Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (394)

Search Parameters:
Keywords = fractional wave equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 547 KiB  
Article
An Efficient Spectral Method for a Class of Asymmetric Functional-Order Diffusion–Wave Equations Using Generalized Chelyshkov Wavelets
by Quan H. Do and Hoa T. B. Ngo
Symmetry 2025, 17(8), 1230; https://doi.org/10.3390/sym17081230 - 4 Aug 2025
Viewed by 116
Abstract
Asymmetric functional-order (variable-order) fractional diffusion–wave equations (FO-FDWEs) introduce considerable computational challenges, as the fractional order of the derivatives can vary spatially or temporally. To overcome these challenges, a novel spectral method employing generalized fractional-order Chelyshkov wavelets (FO-CWs) is developed to efficiently solve such [...] Read more.
Asymmetric functional-order (variable-order) fractional diffusion–wave equations (FO-FDWEs) introduce considerable computational challenges, as the fractional order of the derivatives can vary spatially or temporally. To overcome these challenges, a novel spectral method employing generalized fractional-order Chelyshkov wavelets (FO-CWs) is developed to efficiently solve such equations. In this approach, the Riemann–Liouville fractional integral operator of variable order is evaluated in closed form via a regularized incomplete Beta function, enabling the transformation of the governing equation into a system of algebraic equations. This wavelet-based spectral scheme attains extremely high accuracy, yielding significantly lower errors than existing numerical techniques. In particular, numerical results show that the proposed method achieves notably improved accuracy compared to existing methods under the same number of basis functions. Its strong convergence properties allow high precision to be achieved with relatively few wavelet basis functions, leading to efficient computations. The method’s accuracy and efficiency are demonstrated on several practical diffusion–wave examples, indicating its suitability for real-world applications. Furthermore, it readily applies to a wide class of fractional partial differential equations (FPDEs) with spatially or temporally varying order, demonstrating versatility for diverse applications. Full article
(This article belongs to the Topic Numerical Methods for Partial Differential Equations)
Show Figures

Figure 1

19 pages, 1806 KiB  
Article
A Novel Approach to Solving Generalised Nonlinear Dynamical Systems Within the Caputo Operator
by Mashael M. AlBaidani and Rabab Alzahrani
Fractal Fract. 2025, 9(8), 503; https://doi.org/10.3390/fractalfract9080503 - 31 Jul 2025
Viewed by 137
Abstract
In this study, we focus on solving the nonlinear time-fractional Hirota–Satsuma coupled Korteweg–de Vries (KdV) and modified Korteweg–de Vries (MKdV) equations, using the Yang transform iterative method (YTIM). This method combines the Yang transform with a new iterative scheme to construct reliable and [...] Read more.
In this study, we focus on solving the nonlinear time-fractional Hirota–Satsuma coupled Korteweg–de Vries (KdV) and modified Korteweg–de Vries (MKdV) equations, using the Yang transform iterative method (YTIM). This method combines the Yang transform with a new iterative scheme to construct reliable and efficient solutions. Readers can understand the procedures clearly, since the implementation of Yang transform directly transforms fractional derivative sections into algebraic terms in the given problems. The new iterative scheme is applied to generate series solutions for the provided problems. The fractional derivatives are considered in the Caputo sense. To validate the proposed approach, two numerical examples are analysed and compared with exact solutions, as well as with the results obtained from the fractional reduced differential transform method (FRDTM) and the q-homotopy analysis transform method (q-HATM). The comparisons, presented through both tables and graphical illustrations, confirm the enhanced accuracy and reliability of the proposed method. Moreover, the effect of varying the fractional order is explored, demonstrating convergence of the solution as the order approaches an integer value. Importantly, the time-fractional Hirota–Satsuma coupled KdV and modified Korteweg–de Vries (MKdV) equations investigated in this work are not only of theoretical and computational interest but also possess significant implications for achieving global sustainability goals. Specifically, these equations contribute to the Sustainable Development Goal (SDG) “Life Below Water” by offering advanced modelling capabilities for understanding wave propagation and ocean dynamics, thus supporting marine ecosystem research and management. It is also relevant to SDG “Climate Action” as it aids in the simulation of environmental phenomena crucial to climate change analysis and mitigation. Additionally, the development and application of innovative mathematical modelling techniques align with “Industry, Innovation, and Infrastructure” promoting advanced computational tools for use in ocean engineering, environmental monitoring, and other infrastructure-related domains. Therefore, the proposed method not only advances mathematical and numerical analysis but also fosters interdisciplinary contributions toward sustainable development. Full article
(This article belongs to the Special Issue Recent Trends in Computational Physics with Fractional Applications)
Show Figures

