Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (122)

Search Parameters:
Keywords = forced periodic modulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3813 KiB  
Article
OpenOil-Based Analysis of Oil Dispersion Dynamics: The Agia Zoni II Shipwreck Case
by Vassilios Papaioannou, Christos G. E. Anagnostopoulos, Konstantinos Vlachos, Anastasia Moumtzidou, Ilias Gialampoukidis, Stefanos Vrochidis and Ioannis Kompatsiaris
Water 2025, 17(14), 2126; https://doi.org/10.3390/w17142126 - 17 Jul 2025
Viewed by 237
Abstract
This study investigates the spatiotemporal evolution of oil released during the Agia Zoni II shipwreck in the Saronic Gulf in 2017, employing the OpenOil module of the OpenDrift framework. The simulation integrates oceanographic and meteorological data to model the transport, weathering, and fate [...] Read more.
This study investigates the spatiotemporal evolution of oil released during the Agia Zoni II shipwreck in the Saronic Gulf in 2017, employing the OpenOil module of the OpenDrift framework. The simulation integrates oceanographic and meteorological data to model the transport, weathering, and fate of spilled oil over a six-day period. Oil behavior is examined across key transformation processes, including dispersion, emulsification, evaporation, and biodegradation, using particle-based modeling and a comprehensive set of environmental inputs. The modeled results are validated against in situ observations and visual inspection data, focusing on four critical dates. The study demonstrates OpenOil’s potential for accurately simulating oil dispersion dynamics in semi-enclosed marine environments and highlights the significance of environmental forcing, vertical mixing, and shoreline interactions in determining oil fate. It concludes with recommendations for improving real-time response strategies in similar spill scenarios. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Graphical abstract

27 pages, 53601 KiB  
Article
Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China
by Ming Ma, Changsong Lin, Yongfu Liu, Hao Li, Wenfang Yuan, Jingyan Liu, Chaoqun Shi, Manli Zhang and Fan Xu
Appl. Sci. 2025, 15(14), 7783; https://doi.org/10.3390/app15147783 - 11 Jul 2025
Viewed by 265
Abstract
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence [...] Read more.
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence stratigraphy, depositional systems, and the controlling factors of the basin filling in the depression are systematically documented. Four primary depositional systems, including braided river delta, meandering river delta, lacustrine, and swamp deposits, are identified within the Ahe, Yangxia, and Kezilenuer Formations of the Lower–Middle Jurassic. The basin fills can be classified into two second-order and nine third-order sequences (SQ1–SQ9) confined by regional or local unconformities and their correlative conformities. This study shows that the sedimentary evolution has undergone the following three stages: Stage I (SQ1–SQ2) primarily developed braided river, braided river delta, and shallow lacustrine deposits; Stage II (SQ3–SQ5) primarily developed meandering river, meandering river delta, and extensive deep and semi-deep lacustrine deposits; Stage III (SQ6–SQ9) primarily developed swamp (SQ6–SQ7), meandering river delta, and shore–shallow lacustrine deposits (SQ8–SQ9). The uplift of the Tianshan Orogenic Belt in the Early Jurassic (Stage I) may have facilitated the development of braided fluvial–deltaic deposits. The subsequential expansion of the sedimentary area and the weakened sediment supply can be attributed to the planation of the source area and widespread basin subsidence, with the transition of the depositional environments from braided river delta deposits to meandering river delta and swamp deposits. The regional expansion or rise of the lake during Stage II was likely triggered by the hot and humid climate conditions, possibly associated with the Early Jurassic Toarcian Oceanic Anoxic Event. The thick swamp deposits formed during Stage III may be controlled by the interplay of rational accommodation, warm and humid climatic conditions, and limited sediment supply. Milankovitch cycles identified in Stage III further reveal that coal accumulation was primarily modulated by long-period eccentricity forcing. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

