Novel Analytical Methods for and Qualitative Analysis of the Generalized Water Wave Equation
Abstract
1. Introduction
2. Truncated M-Fractional Derivative
3. Description of Strategies
3.1. MEDA Technique
- Step 1:
- Step 2:
- Type I: when and r is nonzero, then
- Type II: when and r is nonzero, we have
- Type III: when and q is zero, then
- Type IV: when and q is zero, then
- Type V: when and , we attain
- Type VI: when and q is zero, we have
- Type VII: when , then
- Type VIII: when , and r is zero, one has
- Type IX: if , we have
- Type X: if , we have
- Type XI: when p is zero while q and r are nonzero, we have
- Type XII: when , , and p is zero, then
- Step 3:
- Step 4:
3.2. The Improved Expansion Method
- Step 1:
- Step 2:
- Step 3:
- Step 4:
- Type I: when and , we have
- Type II: if and , then
- Type III: if and , we have
- Type IV: if and , we have
- Step 5:
- Step 6:
4. Model Description
5. Different Types of Wave Solitons
5.1. Through Modified Extended Direct Algebraic Technique
- Set 1:
- Set 2:
5.2. Exact Solitons via Improved Expansion Scheme
6. Graphical Representation
7. The Stability Analysis (SA)
8. Modulation Instability (MI) Analysis
9. Findings and Analysis
- (i)
- A body force term, representing the applied force or flow;
- (ii)
- A density gradient term, representing the effect of density variations on the wave;
- (iii)
- A viscosity term, representing the effect of friction or dissipation on the wave.
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.I.; Farooq, A.; Nisar, K.S.; Shah, N.A. Unveiling new exact solutions of the unstable nonlinear Schrödinger equation using the improved modified Sardar sub-equation method. Results Phys. 2024, 59, 107593. [Google Scholar] [CrossRef]
- Islam, S.M.R. Bifurcation analysis and exact wave solutions of the nano-ionic currents equation: Via two analytical techniques. Results Phys. 2024, 58, 107536. [Google Scholar] [CrossRef]
- Mehdi, K.B.; Mehdi, Z.; Samreen, S.; Siddique, I.; Elmandouh, A.A.; Elbrolosy, M.E.; Osman, M.S. Novel exact traveling wave solutions of the space-time fractional Sharma Tasso-Olver equation via three reliable methods. Partial. Differ. Equ. Appl. Math. 2024, 11, 100784. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Bayram, M.; Riaz, M.B.; Baleanu, D. Bifurcation analysis, and exact solutions of the two-mode Cahn–Allen equation by a novel variable coefficient auxiliary equation method. Results Phys. 2024, 64, 107882. [Google Scholar] [CrossRef]
- Akram, G.; Sadaf, M.; Arshed, S.; Iqbal, M.A.B. Simulations of exact explicit solutions of simplified modified form of Camassa–Holm equation. Opt. Quantum Electron. 2024, 56, 1037. [Google Scholar] [CrossRef]
- Bilal, M.; Ren, J.; Alsubaie, A.S.A.; Mahmoud, K.H.; Inc, M. Dynamics of nonlinear diverse wave propagation to Improved Boussinesq model in weakly dispersive medium of shallow waters or ion acoustic waves using efficient technique. Opt. Quantum Electron. 2024, 56, 21. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Jari, H.A.; Altalbe, A.; Bekir, A. Stability analysis, modulation instability, and the analytical wave solitons to the fractional Boussinesq-Burgers system. Phys. Scr. 2024, 99, 125235. [Google Scholar] [CrossRef]
- Zhao, X.H.; Li, S. Dark soliton solutions for a variable coefficient higher-order Schrödinger equation in the dispersion decreasing fibers. Appl. Math. Lett. 2022, 132, 108159. [Google Scholar] [CrossRef]
- Fan, L.; Bao, T. Similarity wave solutions of Whitham–Broer–Kaup equations in the oceanic shallow water. Phys. Fluids 2024, 36, 072110. [Google Scholar] [CrossRef]