Figure 1

20 pages, 2399 KiB  
Article
Exploring Novel Optical Soliton Molecule for the Time Fractional Cubic–Quintic Nonlinear Pulse Propagation Model
by Syed T. R. Rizvi, Atef F. Hashem, Azrar Ul Hassan, Sana Shabbir, A. S. Al-Moisheer and Aly R. Seadawy
Fractal Fract. 2025, 9(8), 497; https://doi.org/10.3390/fractalfract9080497 - 29 Jul 2025
Viewed by 321
Abstract
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions [...] Read more.
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions in medical science. The nonlinear effects exhibited by the model—such as self-focusing, self-phase modulation, and wave mixing—are influenced by the combined impact of the cubic and quintic nonlinear terms. To explore the dynamics of this model, we apply a robust analytical technique known as the sub-ODE method, which reveals a diverse range of soliton structures and offers deep insight into laser pulse interactions. The investigation yields a rich set of explicit soliton solutions, including hyperbolic, rational, singular, bright, Jacobian elliptic, Weierstrass elliptic, and periodic solutions. These waveforms have significant real-world relevance: bright solitons are employed in fiber optic communications for distortion-free long-distance data transmission, while both bright and dark solitons are used in nonlinear optics to study light behavior in media with intensity-dependent refractive indices. Solitons also contribute to advancements in quantum technologies, precision measurement, and fiber laser systems, where hyperbolic and periodic solitons facilitate stable, high-intensity pulse generation. Additionally, in nonlinear acoustics, solitons describe wave propagation in media where amplitude influences wave speed. Overall, this work highlights the theoretical depth and practical utility of soliton dynamics in fractional nonlinear systems. Full article
Show Figures

Figure 1

20 pages, 11438 KiB  
Article
Investigating Chaotic Techniques and Wave Profiles with Parametric Effects in a Fourth-Order Nonlinear Fractional Dynamical Equation
by Jan Muhammad, Ali H. Tedjani, Ejaz Hussain and Usman Younas
Fractal Fract. 2025, 9(8), 487; https://doi.org/10.3390/fractalfract9080487 - 24 Jul 2025
Viewed by 297
Abstract
In this article, we investigate the fractional soliton solutions as well as the chaotic analysis of the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur wave equation. This model is considered an intriguing high-order nonlinear partial differential equation that integrates additional spatial and dispersive effects to extend the [...] Read more.
In this article, we investigate the fractional soliton solutions as well as the chaotic analysis of the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur wave equation. This model is considered an intriguing high-order nonlinear partial differential equation that integrates additional spatial and dispersive effects to extend the concepts to more intricate wave dynamics, relevant in engineering and science for understanding complex phenomena. To examine the solitary wave solutions of the proposed model, we employ sophisticated analytical techniques, including the generalized projective Riccati equation method, the new improved generalized exponential rational function method, and the modified F-expansion method, along with mathematical simulations, to obtain a deeper insight into wave propagation. To explore desirable soliton solutions, the nonlinear partial differential equation is converted into its respective ordinary differential equations by wave transforms utilizing β-fractional derivatives. Further, the solutions in the forms of bright, dark, singular, combined, and complex solitons are secured. Various physical parameter values and arrangements are employed to investigate the soliton solutions of the system. Variations in parameter values result in specific behaviors of the solutions, which we illustrate via various types of visualizations. Additionally, a key aspect of this research involves analyzing the chaotic behavior of the governing model. A perturbed version of the system is derived and then analyzed using chaos detection techniques such as power spectrum analysis, Poincaré return maps, and basin attractor visualization. The study of nonlinear dynamics reveals the system’s sensitivity to initial conditions and its dependence on time-decay effects. This indicates that the system exhibits chaotic behavior under perturbations, where even minor variations in the starting conditions can lead to drastically different outcomes as time progresses. Such behavior underscores the complexity and unpredictability inherent in the system, highlighting the importance of understanding its chaotic dynamics. This study evaluates the effectiveness of currently employed methodologies and elucidates the specific behaviors of the system’s nonlinear dynamics, thus providing new insights into the field of high-dimensional nonlinear scientific wave phenomena. The results demonstrate the effectiveness and versatility of the approach used to address complex nonlinear partial differential equations. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