14 pages, 4047 KiB  
Article
Impact of Long-Term Alkaline Cleaning on Ultrafiltration Tubular PVDF Membrane Performances
by Marek Gryta and Piotr Woźniak
Membranes 2025, 15(7), 192; https://doi.org/10.3390/membranes15070192 - 27 Jun 2025
Viewed by 517
Abstract
The application of an ultrafiltration (UF) process with periodic membrane cleaning with the use of alkaline detergent solutions was proposed for the recovery of wash water from car wash effluent. In order to test the resistance of the membranes to the degradation caused [...] Read more.
The application of an ultrafiltration (UF) process with periodic membrane cleaning with the use of alkaline detergent solutions was proposed for the recovery of wash water from car wash effluent. In order to test the resistance of the membranes to the degradation caused by the cleaning solutions, a pilot plant study was carried out for almost two years. The installation included an industrial module with FP100 tubular membranes made of polyvinylidene fluoride (PVDF). The module was fed with synthetic effluent obtained by mixing foaming agents and hydrowax. To limit the fouling phenomenon, the membranes were cleaned cyclically with P3 Ultrasil 11 solution (pH = 11.7) or Insect solution (pH = 11.5). During plant shutdowns, the membrane module was maintained with a sodium metabisulphite solution. Changes in the permeate flux, turbidity, COD, and surfactant rejection were analysed during the study. Scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR) analysis were used to determine the changes in the membrane structure. As a result of the repeated chemical cleaning, the pore size increased, resulting in a more than 50% increase in permeate flux. However, the quality of the recovered wash water did not deteriorate, as an additional separation layer was formed on the membrane surface due to the fouling phenomenon. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

25 pages, 3076 KiB  
Article
The Milankovitch Theory Revisited to Explain the Mid-Pleistocene and Early Quaternary Transitions
by Jean-Louis Pinault
Atmosphere 2025, 16(6), 702; https://doi.org/10.3390/atmos16060702 - 10 Jun 2025
Viewed by 1377
Abstract
The theory of orbital forcing as formulated by Milankovitch involves the mediation by the advance (retreat) of ice sheets and the resulting variations in terrestrial albedo. This approach poses a major problem: that of the period of glacial cycles, which varies over time, [...] Read more.
The theory of orbital forcing as formulated by Milankovitch involves the mediation by the advance (retreat) of ice sheets and the resulting variations in terrestrial albedo. This approach poses a major problem: that of the period of glacial cycles, which varies over time, as happened during the Mid-Pleistocene Transition (MPT). Here, we show that various hypotheses are called into question because of the finding of a second transition, the Early Quaternary Transition (EQT), resulting from the million-year period eccentricity parameter. We propose to complement the orbital forcing theory to explain both the MPT and the EQT by invoking the mediation of western boundary currents (WBCs) and the resulting variations in heat transfer from the low to the high latitudes. From observational and theoretical considerations, it appears that very long-period Rossby waves winding around subtropical gyres, the so-called “gyral” Rossby waves (GRWs), are resonantly forced in subharmonic modes from variations in solar irradiance resulting from the solar and orbital cycles. Two mutually reinforcing positive feedbacks of the climate response to orbital forcing have been evidenced: namely the change in the albedo resulting from the cyclic growth and retreat of ice sheets in accordance with the standard Milankovitch theory, and the modulation of the velocity of the WBCs of subtropical gyres. Due to the inherited resonance properties of GRWs, the response of the climate system to orbital forcing is sensitive to small changes in the forcing periods. For both the MPT and the EQT, the transition occurred when the forcing period merged with one of the natural periods of the climate system. The MPT occurred 1.25 Ma ago, when the dominant period shifted from 41 ka to 98 ka, with both periods corresponding to changes in the Earth’s obliquity and eccentricity. The EQT occurred 2.38 Ma ago, when the dominant period shifted from 408 ka to 786 ka, with both periods corresponding to changes in the Earth’s eccentricity. Through this paradigm shift, the objective of this self-consistent approach is essentially to spark new debates around a problem that has been pending since the discovery of glacial–interglacial cycles, where many hypotheses have been put forward without, however, fully answering all our questions. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

25 pages, 10108 KiB  
Article
Superiority of Fault-Caused-Speed-Fluctuation-Based Dynamics Modeling: An Example on Planetary Gearbox with Cracked Sun Gear
by Xiaoqing Yang, Guolin He, Canyi Du, Lei Xu, Junjie Yu, Haiyang Zeng and Yanfeng Li
Machines 2025, 13(6), 500; https://doi.org/10.3390/machines13060500 - 6 Jun 2025
Viewed by 968
Abstract
A planetary gear fault generates periodic speed fluctuations, which significantly influence its vibration signal. It is a necessity to explore the vibration modulation features of gear faults to provide an effective indicator for fault detection. Therefore, a superior rigid-flexible coupling dynamics model of [...] Read more.
A planetary gear fault generates periodic speed fluctuations, which significantly influence its vibration signal. It is a necessity to explore the vibration modulation features of gear faults to provide an effective indicator for fault detection. Therefore, a superior rigid-flexible coupling dynamics model of a planetary gearbox involving the fault-caused speed fluctuation is developed, where the meshing stiffness under the impact of fault-caused speed fluctuation is innovatively deduced utilizing the potential energy method; then, the meshing stiffness is substituted into the rigid dynamics model to calculate the excitation forces. Transfer path functions from excitation locations to the sensor installed on the housing are obtained by considering the modal parameters of the flexible housing. Finally, the excitation forces are combined with their transfer path functions to calculate the vibration signal. The fault modulation features of the cracked sun gear deduced by the superior dynamics model emerge surrounding the meshing frequency and its harmonics, as well as the resonance ranges, which can be a reliable sign for identifying faults. The experiment conducted on a single-stage planetary gearbox confirms the validity and superiority of the proposed model, which holds significant value for guiding fault detection and prognosis in planetary gearboxes. Full article
Show Figures

