Applications of Machine Learning Methods in Sustainable Forest Management
Abstract
1. Introduction
2. Forest Monitoring and Health Assessment
3. Deforestation and Land Use Change Detection
4. Wildfire Detection and Management
5. Wildlife Conservation and Habitat Protection
6. Climate Change Mitigation and Adaptation
7. Smart Reforestation and Afforestation
8. SILVANUS: Integrated Technological Platform and Information for Wildfire Management
9. Technical Limitations of ML in Sustainable Forest Management
10. Conclusions
Funding
Conflicts of Interest
References
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Barto, A.G. Chapter 2—Reinforcement learning. In Neural Systems for Control; Omidvar, O., Elliott, D.L., Eds.; Academic Press: Cambridge, MA, USA, 1997. [Google Scholar] [CrossRef]
- Mienye, D.; Sun, Y. A survey of ensemble learning: Concepts, algorithms, applications, and prospects. IEEE Access 2022, 10, 99129–99149. [Google Scholar] [CrossRef]
- Wistuba, M.; Rawat, A.; Pedapati, T. A survey on neural architecture search. arXiv 2019, arXiv:1905.01392. [Google Scholar] [CrossRef]
- Rani, V.; Nabi, S.T.; Kumar, M.; Mittal, A.; Kumar, K. Self-supervised learning: A succinct review. Arch. Comput. Methods Eng. 2023, 30, 2761–2775. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, Z.; Alizadehsani, R.; Cifci, M.A.; Kausar, S.; Rehman, R.; Mahanta, P.; Bora, P.K.; Almasri, A.; Alkhawaldeh, R.S.; Hussain, S.; et al. A review of explainable artificial intelligence in healthcare. Comput. Electr. Eng. 2024, 118 Pt A, 109370. [Google Scholar] [CrossRef]
- Truong, A.; Walters, A.; Goodsitt, J.; Hines, K.; Bruss, C.B.; Farivar, R. Towards automated machine learning: Evaluation and comparison of AutoML approaches and tools. In Proceedings of the 31st IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2019, Portland, OR, USA, 4–6 November 2019; pp. 1471–1479. [Google Scholar] [CrossRef]
- Mammen, P.M. Federated learning: Opportunities and challenges. arXiv 2021, arXiv:2101.05428. [Google Scholar] [CrossRef]
- Ece, A.; Abdurrahim, A. Machine learning-based prediction of insect damage spread using an auto-ARIMA model. Croat. J. For. Eng. 2024, 45, 13. [Google Scholar] [CrossRef]
- Chu, S.; Bao, W. Improving the accuracy of pine wilt disease detection through the integration of multispectral imaging and machine learning. In Proceedings of the 3rd International Conference on Image Processing and Media Computing (ICIPMC), Hefei, China, 17–19 May 2024; pp. 299–304. [Google Scholar] [CrossRef]
- Dahan, K.S.; Kasei, R.A.; Husseini, R.; Sarr, M.; Said, M.Y. Analysis of the future potential impact of environmental and climate changes on wildfire spread in Ghana’s ecological zones using a Random Forest (RF) machine learning approach. Remote Sens. Appl. Soc. Environ. 2024, 33, 101091. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Camps-Valls, G.; Tuia, D.; Zhu, X.X.; Reichstein, M. (Eds.) Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Hasan, R.; Farabi, S.F.; Kamruzzaman, M.; Bhuyan, M.K.; Nilima, S.I.; Shahana, A. AI-driven strategies for reducing deforestation. Am. J. Eng. Technol. 2024, 6, 6–20. [Google Scholar] [CrossRef]
- Dalagnol, R. Mapping tropical forest degradation with deep learning and Planet NICFI data. Remote Sens. Environ. 2023, 298, 113798. [Google Scholar] [CrossRef]
- Felix, F.C.; Kratz, D.; Ribeiro, R.; Nogueira, A.C. Machine learning in the identification of native species from seed image analysis. J. Seed Sci. 2024, 46, e202446002. [Google Scholar] [CrossRef]