18 pages, 273 KiB  
Article
The Time–Fractional Wave Equation with Variable Coefficients
by Chenkuan Li
Mathematics 2025, 13(15), 2369; https://doi.org/10.3390/math13152369 - 24 Jul 2025
Viewed by 262
Abstract
In this paper, we primarily use the inverse operator method to find a unique series solution to a time–fractional wave equation with variable coefficients based on the Mittag–Leffler function. In addition, we also derive the series and integral convolution solutions to the Klein–Gordon [...] Read more.
In this paper, we primarily use the inverse operator method to find a unique series solution to a time–fractional wave equation with variable coefficients based on the Mittag–Leffler function. In addition, we also derive the series and integral convolution solutions to the Klein–Gordon equation using the Fourier transform and Green’s functions. Furthermore, our series solutions significantly simplify the process of finding solutions with several illustrative examples, avoiding the need for complicated integral computations. Full article
(This article belongs to the Section C1: Difference and Differential Equations)
21 pages, 4524 KiB  
Article
Rotational Influence on Wave Propagation in Semiconductor Nanostructure Thermoelastic Solid with Ramp-Type Heat Source and Two-Temperature Theory
by Sayed M. Abo-Dahab, Emad K. Jaradat, Hanan S. Gafel and Eslam S. Elidy
Axioms 2025, 14(8), 560; https://doi.org/10.3390/axioms14080560 - 24 Jul 2025
Viewed by 277
Abstract
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing [...] Read more.
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing a more accurate description of thermal and mechanical responses in semiconductor materials. The effects of rotation, ramp-type heating, and semiconductor properties on elastic wave propagation are analyzed theoretically. Governing equations are formulated and solved analytically, with numerical simulations illustrating the variations in thermal and elastic wave behavior. The key findings highlight the significant impact of rotation, nonlocal parameters e0a, and time derivative fractional order (FO) α on physical quantities, offering insights into the thermoelastic performance of semiconductor nanostructures under dynamic thermal loads. A comparison is made with the previous results to show the impact of the external parameters on the propagation phenomenon. The numerical results show that increasing the rotation rate Ω=5 causes a phase lag of approximately 22% in thermal and elastic wave peaks. When the thermoelectric coupling parameter ε3 is increased from 0.8×1042 to 1.2×1042. The temperature amplitude rises by 17%, while the carrier density peak increases by over 25%. For nonlocal parameter values ε=0.30.6, high-frequency stress oscillations are damped by more than 35%. The results contribute to the understanding of wave propagation in advanced semiconductor materials, with potential applications in microelectronics, optoelectronics, and nanoscale thermal management. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

13 pages, 9670 KiB  
Article
Exact Solitary Wave Solutions and Sensitivity Analysis of the Fractional (3+1)D KdV–ZK Equation
by Asif Khan, Fehaid Salem Alshammari, Sadia Yasin and Beenish
Fractal Fract. 2025, 9(7), 476; https://doi.org/10.3390/fractalfract9070476 - 21 Jul 2025
Viewed by 296
Abstract
The present paper examines a novel exact solution to nonlinear fractional partial differential equations (FDEs) through the Sardar sub-equation method (SSEM) coupled with Jumarie’s Modified Riemann–Liouville derivative (JMRLD). We take the (3+1)-dimensional space–time fractional modified Korteweg-de Vries (KdV) -Zakharov-Kuznetsov (ZK) equation as a [...] Read more.
The present paper examines a novel exact solution to nonlinear fractional partial differential equations (FDEs) through the Sardar sub-equation method (SSEM) coupled with Jumarie’s Modified Riemann–Liouville derivative (JMRLD). We take the (3+1)-dimensional space–time fractional modified Korteweg-de Vries (KdV) -Zakharov-Kuznetsov (ZK) equation as a case study, which describes some intricate phenomena of wave behavior in plasma physics and fluid dynamics. With the implementation of SSEM, we yield new solitary wave solutions and explicitly examine the role of the fractional-order parameter in the dynamics of the solutions. In addition, the sensitivity analysis of the results is conducted in the Galilean transformation in order to ensure that the obtained results are valid and have physical significance. Besides expanding the toolbox of analytical methods to address high-dimensional nonlinear FDEs, the proposed method helps to better understand how fractional-order dynamics affect the nonlinear wave phenomenon. The results are compared to known methods and a discussion about their possible applications and limitations is given. The results show the effectiveness and flexibility of SSEM along with JMRLD in forming new categories of exact solutions to nonlinear fractional models. Full article
Show Figures