- Han, T.; Liang, Y.; Fan, W. Dynamics and soliton solutions of the perturbed Schrödinger-Hirota equation with cubic-quintic-septic nonlinearity in dispersive media. AIMS Math. 2025, 10, 754–776. [Google Scholar] [CrossRef]
- Zhao, S. Multiple solutions and dynamical behavior of the periodically excited beta-fractional generalized KdV-ZK system. Phys. Scr. 2025, 100, 045244. [Google Scholar] [CrossRef]
- Batiha, I.M.; Njadat, S.A.; Batyha, R.M.; Zraiqat, A.; Dababneh, A.; Momani, S. Design fractional-order PID controllers for single-joint robot arm model. Int. J. Adv. Soft Comput. Appl. 2022, 14, 96–114. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Zafar, A.; Raheel, M.; Zaagan, A.A.; Zahran, E.H.; Cevikel, A.; Bekir, A. New soliton solutions of M-fractional Westervelt model in ultrasound imaging via two analytical techniques. Opt. Quantum Electron. 2024, 56, 737. [Google Scholar] [CrossRef]
- Judeh, D.A.; Hammad, M.M. Applications of Conformable Fractional Pareto Probability Distribution. Int. J. Adv. Soft Comput. Appl. 2022, 14, 115–124. [Google Scholar]
- Zhang, K.; Cao, J. Dynamic behavior and modulation instability of the generalized coupled fractional nonlinear Helmholtz equation with cubic–quintic term. Open Phys. 2025, 23, 20250144. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Alrashedi, Y. Mathematical and physical analysis of fractional Estevez–Mansfield–Clarkson equation. Fractal Fract. 2024, 8, 467. [Google Scholar] [CrossRef]
- Han, T.; Zhao, L. Bifurcation, sensitivity analysis and exact traveling wave solutions for the stochastic fractional Hirota–Maccari system. Results Phys. 2023, 47, 106349. [Google Scholar] [CrossRef]
- Adeyemo, O.D. Real-world applications of analytic travelling wave solutions of a (3 + 1)-dimensional Hirota–Satsuma–Ito-Like system via polynomial complete discriminant system and elementary integral technique. Int. J. Appl. Comput. Math. 2025, 11, 23. [Google Scholar] [CrossRef]
- Al Nuwairan, M.; Elmandouh, A. Modification to an auxiliary function method for solving space-fractional Stochastic Regularized Long-Wave equation. Fractal Fract. 2025, 9, 298. [Google Scholar] [CrossRef]
- Ashraf, F.; Ashraf, R.; Akgül, A. Traveling waves solutions of Hirota–Ramani equation by modified extended direct algebraic method and new extended direct algebraic method. Int. J. Mod. Phys. B 2024, 38, 2450329. [Google Scholar] [CrossRef]
- Shehab, M.F.; El-Sheikh, M.; Ahmed, H.M.; El-Gaber, A.A.; Mirzazadeh, M.; Eslami, M. Extraction new solitons and other exact solutions for nonlinear stochastic concatenation model by modified extended direct algebraic method. Opt. Quantum Electron. 2024, 56, 1166. [Google Scholar] [CrossRef]
- Hawlader, F.; Kumar, D. A variety of exact analytical solutions of extended shallow water wave equations via improved (G′/G)-expansion method. Int. J. Phys. Res. 2017, 5, 21–27. [Google Scholar] [CrossRef]
- Shakeel, M.; Mohyud-Din, S.T. Improved (G′/G)-expansion and extended tanh methods for (2+1)-dimensional Calogero–Bogoyavlenskii–Schiff equation. Alex. Eng. J. 2015, 54, 27–33. [Google Scholar] [CrossRef]
- Mia, R.; Paul, A.K. New exact solutions to the generalized shallow water wave equation. arXiv 2024, arXiv:2401.01098. [Google Scholar] [CrossRef]
- Wang, X. New Explicit Exact Solutions for the (1 + 1)-Dimensional Generalized Shallow Water Wave Equation. Adv. Appl. Math. 2017, 6, 787–794. [Google Scholar] [CrossRef]
- Li, W.; Zuo, H. New Explicit Exact Solutions for the (1 + 1) Dimensional Generalized Shallow Water Wave Equation. Asian Res. J. Math. 2024, 20, 163–176. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Yel, G.; Bulut, H. M-fractional solitons and periodic wave solutions to the Hirota–Maccari system. Mod. Phys. Lett. B 2019, 33, 1950052. [Google Scholar] [CrossRef]
