Dynamical Behavior of Solitary Waves for the Space-Fractional Stochastic Regularized Long Wave Equation via Two Distinct Approaches
Abstract
1. Introduction
2. Wave Solutions
3. Complete Discriminate Method
4. Variational Principle
4.1. Bright Soliton
4.2. Bright-like Soliton
4.3. Kinky-Bright Soliton
4.4. Periodic Wave Solution
5. Graphic Representation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirsch, M.W.; Smale, S.; Devaney, R.L. Differential Equations, Dynamical Systems, and an Introduction to Chaos; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Farlow, S. Partial Differential Equations for Scientists and Engineers; Dover Publications: Mineola, NY, USA, 1993. [Google Scholar] [CrossRef]
- Evans, L.C. An Introduction to Stochastic Differential Equations; American Mathematical Society: Providence, RI, USA, 2013. [Google Scholar]
- Platen, E.; Bruti-Liberati, N. Numerical Solution of Stochastic Differential Equations with Jumps in Finance; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; Volume 64. [Google Scholar]
- Braumann, C.A. Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Kamrani, M. Numerical solution of stochastic fractional differential equations. J. Fluid Mech. 2015, 68, 81–93. [Google Scholar] [CrossRef]
- Ha, T.; Li, Z.; Kun, K. Exact solutions of the stochastic fractional long–short wave interaction system with multiplicative noise in generalized elastic medium. Results Phys. 2023, 44, 106174. [Google Scholar] [CrossRef]
- AL Nuwairan, M. Bifurcation and Analytical Solutions of the Space-Fractional Stochastic Schrödinger Equation with White Noise. Fractal Fract. 2023, 7, 157. [Google Scholar] [CrossRef]
- Yang, M. Existence uniqueness of mild solutions for Ψ-Caputo fractional stochastic evolution equations driven by fBm. J. Inequal. Appl. 2021, 2021, 170. [Google Scholar] [CrossRef]
- Yuan, C.; Mao, X. Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching. Math. Comput. Simul. 2004, 64, 223–235. [Google Scholar] [CrossRef]
- Elbrolosy, M.; Alhamud, M.; Elmandouh, A. Analytical solutions to the fractional stochastic (3 + 1) equation of fluids with gas bubbles using an extended auxiliary function method. Alex. Eng. J. 2024, 92, 254–266. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Cesarano, C.; Elmandouh, A.A.; Alqsair, I.; Sidaoui, R.; Alshammari, H.W. Abundant optical soliton solutions for the stochastic fractional fokas system using bifurcation analysis. Phys. Scr. 2024, 99, 045233. [Google Scholar] [CrossRef]
- Li, S.; Khan, S.; Riaz, M.; AlQahtani, S.A.; Alamri, M.M. Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: A comprehensive stability analysis. Sci. Rep. 2024, 14, 6930. [Google Scholar] [CrossRef]
- Moghaddam, B.P.; Babaei, A.; Dabiri, A.; Galhano, A. Fractional Stochastic Partial Differential Equations: Numerical Advances and Practical Applications—A State of the Art Review. Symmetry 2024, 16, 563. [Google Scholar] [CrossRef]
- Peregrine, D.H. Calculations of the development of an undular bore. J. Fluid Mech. 1966, 25, 321–330. [Google Scholar] [CrossRef]
- Benjamin, T.B.; Bona, J.L.; Mahony, J.J. Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1972, 272, 47–78. [Google Scholar] [CrossRef]
- Bona, J.L.; Bryant, P.J. A mathematical model for long waves generated by wavemakers in non-linear dispersive systems. Math. Proc. Camb. Philos. Soc. 1973, 73, 391–405. [Google Scholar] [CrossRef]
- Eilbeck, J.; McGuire, G. Numerical study of the regularized long-wave equation I: Numerical methods. J. Comput. Phys. 1975, 19, 43–57. [Google Scholar] [CrossRef]
- El-Danaf, T.S.; Ramadan, M.A.; Abd Alaal, F.E. The use of adomian decomposition method for solving the regularized long-wave equation. Chaos Solitons Fractals 2005, 26, 747–757. [Google Scholar] [CrossRef]
- Pshtiwan, O.M.; Alqudah, M.A.; Hamed, Y.S.; Kashuri, A.; Abualnaja, K.M. Solving the Modified Regularized Long Wave Equations via Higher Degree B-Spline Algorithm. J. Funct. Spaces 2021, 2021, 5580687. [Google Scholar] [CrossRef]
- Maarouf, N.; Maadan, H.; Hilal, K. Lie symmetry analysis and explicit solutions for the time-fractional regularized long-wave equation. Int. J. Differ. Equ. 2021, 2021, 6614231. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Baleanu, D.; Sushila. Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel. Phys. A Stat. Mech. Its Appl. 2018, 492, 155–167. [Google Scholar] [CrossRef]
- Jhangeer, A.; Muddassar, M. andKousar, M.; Infal, B. Multistability and Dynamics of Fractional Regularized Long Wave equation with Conformable Fractional Derivatives. Ain Shams Eng. J. 2021, 12, 2153–2169. [Google Scholar] [CrossRef]
- Jumarie, G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51, 1367–1376. [Google Scholar] [CrossRef]
- Calin, O. An Informal Introduction to Stochastic Calculus with Applications; World Scientific: Singapore, 2015. [Google Scholar]
- Al-Askar, F.M.; Cesarano, C.; Mohammed, W.W. Effects of the wiener process and beta derivative on the exact solutions of the kadomtsev–petviashvili equation. Axioms 2023, 12, 748. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Alshammari, M.; Cesarano, C.; Albadrani, S.; El-Morshedy, M. Brownian motion effects on the stabilization of stochastic solutions to fractional diffusion equations with polynomials. Mathematics 2022, 10, 1458. [Google Scholar] [CrossRef]