Figure 1

26 pages, 2873 KiB  
Article
Analysis of the Advantages and Disadvantages of Distance Education in the Context of the Accelerated Digital Transformation of Higher Education
by Irina Shestakova, Vladimir Morgunov, Elena Novikova and Daria Bylieva
Sustainability 2025, 17(10), 4487; https://doi.org/10.3390/su17104487 - 15 May 2025
Viewed by 734
Abstract
Over the past few years, the higher education system has undergone radical transformations. The aim of this paper is to analyze a retrospective reflection on the experience of forced digitalization in the pandemic and post-pandemic periods. One of the promising methods of assessing [...] Read more.
Over the past few years, the higher education system has undergone radical transformations. The aim of this paper is to analyze a retrospective reflection on the experience of forced digitalization in the pandemic and post-pandemic periods. One of the promising methods of assessing changes and their impacts is to conduct longitudinal sociological research. The methodology of this study consists of several modules: 1. a literature review; 2. the formation of a summary; 3. a sociological survey in the pandemic period; 4. a sociological survey in the post-pandemic period; 5. an analysis of the transformation of attitudes toward distance education; and 6. a comparison of the results obtained with a summary table of the literature review. Engineering students in different courses participated in the survey. A total of 652 respondents took part in the first stage and 194 in the second stage. The interval between the stages was two years. According to the results of the study, the conclusions were made that the positive answers of the respondents are most influenced by their expectations; so, they are much less dependent on the year of study and local peculiarities of the university, which are also confirmed by the new characteristic patterns noted in the paper. At the same time, the shortcomings are to a greater extent based on specific local peculiarities. The paper offers a generalized methodological approach for further study of this topic. Full article
Show Figures

Figure 1

19 pages, 3528 KiB  
Article
A Frequency Domain Analysis of the Growth Factor-Driven Extra-Cellular-Regulated Kinase (ERK) Pathway
by Nguyen H. N. Tran, Federico Frascoli and Andrew H. A. Clayton
Biology 2025, 14(4), 374; https://doi.org/10.3390/biology14040374 - 5 Apr 2025
Cited by 1 | Viewed by 464
Abstract
The ERK pathway is an important biochemical cascade and acts as a master regulator of myriad cell processes including cell proliferation, differentiation, and survival. Early biochemical work established that the timing of ERK phosphorylation was an important determinant of PC12 cell fate, with [...] Read more.
The ERK pathway is an important biochemical cascade and acts as a master regulator of myriad cell processes including cell proliferation, differentiation, and survival. Early biochemical work established that the timing of ERK phosphorylation was an important determinant of PC12 cell fate, with extended phosphorylation (with nerve growth factor treatment) linked to differentiation but rapid on–off ERK phosphorylation kinetics (with epidermal growth factor treatment) linked to cell proliferation. Recent work from several laboratories has revealed that periodic forcing the phosphorylation of ERK with growth factors, light (optogenetics) or electronically can switch cell fate from proliferative to differentiated depending on type of stimulus (amplitude and frequency). Here, we take an ERK model and analyze it from the frequency domain perspective. The key is the transfer function, which provides a compact description of input (growth factor)–output (ERK activation) behavior over a range of input frequencies, allowing an understanding of system dynamics in terms of amplitude modulations, phase shifts, and signaling bandwidths. Our analysis of transfer functions indicates that, at normal receptor levels, the ERK pathway acts as a negative feedback amplifier to growth factor fluctuations, amplifying them at low receptor occupancy but suppressing them at high receptor occupancy. The frequency dependence is best described as a resonant low pass filter, which selectively filters out high frequency input oscillations. We use the transfer function to predict how different growth factor input dynamics shape ERK activation. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Graphical abstract