- Sousa, J.V.D.A.C.; Oliveira, E.C.D. A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 2018, 16, 83–96. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, J.; Ali, R.; Awwad, F.A.; Ismail, E.A.A. Exploring Families of Solitary Wave Solutions for the Fractional Coupled Higgs System Using Modified Extended Direct Algebraic Method. Fractal Fract. 2023, 7, 653. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S.S.; Abdou, M.A. New exact solutions for time-fractional Kaup-Kupershmidt equation using improved (G′/G)-expansion and extended (G′/G)-expansion methods. Alex. Eng. J. 2020, 59, 3105–3110. [Google Scholar] [CrossRef]
- Tariq, K.U.; Wazwaz, A.-M.; Javed, R. Construction of different wave structures, stability analysis and modulation instability of the coupled nonlinear Drinfel’d–Sokolov–Wilson model. Chaos Solitons Fractals 2023, 166, 112903. [Google Scholar] [CrossRef]
- Zulfiqar, H.; Aashiq, A.; Tariq, K.U.; Ahmad, H.; Almohsen, B.; Aslam, M.; Rehman, H.U. On the solitonic wave structures and stability analysis of the stochastic nonlinear Schrödinger equation with the impact of multiplicative noise. Optik 2023, 289, 171250. [Google Scholar] [CrossRef]
- Altalbe, A.; Taishiyeva, A.; Myrzakulov, R.; Bekir, A.; Zaagan, A.A. Effect of truncated M-fractional derivative on the new exact solitons to the Shynaray-IIA equation and stability analysis. Results Phys. 2024, 57, 107422. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Manafian, J.; Alsubaie, A.S.; Ahmad, H. Investigation of exact solitons to the quartic Rosenau-Kawahara-Regularized-Long-Wave fluid model with fractional derivative and qualitative analysis. Phys. Scr. 2024, 100, 015270. [Google Scholar] [CrossRef]
- Rehman, S.; Ahmad, J. Modulation instability analysis and optical solitons in birefringent fibers to RKL equation without four wave mixing. Alex. Eng. J. 2021, 60, 1339–1354. [Google Scholar] [CrossRef]
- Alomair, A.; Al Naim, A.S.; Bekir, A. Exploration of Soliton Solutions to the Special Korteweg–De Vries Equation with a Stability Analysis and Modulation Instability. Mathematics 2024, 13, 54. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S.S. Solitary wave solutions for time fractional third order modified KdV equation using two reliable techniques (G′/G)-expansion method and improved (G′/G)-expansion method. Phys. A 2016, 448, 265–282. [Google Scholar] [CrossRef]
- Ali, K.K.; Alotaibi, M.F.; Omri, M.; Mehanna, M.S.; Abdel-Aty, A.-H. Some Traveling Wave Solutions to the Fifth-Order Nonlinear Wave Equation Using Three Techniques: Bernoulli Sub-ODE, Modified Auxiliary Equation, and (G′/G)-Expansion Methods. J. Math. 2023, 2023, 7063620. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qawaqneh, H.; Al Naim, A.S.; Alomair, A. Novel Analytical Methods for and Qualitative Analysis of the Generalized Water Wave Equation. Mathematics 2025, 13, 2280. https://doi.org/10.3390/math13142280
Qawaqneh H, Al Naim AS, Alomair A. Novel Analytical Methods for and Qualitative Analysis of the Generalized Water Wave Equation. Mathematics. 2025; 13(14):2280. https://doi.org/10.3390/math13142280
Chicago/Turabian StyleQawaqneh, Haitham, Abdulaziz S. Al Naim, and Abdulrahman Alomair. 2025. "Novel Analytical Methods for and Qualitative Analysis of the Generalized Water Wave Equation" Mathematics 13, no. 14: 2280. https://doi.org/10.3390/math13142280
APA StyleQawaqneh, H., Al Naim, A. S., & Alomair, A. (2025). Novel Analytical Methods for and Qualitative Analysis of the Generalized Water Wave Equation. Mathematics, 13(14), 2280. https://doi.org/10.3390/math13142280