, the proposed model simulates distributed training across multiple financial nodes, with each institution processing data locally and independently. The framework is evaluated using two real-world datasets, the Credit Card Fraud dataset and the NeurIPS 2022 Bank Account Fraud dataset. The research methodology applied robust preprocessing, the implementation of a compact autoencoder architecture, and a threshold-based anomaly detection strategy. Evaluation metrics, such as confusion matrices, receiver operating characteristic (ROC) curves, precision–recall (PR) curves, and reconstruction error distributions, are used to assess the model’s performance. Also, a threshold sensitivity analysis has been applied to explore detection trade-offs at varying levels of strictness. Although the model’s recall remains modest due to class imbalance, it demonstrates strong precision at higher thresholds, which demonstrates its utility in minimizing false positives. Overall, this research study is a practical and privacy-conscious approach to fraud detection that aligns with the operational realities of financial institutions and regulatory compliance toward scalability, privacy preservation, and interpretable fraud detection solutions suitable for real-world financial environments. Full article
(This article belongs to the Special Issue New Insights in Machine Learning (ML) and Deep Neural Networks)
Show Figures

Figure 1

14 pages, 1789 KiB  
Article
Addressing Credit Card Fraud Detection Challenges with Adversarial Autoencoders
by Shiyu Ma and Carol Anne Hargreaves
Big Data Cogn. Comput. 2025, 9(7), 168; https://doi.org/10.3390/bdcc9070168 - 26 Jun 2025
Viewed by 590
Abstract
The surge in credit fraud incidents poses a critical threat to financial systems, driving the need for robust and adaptive fraud detection solutions. While various predictive models have been developed, existing approaches often struggle with two persistent challenges: extreme class imbalance and delays [...] Read more.
The surge in credit fraud incidents poses a critical threat to financial systems, driving the need for robust and adaptive fraud detection solutions. While various predictive models have been developed, existing approaches often struggle with two persistent challenges: extreme class imbalance and delays in detecting fraudulent activity. In this study, we propose an unsupervised Adversarial Autoencoder (AAE) framework designed to tackle these challenges simultaneously. The results highlight the potential of our approach as a scalable, interpretable, and adaptive solution for real-world credit fraud detection systems. Full article
Show Figures

Figure 1

19 pages, 1762 KiB  
Article
Innovative QR Code System for Tamper-Proof Generation and Fraud-Resistant Verification
by Suliman A. Alsuhibany
Sensors 2025, 25(13), 3855; https://doi.org/10.3390/s25133855 - 20 Jun 2025
Viewed by 597
Abstract
Barcode technology is widely used as an automated identification system that enables rapid and efficient data capture, particularly in retail environments. Despite its practicality, barcode-based systems are increasingly vulnerable to security threats—most notably, barcode substitution fraud. To address these challenges, this paper presents [...] Read more.
Barcode technology is widely used as an automated identification system that enables rapid and efficient data capture, particularly in retail environments. Despite its practicality, barcode-based systems are increasingly vulnerable to security threats—most notably, barcode substitution fraud. To address these challenges, this paper presents an innovative system for the secure generation and verification of Quick Response (QR) codes using a digital watermarking technique. The proposed method embeds tamper-resistant information within QR codes, enhancing their integrity and making unauthorized modification more difficult. Additionally, a neural network-based authentication model was developed to verify the legitimacy of scanned QR codes. The system was evaluated through experimental testing on a dataset of 5000 QR samples. The results demonstrated high accuracy in distinguishing between genuine and fraudulent QR codes, confirming the system’s effectiveness in supporting fraud prevention in real-world applications. Full article
Show Figures

Figure 1

34 pages, 4399 KiB  
Article
A Unified Transformer–BDI Architecture for Financial Fraud Detection: Distributed Knowledge Transfer Across Diverse Datasets
by Parul Dubey, Pushkar Dubey and Pitshou N. Bokoro
Forecasting 2025, 7(2), 31; https://doi.org/10.3390/forecast7020031 - 19 Jun 2025
Viewed by 1025
Abstract
Financial fraud detection is a critical application area within the broader domains of cybersecurity and intelligent financial analytics. With the growing volume and complexity of digital transactions, the traditional rule-based and shallow learning models often fall short in detecting sophisticated fraud patterns. This [...] Read more.
Financial fraud detection is a critical application area within the broader domains of cybersecurity and intelligent financial analytics. With the growing volume and complexity of digital transactions, the traditional rule-based and shallow learning models often fall short in detecting sophisticated fraud patterns. This study addresses the challenge of accurately identifying fraudulent financial activities, especially in highly imbalanced datasets where fraud instances are rare and often masked by legitimate behavior. The existing models also lack interpretability, limiting their utility in regulated financial environments. Experiments were conducted on three benchmark datasets: IEEE-CIS Fraud Detection, European Credit Card Transactions, and PaySim Mobile Money Simulation, each representing diverse transaction behaviors and data distributions. The proposed methodology integrates a transformer-based encoder, multi-teacher knowledge distillation, and a symbolic belief–desire–intention (BDI) reasoning layer to combine deep feature extraction with interpretable decision making. The novelty of this work lies in the incorporation of cognitive symbolic reasoning into a high-performance learning architecture for fraud detection. The performance was assessed using key metrics, including the F1-score, AUC, precision, recall, inference time, and model size. Results show that the proposed transformer–BDI model outperformed traditional and state-of-the-art baselines across all datasets, achieving improved fraud detection accuracy and interpretability while remaining computationally efficient for real-time deployment. Full article
Show Figures

Figure 1

23 pages, 562 KiB  
Article
Enhanced Credit Card Fraud Detection Using Deep Hybrid CLST Model
by Madiha Jabeen, Shabana Ramzan, Ali Raza, Norma Latif Fitriyani, Muhammad Syafrudin and Seung Won Lee
Mathematics 2025, 13(12), 1950; https://doi.org/10.3390/math13121950 - 12 Jun 2025
Viewed by 1288
Abstract
The existing financial payment system has inherent credit card fraud problems that must be solved with strong and effective solutions. In this research, a combined deep learning model that incorporates a convolutional neural network (CNN), long-short-term memory (LSTM), and fully connected output layer [...] Read more.
The existing financial payment system has inherent credit card fraud problems that must be solved with strong and effective solutions. In this research, a combined deep learning model that incorporates a convolutional neural network (CNN), long-short-term memory (LSTM), and fully connected output layer is proposed to enhance the accuracy of fraud detection, particularly in addressing the class imbalance problem. A CNN is used for spatial features, LSTM for sequential information, and a fully connected output layer for final decision-making. Furthermore, SMOTE is used to balance the data and hyperparameter tuning is utilized to achieve the best model performance. In the case of hyperparameter tuning, the detection rate is greatly enhanced. High accuracy metrics are obtained by the proposed CNN-LSTM (CLST) model, with a recall of 83%, precision of 70%, F1-score of 76% for fraudulent transactions, and ROC-AUC of 0.9733. The proposed model’s performance is enhanced by hyperparameter optimization to a recall of 99%, precision of 83%, F1-score of 91% for fraudulent cases, and ROC-AUC of 0.9995, representing almost perfect fraud detection along with a low false negative rate. These results demonstrate that optimization of hyperparameters and layers is an effective way to enhance the performance of hybrid deep learning models for financial fraud detection. While prior studies have investigated hybrid structures, this study is distinguished by its introduction of an optimized of CNN and LSTM integration within a unified layer architecture. Full article
(This article belongs to the Special Issue Machine Learning and Finance)
Show Figures

Figure 1

Back to TopTop