Figure 1

26 pages, 4796 KiB  
Article
Novel Analytical Methods for and Qualitative Analysis of the Generalized Water Wave Equation
by Haitham Qawaqneh, Abdulaziz S. Al Naim and Abdulrahman Alomair
Mathematics 2025, 13(14), 2280; https://doi.org/10.3390/math13142280 - 15 Jul 2025
Viewed by 202
Abstract
For a significant fluid model and the truncated M-fractional (1 + 1)-dimensional nonlinear generalized water wave equation, distinct types of truncated M-fractional wave solitons are obtained. Ocean waves, tidal waves, weather simulations, river and irrigation flows, tsunami predictions, and more are all explained [...] Read more.
For a significant fluid model and the truncated M-fractional (1 + 1)-dimensional nonlinear generalized water wave equation, distinct types of truncated M-fractional wave solitons are obtained. Ocean waves, tidal waves, weather simulations, river and irrigation flows, tsunami predictions, and more are all explained by this model. We use the improved (G/G) expansion technique and a modified extended direct algebraic technique to obtain these solutions. Results for trigonometry, hyperbolic, and rational functions are obtained. The impact of the fractional-order derivative is also covered. We use Mathematica software to verify our findings. Furthermore, we use contour graphs in two and three dimensions to illustrate some wave solitons that are obtained. The results obtained have applications in ocean engineering, fluid dynamics, and other fields. The stability analysis of the considered equation is also performed. Moreover, the stationary solutions of the concerning equation are studied through modulation instability. Furthermore, the used methods are useful for other nonlinear fractional partial differential equations in different areas of applied science and engineering. Full article
Show Figures

Figure 1

23 pages, 1107 KiB  
Article
Mathematical and Physical Analysis of the Fractional Dynamical Model
by Mohammed Ahmed Alomair and Haitham Qawaqneh
Fractal Fract. 2025, 9(7), 453; https://doi.org/10.3390/fractalfract9070453 - 11 Jul 2025
Viewed by 224
Abstract
This paper consists of various kinds of wave solitons to the mathematical model known as the truncated M-fractional FitzHugh–Nagumo model. This model explains the transmission of the electromechanical pulses in nerves. Through the application of the modified extended tanh function technique and the [...] Read more.
This paper consists of various kinds of wave solitons to the mathematical model known as the truncated M-fractional FitzHugh–Nagumo model. This model explains the transmission of the electromechanical pulses in nerves. Through the application of the modified extended tanh function technique and the modified (G/G2)-expansion technique, we are able to achieve the series of exact solitons. The results differ from the current solutions because of the fractional derivative. These solutions could be helpful in the telecommunication and bioscience domains. Contour plots, in two and three dimensions, are used to describe the results. Stability analysis is used to check the stability of the obtained solutions. Moreover, the stationary solutions of the focusing equation are studied through modulation instability. Future research on the focused model in question will benefit from the findings. The techniques used are simple and effective. Full article
Show Figures

Figure 1

17 pages, 3679 KiB  
Article
Binary-Classification Physical Fractal Models in Different Coal Structures
by Guangui Zou, Yuyan Che, Tailang Zhao, Yajun Yin, Suping Peng and Jiasheng She
Fractal Fract. 2025, 9(7), 450; https://doi.org/10.3390/fractalfract9070450 - 8 Jul 2025
Viewed by 258
Abstract
Existing theoretical models of wave-induced flow face challenges in coal applications due to the scarcity of experimental data in the seismic-frequency band. Additionally, traditional viscoelastic combination models exhibit inherent limitations in accurately capturing the attenuation characteristics of rocks. To overcome these constraints, we [...] Read more.
Existing theoretical models of wave-induced flow face challenges in coal applications due to the scarcity of experimental data in the seismic-frequency band. Additionally, traditional viscoelastic combination models exhibit inherent limitations in accurately capturing the attenuation characteristics of rocks. To overcome these constraints, we propose a novel binary classification physical fractal model, which provides a more robust framework for analyzing wave dispersion and attenuation in complex coal. The fractal cell was regarded as an element to re-establish the viscoelastic constitutive equation. In the new constitutive equation, three key fractional orders, α, β, and γ, emerged. Among them, α mainly affects the attenuation at low frequencies; β controls the attenuation in the middle-frequency band; and γ dominates the attenuation in the tail-frequency band. After fitting with the measured attenuation data of partially saturated coal samples under variable confining pressures and variable temperature conditions, the results show that this model can effectively represent the attenuation characteristics of elastic wave propagation in coals with different coal structures. It provides a new theoretical model and analysis ideas for the study of elastic wave attenuation in tectonic coals and is of great significance for an in-depth understanding of the physical properties of coals and related geophysical prospecting. Full article
(This article belongs to the Special Issue Fractal Dimensions with Applications in the Real World)
Show Figures

