Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (759)

Search Parameters:
Keywords = forest restoration species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3001 KiB  
Article
Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model
by Meiqing Xu, Zilong Yao, Yuxin Lu and Chunru Xiong
Sustainability 2025, 17(15), 7170; https://doi.org/10.3390/su17157170 (registering DOI) - 7 Aug 2025
Abstract
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that [...] Read more.
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that combines a dynamic food web model with the Eco-Economic Benefit and Sustainability (EEBS) model, utilizing empirical data from Brazil and Ghana. A system of ordinary differential equations solved using the fourth-order Runge–Kutta method was employed to simulate species interactions and energy flows under various land management strategies. Reintroducing key species (e.g., the seven-spot ladybird and ragweed) improved ecosystem stability to over 90%, with soil fertility recovery reaching 95%. In herbicide-free scenarios, introducing natural predators such as bats and birds mitigated disturbances and promoted ecological balance. Using XGBoost (Extreme Gradient Boosting) to analyze 200-day community dynamics, pest control, resource allocation, and chemical disturbance were identified as dominant drivers. EEBS-based multi-scenario optimization revealed that organic farming achieves the highest alignment between ecological restoration and economic benefits. The model demonstrated strong predictive power (R2 = 0.9619, RMSE = 0.0330), offering a quantitative basis for green agricultural transitions and sustainable agroecosystem management. Full article
(This article belongs to the Section Sustainable Agriculture)
14 pages, 1407 KiB  
Article
Black Soldier Fly Frass Fertilizer Outperforms Traditional Fertilizers in Terms of Plant Growth in Restoration in Madagascar
by Cédrique L. Solofondranohatra, Tanjona Ramiadantsoa, Sylvain Hugel and Brian L. Fisher
Sustainability 2025, 17(15), 7152; https://doi.org/10.3390/su17157152 - 7 Aug 2025
Abstract
Black soldier fly frass (BSFF) is a nutrient-rich organic byproduct with growing potential as a sustainable fertilizer. While its effects on crops have been studied, its impact on tree seedling development for reforestation remains poorly understood. This study evaluated the effect of BSFF [...] Read more.
Black soldier fly frass (BSFF) is a nutrient-rich organic byproduct with growing potential as a sustainable fertilizer. While its effects on crops have been studied, its impact on tree seedling development for reforestation remains poorly understood. This study evaluated the effect of BSFF on the growth and survival of two native Malagasy tree species: the fast-growing Dodonaea madagascariensis and the slow-growing Verpis macrophylla. A six-month nursery experiment tested three BSFF application rates (half-, one-, and two-fold nitrogen equivalence), along with cattle manure, synthetic NPK, and a no-fertilizer control. The survival was highest in the half-fold BSFF (95% for D. madagascariensis, 87.5% for V. macrophylla) and lowest in BSFF two-fold (0% and 22.5%, respectively) treatments. NPK also significantly reduced the survival (5% for D. madagascariensis, 17.5% for V. macrophylla). The growth responses were most pronounced in D. madagascariensis, where the BSFF half- and one-fold treatments led to height growth rates that were 2.0–2.7 times higher than that of the control, cattle manure, and NPK treatments, and diameter growth that was 1.8–2.3 times higher. The biomass accumulation was also significantly higher under the BSFF half- and one-fold treatments for D. madagascariensis. In contrast, V. macrophylla showed limited response to the treatments. These findings indicate that calibrated BSFF application can enhance seedling performance in reforestation efforts, particularly for fast-growing species. Notably, the growth rate of D. madagascariensis doubled (in terms of cm/month) under optimal BSFF treatment—a critical advantage, as time is a key constraint in reforestation and faster growth directly supports more efficient forest restoration. This highlights BSFF’s potential as a sustainable and locally available input for forest restoration in Madagascar. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