- Hill, A.P.; Prince, P.; Covarrubias, E.P.; Doncaster, C.P.; Snaddon, J.L.; Rogers, A. AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods Ecol. Evol. 2018, 9, 1199–1211. [Google Scholar] [CrossRef]
- Wan, L.; Zhou, W.; He, Y.; Wanger, T.C.; Cen, H. Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets. Remote Sens. Environ. 2022, 269, 112826. [Google Scholar] [CrossRef]
- Weinstein, B.G.; Graves, S.J.; Marconi, S.; Singh, A.; Zare, A.; Stewart, D.; Bohlman, S.A.; White, E.P. A benchmark dataset for canopy crown detection and delineation in co-registered airborne RGB, LiDAR and hyperspectral imagery from the National Ecological Observation Network. PLOS Comput. Biol. 2021, 17, e1009180. [Google Scholar] [CrossRef]
- Li, X.; Wang, A. Forest pest monitoring and early warning using UAV remote sensing and computer vision techniques. Sci. Rep. 2025, 15, 401. [Google Scholar] [CrossRef] [PubMed]
- Michael, Y.; Helman, D.; Glickman, O.; Gabay, D.; Brenner, S.; Lensky, I.M. Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series. Sci. Total Environ. 2021, 764, 142844. [Google Scholar] [CrossRef]
- Ouaknine, A.; Kattenborn, T.; Laliberté, E.; Rolnick, D. OpenForest: A data catalogue for machine learning in forest monitoring. arXiv 2023, arXiv:2311.00277. [Google Scholar] [CrossRef]
- Fenza, G.; Gallo, M.; Loia, V.; Gaeta, M.; Herrera-Viedma, E. Data set quality in machine learning: Consistency measure based on group decision making. Appl. Soft Comput. 2021, 106, 107366. [Google Scholar] [CrossRef]
- Singha, C. Integrating geospatial, remote sensing, and machine learning for climate-induced forest fire susceptibility mapping in Similipal Tiger Reserve, India. For. Ecol. Manag. 2024, 555, 121729. [Google Scholar] [CrossRef]
- Macarringue, L.S.; Bolfe, É.L.; Pereira, P.R.M. Developments in land use and land cover classification: Advances achieved, challenges, and future perspectives. J. Geogr. Inf. Syst. 2022, 14, 1–28. [Google Scholar] [CrossRef]
- Rubí, J.N.S.; Gondim, P.R.L. A performance comparison of machine learning models for wildfire occurrence risk prediction in the Brazilian Federal District region. Environ. Syst. Decis. 2024, 44, 351–368. [Google Scholar] [CrossRef]
- Jackson, C.M.; Adam, E. A machine learning approach to mapping canopy gaps in an indigenous tropical submontane forest using WorldView-3 multispectral satellite imagery. Environ. Conserv. 2022, 49, 255–262. [Google Scholar] [CrossRef]
- Dalagnol, R.; Phillips, O.L.; Gloor, E.; Galvão, L.S.; Wagner, F.H.; Locks, C.J.; Aragão, L.E.O.C. Quantifying canopy tree loss and gap recovery in tropical forests under low-intensity logging using VHR satellite imagery and airborne LiDAR. Remote Sens. 2019, 11, 817. [Google Scholar] [CrossRef]
- Matosak, B.M.; Fonseca, L.M.G.; Taquary, E.C.; Maretto, R.V.; Bendini, H. do N.; Adami, M. Mapping deforestation in Cerrado based on hybrid deep learning architecture and medium spatial resolution satellite time series. Remote Sens. 2022, 14, 209. [Google Scholar] [CrossRef]
- Torres, D.L.; Turnes, J.N.; Vega, P.J.S.; Feitosa, R.Q.; Silva, D.E.; Junior, J.M.; Almeida, C. Deforestation detection with fully convolutional networks in the Amazon Forest from Landsat-8 and Sentinel-2 images. Remote Sens. 2021, 13, 5084. [Google Scholar] [CrossRef]
- Li, X. Detection of shoreline erosion using satellite image and machine learning. In Proceedings of the 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Xi′an, China, 15–17 July 2022; pp. 776–780. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, H.; Wang, S.; Ma, X. A multi-scale deep learning algorithm for enhanced forest fire danger prediction using remote sensing images. Forests 2023, 15, 1581. [Google Scholar] [CrossRef]