Figure 1

19 pages, 2744 KiB  
Article
Chaotic Behaviour, Sensitivity Assessment, and New Analytical Investigation to Find Novel Optical Soliton Solutions of M-Fractional Kuralay-II Equation
by J. R. M. Borhan, E. I. Hassan, Arafa Dawood, Khaled Aldwoah, Amani Idris A. Sayed, Ahmad Albaity and M. Mamun Miah
Mathematics 2025, 13(13), 2207; https://doi.org/10.3390/math13132207 - 6 Jul 2025
Viewed by 376
Abstract
The implementation of chaotic behavior and a sensitivity assessment of the newly developed M-fractional Kuralay-II equation are the foremost objectives of the present study. This equation has significant possibilities in control systems, electrical circuits, seismic wave propagation, economic dynamics, groundwater flow, image and [...] Read more.
The implementation of chaotic behavior and a sensitivity assessment of the newly developed M-fractional Kuralay-II equation are the foremost objectives of the present study. This equation has significant possibilities in control systems, electrical circuits, seismic wave propagation, economic dynamics, groundwater flow, image and signal denoising, complex biological systems, optical fibers, plasma physics, population dynamics, and modern technology. These applications demonstrate the versatility and advantageousness of the stated model for complex systems in various scientific and engineering disciplines. One more essential objective of the present research is to find closed-form wave solutions of the assumed equation based on the (GG+G+A)-expansion approach. The results achieved are in exponential, rational, and trigonometric function forms. Our findings are more novel and also have an exclusive feature in comparison with the existing results. These discoveries substantially expand our understanding of nonlinear wave dynamics in various physical contexts in industry. By simply selecting suitable values of the parameters, three-dimensional (3D), contour, and two-dimensional (2D) illustrations are produced displaying the diagrammatic propagation of the constructed wave solutions that yield the singular periodic, anti-kink, kink, and singular kink-shape solitons. Future improvements to the model may also benefit from what has been obtained as well. The various assortments of solutions are provided by the described procedure. Finally, the framework proposed in this investigation addresses additional fractional nonlinear partial differential equations in mathematical physics and engineering with excellent reliability, quality of effectiveness, and ease of application. Full article
Show Figures

Figure 1

16 pages, 1929 KiB  
Article
Dynamical Behavior of Solitary Waves for the Space-Fractional Stochastic Regularized Long Wave Equation via Two Distinct Approaches
by Muneerah Al Nuwairan, Bashayr Almutairi and Anwar Aldhafeeri
Mathematics 2025, 13(13), 2193; https://doi.org/10.3390/math13132193 - 4 Jul 2025
Viewed by 202
Abstract
This study investigates the influence of multiplicative noise—modeled by a Wiener process—and spatial-fractional derivatives on the dynamics of the space-fractional stochastic Regularized Long Wave equation. By employing a complete discriminant polynomial system, we derive novel classes of fractional stochastic solutions that capture the [...] Read more.
This study investigates the influence of multiplicative noise—modeled by a Wiener process—and spatial-fractional derivatives on the dynamics of the space-fractional stochastic Regularized Long Wave equation. By employing a complete discriminant polynomial system, we derive novel classes of fractional stochastic solutions that capture the complex interplay between stochasticity and nonlocality. Additionally, the variational principle, derived by He’s semi-inverse method, is utilized, yielding additional exact solutions that are bright solitons, bright-like solitons, kinky bright solitons, and periodic structures. Graphical analyses are presented to clarify how variations in the fractional order and noise intensity affect essential solution features, such as amplitude, width, and smoothness, offering deeper insight into the behavior of such nonlinear stochastic systems. Full article
Show Figures