24 pages, 9834 KiB  
Article
Vegetation Succession Dynamics in the Deglaciated Area of the Zepu Glacier, Southeastern Tibet
by Dan Yang, Naiang Wang, Xiao Liu, Xiaoyang Zhao, Rongzhu Lu, Hao Ye, Xiaojun Liu and Jinqiao Liu
Forests 2025, 16(8), 1277; https://doi.org/10.3390/f16081277 - 4 Aug 2025
Viewed by 129
Abstract
Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai–Tibet Plateau has been [...] Read more.
Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai–Tibet Plateau has been exceedingly limited. This study aimed to investigate vegetation succession in the deglaciated area of the Zepu glacier during the Little Ice Age in southeastern Tibet. Quadrat surveys were performed on arboreal communities, and trends in vegetation change were assessed utilizing multi-year (1986–2024) remote sensing data. The findings indicate that vegetation succession in the Zepu glacier deglaciated area typically adheres to a sequence of bare land–shrub–tree, divided into four stages: (1) shrub (species include Larix griffithii Mast., Hippophae rhamnoides subsp. yunnanensis Rousi, Betula utilis D. Don, and Populus pseudoglauca C. Wang & P. Y. Fu); (2) broadleaf forest primarily dominated by Hippophae rhamnoides subsp. yunnanensis Rousi; (3) mixed coniferous–broadleaf forest with Hippophae rhamnoides subsp. yunnanensis Rousi and Populus pseudoglauca C. Wang & P. Y. Fu as the dominant species; and (4) mixed coniferous–broadleaf forest dominated by Picea likiangensis (Franch.) E. Pritz. Soil depth and NDVI both increase with succession. Species diversity is significantly higher in the third stage compared to other successional stages. In addition, soil moisture content is significantly greater in the broadleaf-dominated communities than in the conifer-dominated communities. An analysis of NDVI from 1986 to 2024 reveals an overall positive trend in vegetation recovery in the area, with 93% of the area showing significant vegetation increase. Temperature is the primary controlling factor for this recovery, showing a positive correlation with vegetation cover. The results indicate that Key ecological indicators—including species composition, diversity, NDVI, soil depth, and soil moisture content—exhibit stage-specific patterns, reflecting distinct phases of primary succession. These findings enhance our comprehension of vegetation succession in deglaciated areas and their influencing factors in deglaciated areas, providing theoretical support for vegetation restoration in climate change. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Graphical abstract

31 pages, 2983 KiB  
Review
Sustainable Management of Willow Forest Landscapes: A Review of Ecosystem Functions and Conservation Strategies
by Florin Achim, Lucian Dinca, Danut Chira, Razvan Raducu, Alexandru Chirca and Gabriel Murariu
Land 2025, 14(8), 1593; https://doi.org/10.3390/land14081593 - 4 Aug 2025
Viewed by 160
Abstract
Willow stands (Salix spp.) are an essential part of riparian ecosystems, as they sustain biodiversity and provide bioenergy solutions. The present review synthesizes the global scientific literature about the management of willow stands. In order to achieve this goal, we used a [...] Read more.
Willow stands (Salix spp.) are an essential part of riparian ecosystems, as they sustain biodiversity and provide bioenergy solutions. The present review synthesizes the global scientific literature about the management of willow stands. In order to achieve this goal, we used a dual approach combining bibliometric analysis with traditional literature review. As such, we consulted 416 publications published between 1978 and 2024. This allowed us to identify key species, ecosystem services, conservation strategies, and management issues. The results we have obtained show a diversity of approaches, with an increase in short-rotation coppice (SRC) systems and the multiple roles covered by willow stands (carbon sequestration, biomass production, riparian restoration, and habitat provision). The key trends we have identified show a shift toward topics such as climate resilience, ecological restoration, and precision forestry. This trend has become especially pronounced over the past decade (2014–2024), as reflected in the increasing use of these keywords in the literature. However, as willow systems expand in scale and function—from biomass production to ecological restoration—they also raise complex challenges, including invasive tendencies in non-native regions and uncertainties surrounding biodiversity impacts and soil carbon dynamics over the long term. The present review is a guide for forest policies and, more specifically, for future research, linking the need to integrate and use adaptive strategies in order to maintain the willow stands. Full article
Show Figures