- Jonnalagadda, A.V.; Hashim, H.A. SegNet: A segmented deep learning based convolutional neural network approach for drones wildfire detection. Remote Sens. Appl. Soc. Environ. 2024, 34, 101181. [Google Scholar] [CrossRef]
- Üstek, İ.; Arana-Catania, M.; Farr, A.; Petrunin, I. Deep autoencoders for unsupervised anomaly detection in wildfire prediction. arXiv 2024, arXiv:2411.09844. [Google Scholar] [CrossRef]
- Mistick, K.A.; Campbell, M.J.; Dennison, P.E. Visibility-informed mapping of potential firefighter lookout locations using maximum entropy modelling. Int. J. Wildland Fire 2024, 33, WF24065. [Google Scholar] [CrossRef]
- Sun, X.; Li, N.; Chen, D.; Chen, G.; Sun, C.; Shi, M.; Gao, X.; Wang, K.; Hezam, I.M. A forest fire prediction model based on cellular automata and machine learning. IEEE Access 2024, 12, 55389–55403. [Google Scholar] [CrossRef]
- Pinto, M.M.; Libonati, R.; Trigo, R.M.; Trigo, I.F.; DaCamara, C.C. A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images. ISPRS J. Photogramm. Remote Sens. 2020, 160, 260–274. [Google Scholar] [CrossRef]
- Karimi, S.; Heidari, M.; Mosavi, A. Machine learning for modeling vegetation restoration of forests using satellite images. In Proceedings of the IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI), Stará Lesná, Slovakia, 14 February 2024; pp. 531–538. [Google Scholar] [CrossRef]
- Shalan, A.; Tarmissi, K.; Walee, N.A. Vulnerability analysis and quality improvement of early wildfire detection datasets for machine-learning applications. In Proceedings of the IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT), Jabalpur, India, 6–7 April 2024; pp. 754–760. [Google Scholar] [CrossRef]
- Khan, M.A.; Park, H. FireXplainNet: Optimizing convolution block architecture for enhanced wildfire detection and interpretability. Electronics 2024, 13, 1881. [Google Scholar] [CrossRef]
- Khallaf, A.N.; Alqerafi, N.M. Using AI to help reduce the effect of global warming. Power Syst. Technol. 2024, 48, 1927–1947. [Google Scholar] [CrossRef]
- Bot, K.; Borges, J.G. A systematic review of applications of machine learning techniques for wildfire management decision support. Inventions 2022, 7, 15. [Google Scholar] [CrossRef]
- Sathishkumar, V.E.; Cho, J.; Subramanian, M.; Naren, O.S. Forest fire and smoke detection using deep learning-based learning without forgetting. Fire Ecol. 2023, 19, 9. [Google Scholar] [CrossRef]
- Abid, F. A survey of machine learning algorithms based forest fires prediction and detection systems. Fire Technol. 2021, 57, 559–590. [Google Scholar] [CrossRef]
- Hopkins, J.; Santos-Elizondo, G.M.; Villablanca, F. Detecting and monitoring rodents using camera traps and machine learning versus live trapping for occupancy modeling. Front. Ecol. Evol. 2024, 12, 1359201. [Google Scholar] [CrossRef]
- Wu, J.; Huang, K.; Luo, Y.; Long, X.; Yu, C.; Xiong, H.; Du, J. Identification of dominant species and their distributions on an uninhabited island based on unmanned aerial vehicles (UAVs) and machine learning models. Remote Sens. 2024, 16, 1652. [Google Scholar] [CrossRef]
- Yudaputra, A.; Yuswandi, A.Y.; Witono, J.R.; Cropper, W.P.; Usmadi, D. Tree species identification in ex situ conservation areas using WorldView-2 satellite data and machine learning methods: A case study in the Bogor Botanic Garden. Trop. Ecol. 2024, 65, 81–91. [Google Scholar] [CrossRef]