- Almutairi, B.; Al Nuwairan, M.; Aldhafeeri, A. Exploring the Exact Solution of the Space-Fractional Stochastic Regularized Long Wave Equation: A Bifurcation Approach. Fractal Fract. 2024, 8, 298. [Google Scholar] [CrossRef]
- Al Nuwairan, M.; Elmandouh, A. Modification to an Auxiliary Function Method for Solving Space-Fractional Stochastic Regularized Long-Wave Equation. Fractal Fract. 2025, 9, 298. [Google Scholar] [CrossRef]
- Pandit, S. A new algorithm for analysis and simulation of (2 + 1) Korteweg–de Vries–Rosenau-regularized long-wave model. Comput. Appl. Math. 2024, 43, 35. [Google Scholar] [CrossRef]
- Pandit, S. Local radial basis functions and scale-3 Haar wavelets operational matrices based numerical algorithms for generalized regularized long wave model. Wave Motion 2022, 109, 102846. [Google Scholar] [CrossRef]
- Kumar, S.; Jiwari, R.; Mittal, R.; Awrejcewicz, J. Dark and bright soliton solutions and computational modeling of nonlinear regularized long wave model. Nonlinear Dyn. 2021, 104, 661–682. [Google Scholar] [CrossRef]
- Peregrine, D.H. Long waves on a beach. J. Fluid Mech. 1967, 27, 815–827. [Google Scholar] [CrossRef]
- Shi, F.; Kirby, J.T.; Harris, J.C.; Geiman, J.D.; Grilli, S.T. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model. 2012, 43, 36–51. [Google Scholar] [CrossRef]
- Chazel, F.; Benoit, M.; Ern, A.; Piperno, S. A double-layer Boussinesq-type model for highly nonlinear and dispersive waves. Proc. R. Soc. A Math. Phys. Eng. Sci. 2009, 465, 2319–2346. [Google Scholar] [CrossRef]
- Popinet, S. A vertically-Lagrangian, non-hydrostatic, multilayer model for multiscale free-surface flows. J. Comput. Phys. 2020, 418, 109609. [Google Scholar] [CrossRef]
- Yang, L.; Hou, X.; Zeng, Z. A complete discrimination system for polynomials. Sci. China Ser. E 1996, 39, 628–646. [Google Scholar]
- He, J.H. Asymptotic methods for solitary solutions and compactons. In Proceedings of the Abstract and Applied Analysis; Wiley Online Library: Hoboken, NJ, USA, 2012; Volume 2012, p. 916793. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- AL Nuwairan, M. The exact solutions of the conformable time fractional version of the generalized Pochhammer–Chree equation. Math. Sci. 2023, 17, 305–316. [Google Scholar] [CrossRef]
- Byrd, P.F.; Friedman, M.D. Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed.; Die Grundlehren der Mathematischen Wissenschaften, Band 67; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1971. [Google Scholar]
- He, J.H. Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo Jet Engines 1997, 14, 23–28. [Google Scholar] [CrossRef]
- He, J.H.; Sun, C. A variational principle for a thin film equation. J. Math. Chem. 2019, 57, 2075–2081. [Google Scholar] [CrossRef]
- He, J.H.; García, A. The simplest amplitude-period formula for non-conservative oscillators. Rep. Mech. Eng. 2021, 2, 143–148. [Google Scholar] [CrossRef]
- He, J.H.; Qie, N.; He, C.H.; Saeed, T. On a strong minimum condition of a fractal variational principle. Appl. Math. Lett. 2021, 119, 107199. [Google Scholar] [CrossRef]
- He, J.H.; Qie, N.; He, C.H. Solitary waves travelling along an unsmooth boundary. Results Phys. 2021, 24, 104104. [Google Scholar] [CrossRef]
- He, J.H.; Hou, W.F.; He, C.H.; Saeed, T.; Hayat, T. Variational approach to fractal solitary waves. Fractals 2021, 29, 2150199. [Google Scholar] [CrossRef]
- Elboree, M.K. Soliton solutions for some nonlinear partial differential equations in mathematical physics using He’s variational method. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 147–158. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D. Variational theory and new abundant solutions to the (1 + 2)-dimensional chiral nonlinear Schrödinger equation in optics. Phys. Lett. A 2021, 412, 127588. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Nuwairan, M.; Almutairi, B.; Aldhafeeri, A. Dynamical Behavior of Solitary Waves for the Space-Fractional Stochastic Regularized Long Wave Equation via Two Distinct Approaches. Mathematics 2025, 13, 2193. https://doi.org/10.3390/math13132193
Al Nuwairan M, Almutairi B, Aldhafeeri A. Dynamical Behavior of Solitary Waves for the Space-Fractional Stochastic Regularized Long Wave Equation via Two Distinct Approaches. Mathematics. 2025; 13(13):2193. https://doi.org/10.3390/math13132193
Chicago/Turabian StyleAl Nuwairan, Muneerah, Bashayr Almutairi, and Anwar Aldhafeeri. 2025. "Dynamical Behavior of Solitary Waves for the Space-Fractional Stochastic Regularized Long Wave Equation via Two Distinct Approaches" Mathematics 13, no. 13: 2193. https://doi.org/10.3390/math13132193
APA StyleAl Nuwairan, M., Almutairi, B., & Aldhafeeri, A. (2025). Dynamical Behavior of Solitary Waves for the Space-Fractional Stochastic Regularized Long Wave Equation via Two Distinct Approaches. Mathematics, 13(13), 2193. https://doi.org/10.3390/math13132193