Figure 1

25 pages, 1529 KiB  
Article
Native Flora and Potential Natural Vegetation References for Effective Forest Restoration in Italian Urban Systems
by Carlo Blasi, Giulia Capotorti, Eva Del Vico, Sandro Bonacquisti and Laura Zavattero
Plants 2025, 14(15), 2396; https://doi.org/10.3390/plants14152396 - 2 Aug 2025
Viewed by 177
Abstract
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of [...] Read more.
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of an NRRP measure devoted to forest restoration in Italian Metropolitan Cities, and at assessing respective preliminary results. Therefore, the measure’s overarching goal (not to create urban parks or gardens, but activate forest recovery), geographic extent and scope (over 4000 ha and more than 4 million planted trees and shrubs across the country), plantation model (mandatory use of native species consistent with local potential vegetation, density of 1000 seedlings per ha, use of at least four tree and four shrub species in each project, with a minimum proportion of 70% for trees, certified provenance for reproductive material), and compulsory management activities (maintenance and replacement of any dead plants for at least five years), are herein shown and explained under an ecological perspective. Current implementation outcomes were thus assessed in terms of coherence and expected biodiversity benefits, especially with respect to ecological and biogeographic consistency of planted forests, representativity in relation to national and European plant diversity, biogeographic interest and conservation concern of adopted plants, and potential contribution to the EU Habitats Directive. Compliance with international strategic goals and normative rules, along with recognizable advantages of the measure and limitations to be solved, are finally discussed. In conclusion, the forestation model proposed for the Italian Metropolitan Cities proved to be fully applicable in its ecological rationale, with expected benefits in terms of biodiversity support plainly met, and even exceeded, at the current stage of implementation, especially in terms of the contribution to protected habitats. These promising preliminary results allow the model to be recognized at the international level as a good practice that may help achieve protection targets and sustainable development goals within and beyond urban systems. Full article
Show Figures

Figure 1

19 pages, 3536 KiB  
Article
Loss and Early Recovery of Biomass and Soil Organic Carbon in Restored Mangroves After Paspalum vaginatum Invasion in West Africa
by Julio César Chávez Barrera, Juan Fernando Gallardo Lancho, Robert Puschendorf and Claudia Maricusa Agraz Hernández
Resources 2025, 14(8), 122; https://doi.org/10.3390/resources14080122 - 29 Jul 2025
Viewed by 293
Abstract
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified [...] Read more.
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified in the total biomass, including both aboveground and belowground components, as well as in the soil to a depth of −50 cm. In addition, soil gas fluxes of CO2, CH4, and N2O were measured. Three sites were evaluated: a conserved mangrove, a site degraded by P. vaginatum, and the same site post-restoration via hydrological rehabilitation and reforestation. Invasion significantly reduced carbon storage, especially in soil, due to lower biomass, incorporation of low C/N ratio organic residues, and compaction. Restoration recovered 7.8% of the total biomass carbon compared to the conserved mangrove site, although soil organic carbon did not rise significantly in the short term. However, improvements in deep soil C/N ratios (15–30 and 30–50 cm) suggest enhanced soil organic matter recalcitrance linked to R. racemosa reforestation. Soil CO2 emissions dropped by 60% at the restored site, underscoring restoration’s potential to mitigate early carbon loss. These results highlight the need to control invasive species and suggest that restoration can generate additional social benefits. Full article
Show Figures

Figure 1

13 pages, 1075 KiB  
Article
Response of Typical Artificial Forest Soil Microbial Community to Revegetation in the Loess Plateau, China
by Xiaohua Liu, Tianxing Wei, Dehui Fan, Huaxing Bi and Qingke Zhu
Agronomy 2025, 15(8), 1821; https://doi.org/10.3390/agronomy15081821 - 28 Jul 2025
Viewed by 216
Abstract
This study aims to analyze the differences in soil bacterial community structure under different vegetation restoration types, and to explore the role of microorganisms in the process of vegetation restoration on the soil ecosystem of the Grain for Green area in the Loess [...] Read more.
This study aims to analyze the differences in soil bacterial community structure under different vegetation restoration types, and to explore the role of microorganisms in the process of vegetation restoration on the soil ecosystem of the Grain for Green area in the Loess Plateau. High-throughput sequencing technology was used to analyze the alpha diversity of soil bacteria, community structure characteristics, and the correlation between soil environmental factors and bacterial communities in different artificial Hippophae rhamnoides forests. Soil microbial C and N show a decreasing trend with an increase in the 0–100 cm soil layers. The results indicated that the bacterial communities comprised 24 phyla, 55 classes, 110 orders, 206 families, 348 genera, 680 species, and 1989 OTUs. Additionally, the richness indices and diversity indices of the bacterial community in arbor shrub mixed forest are higher than those in shrub pure forest, and the indices of shrub forest on sunny slope are higher than those on shady slope. Across all samples, the dominant groups were Actinobacteria (37.27% on average), followed by Proteobacteria (23.91%), Acidobacteria (12.75%), and Chloroflexi (12.27%). Soil nutrient supply, such as TOC, TN, AN, AP, and AK, had crucial roles in shaping the composition and diversity of the bacterial communities. The findings reveal that vegetation restoration significantly affected soil bacterial community richness and diversity. Furthermore, based on the results, our data provide a starting point for establishing soil bacterial databases in the Loess Plateau, as well as for the plants associated with the vegetation restoration. Full article
Show Figures