- Das, P.; Rahimzadeh-Bajgiran, P.; Livingston, W.; McIntire, C.D.; Bergdahl, A. Modeling forest canopy structure and developing a stand health index using satellite remote sensing. Ecol. Inform. 2024, 84, 102864. [Google Scholar] [CrossRef]
- Yebeyen, D.; Hailu, B.T.; Zewdie, W.; Abera, T.; Sileshi, G.W.; Getachew, M.; Nemomissa, S. Improved mapping of highland bamboo forests using Sentinel-2 time series and machine learning in Google Earth Engine. Geocarto Int. 2024, 39, 2364680. [Google Scholar] [CrossRef]
- Mondal, I.; Naskar, P.K.; Alsulamy, S.; Jose, F.; Hossain, S.A.; Mohammad, L.; De, T.K.; Khedher, K.M.; Salem, M.A.; Benzougagh, B.; et al. Habitat quality and degradation change analysis for the Sundarbans mangrove forest using invest habitat quality model and machine learning. Environ. Dev. Sustain. 2024, 1–26. [Google Scholar] [CrossRef]
- Sangeetha, R.G. Unmanned aerial surveillance and tracking system in forest areas for poachers and wildlife. IEEE Access 2024, 12, 187572–187586. [Google Scholar] [CrossRef]
- Fergus, P.; Chalmers, C.; Longmore, S.; Wich, S. Harnessing artificial intelligence for wildlife conservation. Conservation 2024, 4, 685–702. [Google Scholar] [CrossRef]
- Singh, V.; Ray, K.C.; Tripathy, S. Real-time monitoring of illegal logging events using intelligent acoustic sensor nodes. IEEE Sens. J. 2024, 24, 28276–28286. [Google Scholar] [CrossRef]
- Sachi, S.; Kumar, S. Integrating computational methods in pure and applied zoology: Enhancing species conservation and behavioral studies. Biochem. Cell. Arch. 2024, 24, 2209. [Google Scholar] [CrossRef]
- Day, C.C.; Landguth, E.L.; Sawaya, M.A.; Clevenger, A.P.; Long, R.A.; Holden, Z.A.; Akins, J.R.; Anderson, R.B.; Aubry, K.B.; Barrueto, M.; et al. Genetic connectivity of wolverines in western North America. Sci. Rep. 2024, 14, 28248. [Google Scholar] [CrossRef]
- Sankar, R.; Mantha, K.; Nesmith, C.; Fortson, L.; Brueshaber, S.; Hansen-Koharcheck, C.; Orton, G. Understanding confusion: A case study of training a machine model to predict and interpret consensus from volunteer labels. Citiz. Sci. Theory Pract. 2024, 9, 41. [Google Scholar] [CrossRef]
- Mora, K.; Rzanny, M.; Wäldchen, J.; Feilhauer, H.; Kattenborn, T.; Kraemer, G.; Mäder, P.; Svidzinska, D.; Wolf, S.; Mahecha, M.D. Macrophenological dynamics from citizen science plant occurrence data. Methods Ecol. Evol. 2024, 15, 1422–1437. [Google Scholar] [CrossRef]
- Khan, F.H.; de Silva, A.; Dusek, G.; Davis, J.; Pang, A. SmartCS: Enabling the creation of ML-powered computer vision mobile apps for citizen science applications without coding. arXiv 2024, arXiv:2405.14323. [Google Scholar] [CrossRef]
- O’Malley, W.C.; Elbroch, L.M.; Zeller, K.A.; Beier, P.; Beale, M.M.; Beausoleil, R.A.; Kertson, B.; Knopff, K.; Kunkel, K.; Maletzke, B.T.; et al. Machine learning allows for large-scale habitat prediction of a wide-ranging carnivore across diverse ecoregions. Landsc. Ecol. 2024, 39, 106. [Google Scholar] [CrossRef]
- Refaat, A.M.; Youssef, A.M.; Mosallam, H.A.-A.; Farouk, H. Predicting the effect of climate change on the spatiotemporal distribution of two endangered plant species, Silene leucophylla Boiss. and Silene schimperiana Boiss., using machine learning, in Saint Catherine Protected Area. Beni-Suef Univ. J. Basic Appl. Sci. 2024, 13, 98. [Google Scholar] [CrossRef]
- Fernandes, A.C.M.; Gonzalez, R.Q.; Lenihan-Clarke, M.A.; Trotter, E.F.L.; Arsanjani, J.J. Machine learning for conservation planning in a changing climate. Sustainability 2020, 12, 7657. [Google Scholar] [CrossRef]