Figure 1

17 pages, 1168 KiB  
Article
Analytical Solitary Wave Solutions of Fractional Tzitzéica Equation Using Expansion Approach: Theoretical Insights and Applications
by Wael W. Mohammed, Mst. Munny Khatun, Mohamed S. Algolam, Rabeb Sidaoui and M. Ali Akbar
Fractal Fract. 2025, 9(7), 438; https://doi.org/10.3390/fractalfract9070438 - 3 Jul 2025
Cited by 1 | Viewed by 301
Abstract
In this study, we investigate the fractional Tzitzéica equation, a nonlinear evolution equation known for modeling complex phenomena in various scientific domains such as solid-state physics, crystal dislocation, electromagnetic waves, chemical kinetics, quantum field theory, and nonlinear optics. Using the (G′/ [...] Read more.
In this study, we investigate the fractional Tzitzéica equation, a nonlinear evolution equation known for modeling complex phenomena in various scientific domains such as solid-state physics, crystal dislocation, electromagnetic waves, chemical kinetics, quantum field theory, and nonlinear optics. Using the (G′/G, 1/G)-expansion approach, we derive different categories of exact solutions, like hyperbolic, trigonometric, and rational functions. The beta fractional derivative is used here to generalize the classical idea of the derivative, which preserves important principles. The derived solutions with broader nonlinear wave structures are periodic waves, breathers, peakons, W-shaped solitons, and singular solitons, which enhance our understanding of nonlinear wave dynamics. In relation to these results, the findings are described by showing the solitons’ physical behaviors, their stabilities, and dispersions under fractional parameters in the form of contour plots and 2D and 3D graphs. Comparisons with earlier studies underscore the originality and consistency of the (G′/G, 1/G)-expansion approach in addressing fractional-order evolution equations. It contributes new solutions to analytical problems of fractional nonlinear integrable systems and helps understand the systems’ dynamic behavior in a wider scope of applications. Full article
Show Figures

Figure 1

13 pages, 2490 KiB  
Article
Soliton Dynamics of the Nonlinear Kodama Equation with M-Truncated Derivative via Two Innovative Schemes: The Generalized Arnous Method and the Kudryashov Method
by Khizar Farooq, Ali. H. Tedjani, Zhao Li and Ejaz Hussain
Fractal Fract. 2025, 9(7), 436; https://doi.org/10.3390/fractalfract9070436 - 2 Jul 2025
Cited by 1 | Viewed by 302
Abstract
The primary aim of this research article is to investigate the soliton dynamics of the M-truncated derivative nonlinear Kodama equation, which is useful for optical solitons on nonlinear media, shallow water waves over complex media, nonlocal internal waves, and fractional viscoelastic wave propagation. [...] Read more.
The primary aim of this research article is to investigate the soliton dynamics of the M-truncated derivative nonlinear Kodama equation, which is useful for optical solitons on nonlinear media, shallow water waves over complex media, nonlocal internal waves, and fractional viscoelastic wave propagation. We utilized two recently developed analytical techniques, the generalized Arnous method and the generalized Kudryashov method. First, the nonlinear Kodama equation is transformed into a nonlinear ordinary differential equation using the homogeneous balance principle and a traveling wave transformation. Next, various types of soliton solutions are constructed through the application of these effective methods. Finally, to visualize the behavior of the obtained solutions, three-dimensional, two-dimensional, and contour plots are generated using Maple (2023) mathematical software. Full article
Show Figures

Figure 1

20 pages, 1115 KiB  
Article
A Novel Computational Framework for Time-Fractional Higher-Order KdV Models: CLADM-Based Solutions and Comparative Analysis
by Priti V. Tandel, Anant Patel and Trushitkumar Patel
Axioms 2025, 14(7), 511; https://doi.org/10.3390/axioms14070511 - 1 Jul 2025
Viewed by 243
Abstract
This study applies the Conformable Laplace Adomian Decomposition Method (CLADM) to solve generalized time-fractional Korteweg–de Vries (KdV) models, including seventh- and fifth-order models. CLADM combines the conformable fractional derivative and Laplace transform with the Adomian decomposition technique, offering analytic approximate solutions. Numerical and [...] Read more.
This study applies the Conformable Laplace Adomian Decomposition Method (CLADM) to solve generalized time-fractional Korteweg–de Vries (KdV) models, including seventh- and fifth-order models. CLADM combines the conformable fractional derivative and Laplace transform with the Adomian decomposition technique, offering analytic approximate solutions. Numerical and graphical results, generated using MATLAB R2020a 9.8.0.1323502, validate the method’s efficiency and precision in capturing fractional-order dynamics. Fractional parameters ϱ significantly influence wave behavior, with higher orders yielding smoother profiles and reduced oscillations. Comparative analysis confirms CLADM’s superiority over existing methods in minimizing errors. The versatility of CLADM highlights its potential for studying nonlinear wave phenomena in diverse applications. Full article
(This article belongs to the Special Issue Fractional Calculus and Applied Analysis, 2nd Edition)
Show Figures

Figure 1

Back to TopTop