Figure 1

18 pages, 1193 KiB  
Article
The Importance of Native Trees and Forests: Smallholder Farmers’ Views in South-Western Rwanda
by Franklin Bulonvu, Gérard Imani, Myriam Mujawamariya, Beth A. Kaplin, Patrick Mutabazi and Aida Cuni-Sanchez
Forests 2025, 16(8), 1234; https://doi.org/10.3390/f16081234 - 26 Jul 2025
Viewed by 542
Abstract
Despite increasing interest in including indigenous and local people in forest restoration initiatives, their views on which species are most useful, or reasons behind not planting native tree species are often ignored. Focused on south-western Rwanda, this study addressed these knowledge gaps. We [...] Read more.
Despite increasing interest in including indigenous and local people in forest restoration initiatives, their views on which species are most useful, or reasons behind not planting native tree species are often ignored. Focused on south-western Rwanda, this study addressed these knowledge gaps. We carried out 12 focus group discussions with village elders to determine the following: main benefits provided by native forests, the native species they prefer for different uses, and the main barriers to species’ cultivation. Then, considering other key information from the literature, we performed a ranking exercise to determine which native species had the greatest potential for large-scale tree planting initiatives. Our results show that native forests provide 17 benefits to local communities, some of which cannot be replaced by plantations with exotic species. Among the 26 tree species identified as most useful for timber, firewood, medicine and fodder, ten were ranked as with the greatest potential for restoration initiatives. Of these, two had not been included in recent experimental plantations using native species in Rwanda, and none were considered among the priority species for domestication in Africa. Overall, our study highlights the need to better connect the ecological and social dimension of forest reforestation initiatives in multiple contexts. Full article
Show Figures

Figure 1

16 pages, 421 KiB  
Review
Applications of Machine Learning Methods in Sustainable Forest Management
by Rogério Pinto Espíndola, Mayara Moledo Picanço, Lucio Pereira de Andrade and Nelson Francisco Favilla Ebecken
Climate 2025, 13(8), 159; https://doi.org/10.3390/cli13080159 - 25 Jul 2025
Viewed by 497
Abstract
Machine learning (ML) has established itself as an innovative tool in sustainable forest management, essential for tackling critical challenges such as deforestation, biodiversity loss, and climate change. Through the analysis of large volumes of data from satellites, drones, and sensors, machine learning facilitates [...] Read more.
Machine learning (ML) has established itself as an innovative tool in sustainable forest management, essential for tackling critical challenges such as deforestation, biodiversity loss, and climate change. Through the analysis of large volumes of data from satellites, drones, and sensors, machine learning facilitates everything from precise forest health assessments and real-time deforestation detection to wildfire prevention and habitat mapping. Other significant advancements include species identification via computer vision and predictive modeling to optimize reforestation and carbon sequestration. Projects like SILVANUS serve as practical examples of this approach’s success in combating wildfires and restoring ecosystems. However, for these technologies to reach their full potential, obstacles like data quality, ethical issues, and a lack of collaboration between different fields must be overcome. The solution lies in integrating the power of machine learning with ecological expertise and local community engagement. This partnership is the path forward to preserve biodiversity, combat climate change, and ensure a sustainable future for our forests. Full article
(This article belongs to the Topic Disaster Risk Management and Resilience)
Show Figures