- Tuia, D.; Kellenberger, B.; Beery, S.; Costelloe, B.R.; Zuffi, S.; Risse, B.; Mathis, A.; Mathis, M.W.; van Langevelde, F.; Burghardt, T.; et al. Perspectives in machine learning for wildlife conservation. Nat. Commun. 2022, 13, 792. [Google Scholar] [CrossRef] [PubMed]
- Barta, Z. Deep learning in terrestrial conservation biology. Biol. Futur. 2023, 74, 359–367. [Google Scholar] [CrossRef]
- Dantas, D.; Terra, M.C.N.S.; Schorr, L.P.B.; Calegario, N. Machine learning for carbon stock prediction in a tropical forest in Southeastern Brazil. Bosque 2021, 42, 131–140. [Google Scholar] [CrossRef]
- Pikkarainen, L.; Strandman, H.; Vento, E.; Petty, A.; Tikkanen, O.-P.; Kilpeläinen, A.; Peltola, H. Effects of forest conservation and management on timber, ecosystem carbon, dead wood and habitat suitability area in a boreal forest under climate change. Silva Fenn. 2024, 58, 23045. [Google Scholar] [CrossRef]
- Chandrakala, D.; Ranganathan, C.S.; Swarnalatha, E.; Karpagalakshmi, R.C.; Meenakshi, B.; Srinivasan, S. Enhancing data security in cloud-based soil carbon sequestration monitoring systems using random forest regression. In Proceedings of the International Conference on Intelligent Systems for Cybersecurity (ISCS), Gurugram, India, 3–4 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Altarazi, F. Optimizing waste reduction in manufacturing processes utilizing IoT data with machine learning approach for sustainable production. Scalable Comput. Pract. Exp. 2024, 25, 4192–4204. [Google Scholar] [CrossRef]
- Iglesias, J.; Cuesta, I.; Salueña, C.; Solé, J.; Prevatt, D.O.; Fabregat, A. Predictive modeling of severe weather impact on individuals and populations using machine learning. Int. J. Disaster Risk Reduct. 2024, 105, 104398. [Google Scholar] [CrossRef]
- Abed, W.; Coppola, E. Detection of high convective precipitation events using machine learning methods. In Proceedings of the EGU General Assembly, Vienna, Austria, 14–19 April 2024. EGU24-21760. [Google Scholar] [CrossRef]
- Nyango, J. Climate-proofing critical energy infrastructure: Smart grids, artificial intelligence, and machine learning for power system resilience against extreme weather events. J. Infrastruct. Syst. 2024, 30, 03124001. [Google Scholar] [CrossRef]
- Tabasinezhad, N.; Mousavi-Sabet, H.; Mostafavi, H. Forecasting habitat changes of Vimba persa (Pallas, 1814) under climate change using machine learning techniques in the southern Caspian Sea basin. Int. J. Aquat. Biol. 2024, 12, 109–119. [Google Scholar] [CrossRef]
- Fisher, J.; Allen, S.; Yetman, G.; Pistolesi, L. Assessing the influence of landscape conservation and protected areas on social wellbeing using random forest machine learning. Sci. Rep. 2024, 14, 11357. [Google Scholar] [CrossRef]
- Zheng, J. Deciphering the climate-malaria nexus: A machine learning approach in rural southeastern Tanzania. Public Health 2025, 238, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Sebastianelli, A.; Spiller, D.; Carmo, R.; Wheeler, J.; Nowakowski, A.; Jacobson, L.V.; Kim, D.; Barlevi, H.; Cordero, Z.E.R.; Colón-González, F.J.; et al. A reproducible ensemble machine learning approach to forecast dengue outbreaks. Sci. Rep. 2024, 14, 3807. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Seeboonruang, U.; Chen, W. Projected climate change effects on global vegetation growth: A machine learning approach. Environments 2023, 10, 204. [Google Scholar] [CrossRef]
- Drummond, J. The garden in the machine: An environmental history of Brazil’s Tijuca Forest. Environ. Hist. 1996, 1, 83–104. [Google Scholar] [CrossRef]
- Freitas, S.R.; Neves, C.L.; Chernicharo, P. Tijuca National Park: Two pioneering restorationist initiatives in Atlantic tropical forest in southeastern Brazil. Braz. J. Biol. 2006, 66, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Suman, D.O.; Morais, M.; Saito, C.H. Solutions based on nature to face water stress: Lessons from the past and present. Water 2024, 16, 2301. [Google Scholar] [CrossRef]
- Bondur, V.; Chimitdorzhiev, T.; Kirbizhekova, I.; Dmitriev, A. A novel method of boreal zone reforestation/afforestation estimation using PALSAR-1,2 and Landsat-5,8 data. Forests 2024, 15, 132. [Google Scholar] [CrossRef]
- Francini, S.; Cavalli, A.; D’Amico, G.; McRoberts, R.E.; Maesano, M.; Munafò, M.; Mugnozza, G.S.; Chirici, G. Reusing remote sensing-based validation data: Comparing direct and indirect approaches for afforestation monitoring. Remote Sens. 2023, 15, 1638. [Google Scholar] [CrossRef]
- Faisal, A.; Mumtaz, R.; Mazhar, M.D.; Tahir, M.A.; Jhanjhi, N.Z.; Masud, M.; Shorfuzzaman, M. Data-driven spatial analysis of reforestation in Pakistan: Identifying optimal locations for sustainable forest growth and climate change mitigation. IEEE Access 2024, 12, 190375–190388. [Google Scholar] [CrossRef]
- Sakti, A.D.; Komara, H.Y.; Sumarga, E.; Choiruddin, A.; Hendrawan, V.S.A.; Hati, T.; Anna, Z.; Wikantika, K. Optimizing afforestation and reforestation strategies to enhance ecosystem services in critically degraded regions. Trees For. People 2024, 18, 100700. [Google Scholar] [CrossRef]
- Silvanus Project. Our Approach. Available online: https://silvanus-project.eu/about/approach/ (accessed on 10 April 2025).
- Nunes, L.J.R. The Role of Artificial Intelligence (AI) in the Future of Forestry Sector Logistics. Future Transp. 2025, 5, 63. [Google Scholar] [CrossRef]
- Wang, T.; Zuo, Y.; Manda, T.; Hwarari, D.; Yang, L. Harnessing Artificial Intelligence, Machine Learning and Deep Learning for Sustainable Forestry Management and Conservation: Transformative Potential and Future Perspectives. Plants 2025, 14, 998. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Anderson, N. Machine learning applications in forest and biomass supply chain management: A review. Int. J. For. Eng. 2024, 35, 371–380. [Google Scholar] [CrossRef]
- Jain, M.; Pandey, V.; Chhuttani, P.; Sandeep, C. AI-driven forest management: A critical study. In National Seminar on Enhancing Privacy Protection in the Digital Age: Legal Challenges & Innovations (NSEPPDA 2025), Gurugram, India, 24–25 January 2025; Atlantis Press: Dordrecht, The Netherlands, 2025; pp. 273–297. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espíndola, R.P.; Picanço, M.M.; de Andrade, L.P.; Ebecken, N.F.F. Applications of Machine Learning Methods in Sustainable Forest Management. Climate 2025, 13, 159. https://doi.org/10.3390/cli13080159
Espíndola RP, Picanço MM, de Andrade LP, Ebecken NFF. Applications of Machine Learning Methods in Sustainable Forest Management. Climate. 2025; 13(8):159. https://doi.org/10.3390/cli13080159
Chicago/Turabian StyleEspíndola, Rogério Pinto, Mayara Moledo Picanço, Lucio Pereira de Andrade, and Nelson Francisco Favilla Ebecken. 2025. "Applications of Machine Learning Methods in Sustainable Forest Management" Climate 13, no. 8: 159. https://doi.org/10.3390/cli13080159
APA StyleEspíndola, R. P., Picanço, M. M., de Andrade, L. P., & Ebecken, N. F. F. (2025). Applications of Machine Learning Methods in Sustainable Forest Management. Climate, 13(8), 159. https://doi.org/10.3390/cli13080159