Figure 1

23 pages, 30904 KiB  
Article
How Do Invasive Species Influence Biotic and Abiotic Factors Drive Vegetation Success in Salt Marsh Ecosystems?
by Yong Zhou, Chunqi Qiu, Hongyu Liu, Yufeng Li, Cheng Wang, Gang Wang, Mengyuan Su and Chen He
Land 2025, 14(8), 1523; https://doi.org/10.3390/land14081523 - 24 Jul 2025
Viewed by 248
Abstract
Vegetation succession is a critical indicator of ecosystem structure and function and is often disrupted by the expansion of invasive species. However, ecosystem-scale studies elucidating invasion-driven succession mechanisms remain limited. This research focused on the Yancheng coastal salt marsh and analyzed the distribution [...] Read more.
Vegetation succession is a critical indicator of ecosystem structure and function and is often disrupted by the expansion of invasive species. However, ecosystem-scale studies elucidating invasion-driven succession mechanisms remain limited. This research focused on the Yancheng coastal salt marsh and analyzed the distribution variation of invasive species (Spartina alterniflora) and native species (Suaeda salsa and Phragmites australis) from 1987 to 2022 via the Google Earth Engine and random forest method. Logistic/Gaussian models were used to quantify land–sea distribution changes and vegetation succession trajectories. By integrating data on soil salinity, invasion duration, and fractional vegetation cover, generalized additive models (GAMs) were applied to identify the main factors influencing vegetation succession and to explore how Spartina alterniflora invasion affects the succession of salt marsh vegetation. The results indicated that the areas of Spartina alterniflora and Phragmites australis significantly increased by 3787.49 ha and 3452.60 ha in 35 years, respectively, contrasting with Suaeda salsa’s 82.46% decline. The FVC in the area has significantly increased by 42.10%, especially in the coexisted areas of different vegetation communities, indicating intensified interspecific competition. The overall trend of soil salinity was decreasing, with a decrease in soil salinity in native species areas from 0.72% to 0.37%. From the results of GAMs, soil salinity, tidal action, and invasion duration were significant factors influencing the distribution of native species, but salinity was not a significant factor affecting the Spartina alterniflora distribution. The findings revealed that the expansion of Spartina alterniflora changed the soil salinity and interspecific interactions, thereby altering the original plant community structure and establishing a new vegetation succession. This study enhances the understanding of the impacts of invasive species on ecosystems and offers theoretical support for salt marsh restoration. Full article
Show Figures

Figure 1

20 pages, 2457 KiB  
Article
Leaf Chemistry Patterns in Populations of a Key Lithophyte Tree Species in Brazil’s Atlantic Forest Inselbergs
by Roberto Antônio da Costa Jerônimo Júnior, Ranieri Ribeiro Paula, Talitha Mayumi Francisco, Dayvid Rodrigues Couto, João Mário Comper Covre and Dora Maria Villela
Forests 2025, 16(7), 1186; https://doi.org/10.3390/f16071186 - 18 Jul 2025
Viewed by 359
Abstract
Inselbergs are rocky outcrops with specialized vegetation, including woody species growing in poorly developed soils. We investigated whether populations of the lithophytic tree Pseudobombax petropolitanum A. Robyns (Malvaceae), a key species endemic to Atlantic Forest inselbergs, have convergent or divergent patterns of functional [...] Read more.
Inselbergs are rocky outcrops with specialized vegetation, including woody species growing in poorly developed soils. We investigated whether populations of the lithophytic tree Pseudobombax petropolitanum A. Robyns (Malvaceae), a key species endemic to Atlantic Forest inselbergs, have convergent or divergent patterns of functional traits related to leaf chemistry. This study was carried out on three inselbergs located in southeastern Brazil. Green and senescent leaves from nine healthy trees and soil samples were collected in each inselberg. The carbon, nitrogen, phosphorus, potassium, calcium, and magnesium concentrations, and the natural abundances of δ13C and δ15N, were measured in leaves and soil, and the C/N, C/P, and N/P ratios were calculated. The specific leaf area (SLA) was measured, and the nutrient retranslocation rate between green and senescent leaves was estimated. Divergences between populations were observed in the concentrations of potassium and magnesium in the green and senescent leaves, as well as in the C/P and N/P ratios in senescent leaves. Our results suggest that nutrient and water dynamics may differ in some inselbergs due to specific nutrients or their relationships, even though there were convergences in most functional traits related to leaf chemistry among the Pseudobombax populations. The divergences among the populations could have important implications for species selection in the ecological restoration context. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Graphical abstract

19 pages, 4141 KiB  
Article
Prediction of Potential Habitat for Korean Endemic Firefly, Luciola unmunsana Doi, 1931 (Coleoptera: Lampyridae), Using Species Distribution Models
by ByeongJun Jung, JuYeong Youn and SangWook Kim
Land 2025, 14(7), 1480; https://doi.org/10.3390/land14071480 - 17 Jul 2025
Viewed by 398
Abstract
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, [...] Read more.
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, it is difficult to collect, so research related to its distribution and restoration is relatively understudied. Therefore, this study predicted the potential habitats of Luciola unmunsana across South Korea using the single model Maximum Entropy (MaxEnt) and a multi-model ensemble model to prepare basic data necessary for a conservation and habitat restoration plan for the species. A total of 39 points of occurrence were built based on public data and prior research from the Jeonbuk Green Environment Support Center (JGESC), the Global Biodiversity Information Facility (GBIF), and the National Institute of Biological Resources (NIBR). Among the input variables, climate variables were based on the shared socioeconomic pathway (SSP) scenario-based ecological climate index, while nonclimate variables were based on topography, land cover maps, and the Enhanced Vegetation Index (EVI). The main findings of this study are summarized below. First, in predicting Luciola unmunsana potential habitats, the EVI, water network analysis, land cover, and annual precipitation (Bio12) were identified as good predictors in both models. Accordingly, areas with high vegetation activity in their forests, adjacent to water resources, and stable humidity were predicted as potential habitats. Second, by overlaying the predicted potential habitats and highly significant variables, we found that areas with high vegetation vigor within their forests, proximity to water systems, and relatively high annual precipitation, which can maintain stable humidity, are potential habitats for Luciola unmunsana. Third, literature surveys used to predict potential habitat sites, including Geumsan-gun, Chungcheongnam-do, Yeongam-gun, Jeollabuk-do, Mudeungsan Mountain, Gwangju-si, Korea, and Gijang-gun, Busan-si, Korea, confirmed the occurrence of Luciola unmunsana. This study is significant in that it is the first to develop a regional SDM for Luciola unmunsana, whose population is declining due to urbanization. In addition, by applying various environmental variables that reflect ecological characteristics, it contributes to more accurate predictions of the potential habitats of this species. The predicted results can be used as basic data for the future conservation of Luciola unmunsana and the establishment of habitat restoration strategies. Full article
Show Figures

Figure 1

17 pages, 15945 KiB  
Article
Mapping Subtidal Marine Forests in the Mediterranean Sea Using Copernicus Contributing Mission
by Dimitris Poursanidis and Stelios Katsanevakis
Remote Sens. 2025, 17(14), 2398; https://doi.org/10.3390/rs17142398 - 11 Jul 2025
Viewed by 405
Abstract
Mediterranean subtidal reefs host ecologically significant habitats, including forests of Cystoseira spp., which form complex benthic communities within the photic zone. These habitats are increasingly degraded due to climate change, invasive species, and anthropogenic pressures, particularly in the eastern Mediterranean. In support of [...] Read more.
Mediterranean subtidal reefs host ecologically significant habitats, including forests of Cystoseira spp., which form complex benthic communities within the photic zone. These habitats are increasingly degraded due to climate change, invasive species, and anthropogenic pressures, particularly in the eastern Mediterranean. In support of habitat monitoring under the EU Natura 2000 directive and the Nature Restoration Regulation, this study investigates the utility of high-resolution satellite remote sensing for mapping subtidal brown algae and associated benthic classes. Using imagery from the SuperDove sensor (Planet Labs, San Francisco, CA, USA), we developed an integrated mapping workflow at the Natura 2000 site GR2420009. Aquatic reflectance was derived using ACOLITE v.20250114.0, and both supervised classification and spectral unmixing were implemented in the EnMAP Toolbox v.3.16.3 within QGIS. A Random Forest classifier (100 fully grown trees) achieved high thematic accuracy across all habitat types (F1 scores: 0.87–1.00), with perfect classification of shallow soft bottoms and strong performance for Cystoseira s.l. (F1 = 0.94) and Seagrass (F1 = 0.93). Spectral unmixing further enabled quantitative estimation of fractional cover, with high predictive accuracy for deep soft bottoms (R2 = 0.99; RPD = 18.66), shallow soft bottoms (R2 = 0.98; RPD = 8.72), Seagrass (R2 = 0.88; RPD = 3.01) and Cystoseira s.l. (R2 = 0.82; RPD = 2.37). The lower performance for rocky reefs with other cover (R2 = 0.71) reflects spectral heterogeneity and shadowing effects. The results highlight the effectiveness of combining classification and unmixing approaches for benthic habitat mapping using CubeSat constellations, offering scalable tools for large-area monitoring and ecosystem assessment. Despite challenges in field data acquisition, the presented framework provides a robust foundation for remote sensing-based conservation planning in optically shallow marine environments. Full article
(This article belongs to the Special Issue Marine Ecology and Biodiversity by Remote Sensing Technology)
Show Figures

Graphical abstract

27 pages, 3863 KiB  
Article
Phenotypic Variability of Juglans neotropica Diels from Different Provenances During Nursery and Plantation Stages in Southern Ecuador
by Byron Palacios-Herrera, Santiago Pereira-Lorenzo and Darwin Pucha-Cofrep
Forests 2025, 16(7), 1141; https://doi.org/10.3390/f16071141 - 10 Jul 2025
Viewed by 342
Abstract
Juglans neotropica Diels, an Andean native species classified as endangered by the IUCN, holds significant potential for reforestation and sustainable forest management programs. This study evaluated seed quality, phenotypic variability, and early establishment under nursery and field conditions in southern Ecuador. Three provenance [...] Read more.
Juglans neotropica Diels, an Andean native species classified as endangered by the IUCN, holds significant potential for reforestation and sustainable forest management programs. This study evaluated seed quality, phenotypic variability, and early establishment under nursery and field conditions in southern Ecuador. Three provenance sites—The Tundo, The Victoria, and The Argelia—were evaluated during the nursery phase, and two (The Tundo and The Victoria) in plantations, applying four pre-germination treatments: control, mechanical scarification, hot water, and water-sun exposure. Parameters assessed included seed weight, size, viability, germination, survival, and growth across three planting environments: secondary forest, riparian forest, and pasture. Significant differences in seed morphometry were observed among localities, while germination was influenced by treatment but not provenance. Seed viability remained high for up to six months, decreasing with a 2% loss of moisture. Survival reached 100% with urea application, and 96% of individuals exhibited straight stems after one year. No significant differences in growth were found between localities; however, basal diameter was highest in the pasture (13.2 mm/year−1), and total height was greatest in the secondary forest (54.8 cm/year−1). These findings provide key technical evidence to optimize the propagation and establishment of J. neotropica in ecological restoration and forest production contexts. Full article
(This article belongs to the Special Issue Tree Breeding: Genetic Diversity, Differentiation and Conservation)
Show Figures

Figure 1

16 pages, 5320 KiB  
Article
Response Mechanism of Carbon Fluxes in Restored and Natural Mangrove Ecosystems Under the Effects of Storm Surges
by Huimin Zou, Jianhua Zhu, Zhen Tian, Zhulin Chen, Zhiyong Xue and Weiwei Li
Forests 2025, 16(7), 1115; https://doi.org/10.3390/f16071115 - 5 Jul 2025
Viewed by 227
Abstract
As climate change intensifies the frequency and magnitude of extreme weather events, such as storm surges, understanding how extreme weather events alter mangrove carbon dynamics is critical for predicting the resilience of blue carbon ecosystems under climate change. Mangrove forests are generally recognized [...] Read more.
As climate change intensifies the frequency and magnitude of extreme weather events, such as storm surges, understanding how extreme weather events alter mangrove carbon dynamics is critical for predicting the resilience of blue carbon ecosystems under climate change. Mangrove forests are generally recognized for their resilience to natural disturbances, a characteristic largely attributed to the evolutionary development of species-specific functional traits. However, limited research has explored the impacts of storm surges on carbon flux dynamics in both natural and restored mangrove ecosystems. In this study, we analyzed short-term responses of storm surges on carbon dioxide flux and methane flux in natural and restored mangroves. The results revealed that following the storm surge, CO2 uptake decreased by 51% in natural mangrove forests and increased by 20% in restored mangroves, while CH4 emissions increased by 14% in natural mangroves and decreased by 22% in restored mangroves. GPP is mainly driven by PPFD and negatively affected by VPD and RH, while Reco and CH4 flux respond to a combination of temperature, humidity, and hydrological factors. NEE is primarily controlled by GPP and Reco, with environmental variables acting indirectly. These findings highlight the complex, site-specific pathways through which extreme events regulate carbon fluxes, underscoring the importance of incorporating ecological feedbacks into coastal carbon assessments under climate change. Full article
(This article belongs to the Special Issue Advances in Forest Carbon, Water Use and Growth Under Climate Change)
Show Figures

Figure 1

Back to TopTop