16 pages, 11430 KiB  
Article
Analysis of Electromagnetic Vibration in Permanent Magnet Motors Based on Random PWM Technology
by Chi Ma, Yongxiang Wang, Huang Chen, Jianfeng Hong and Yi Wang
Machines 2025, 13(4), 259; https://doi.org/10.3390/machines13040259 - 22 Mar 2025
Cited by 1 | Viewed by 481
Abstract
High vibration noise limits the application of permanent magnet motors in electric locomotive traction. This paper focuses on the high-frequency electromagnetic vibration in traction permanent magnet motors introduced by inverters. It explores the impact of periodic and random switching frequency pulse-width modulation (PWM) [...] Read more.
High vibration noise limits the application of permanent magnet motors in electric locomotive traction. This paper focuses on the high-frequency electromagnetic vibration in traction permanent magnet motors introduced by inverters. It explores the impact of periodic and random switching frequency pulse-width modulation (PWM) schemes on the high-frequency electromagnetic vibration performance of permanent magnet motors. The studied works are as follows: (1) The sources of higher-order harmonic components in the stator current are analyzed, and the characteristics of electromagnetic forces generated by these higher-order harmonic currents are studied. (2) The principles for suppressing high-frequency electromagnetic vibrations through random PWM are introduced. (3) The impact of the random switching frequency on higher-order harmonic currents in permanent magnet motors is analyzed through simulations. (4) The comprehensive experimental validation and evaluation of the random PWM technique are conducted on a permanent magnet motor. The results show that the vibration near the carrier frequency can be effectively weakened, but the overall vibration level has not been effectively reduced. Full article
(This article belongs to the Special Issue Vibration Detection of Induction and PM Motors)
Show Figures

Figure 1

18 pages, 41724 KiB  
Article
Astronomical Chronology Framework of the Lingshui Formation (Oligocene) in the Northern South China Sea
by Jianhao Liang, Yaning Wang, Shangfeng Zhang, Yubing Liang, Gaoyang Gong and Rui Han
J. Mar. Sci. Eng. 2025, 13(1), 86; https://doi.org/10.3390/jmse13010086 - 6 Jan 2025
Cited by 2 | Viewed by 1168
Abstract
This study has determined the period of sedimentation of the Lingshui Formation as the Oligocene (Rupelian-Chattian) through biostratigraphic data, including planktonic foraminifera zonation. The astronomical timescale framework for the Lingshui Formation was accurately constructed by integrating geophysical logging data and employing a multidisciplinary [...] Read more.
This study has determined the period of sedimentation of the Lingshui Formation as the Oligocene (Rupelian-Chattian) through biostratigraphic data, including planktonic foraminifera zonation. The astronomical timescale framework for the Lingshui Formation was accurately constructed by integrating geophysical logging data and employing a multidisciplinary approach that includes time series analysis, cyclostratigraphy, astronomical dating, and Power Ratio Accumulation (PRA) methods. Sensitivity analysis of PRA has shown that natural gamma (GR) is the optimal paleoclimatic proxy, laying the foundation for subsequent analyses. The optimal sedimentation rate for the Lingshui Formation, determined by combining the coefficient of correlation (COCO) method with PRA analysis, is 5–5.4 cm/kyr. The duration of the Lingshui Formation was established at 5.02 Ma (28.52 Ma–23.5 Ma) based on time series analysis and astronomical tuning. The sediment noise model has revealed that the ~1.2 Myr obliquity modulation period has a significant impact on sea-level changes, further confirming the stratigraphic control of astronomical forcing on the sedimentation rate of the Lingshui Formation. This study establishes a high-precision astronomical timescale framework for the Lingshui Formation and provides a robust methodology, offering scientific basis for the research in astronomical chronostratigraphy and cycle stratigraphy, which has significant potential implications. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

18 pages, 4406 KiB  
Article
A Baroclinic Fluid Model and Its Application in Investigating the Salinity Transport Process Within the Sediment–Water Interface in an Idealized Estuary
by Jun Zhao, Liangsheng Zhu, Bo Hong and Jianhua Li
J. Mar. Sci. Eng. 2024, 12(11), 2107; https://doi.org/10.3390/jmse12112107 - 20 Nov 2024
Viewed by 880
Abstract
Understanding the salinity transport process around the sediment–water interface is important for water resources management in the upper reach of an estuary. In this study, we developed a baroclinic fluid dynamic model for investigating the flow and salt transport characteristics within the sediment–water [...] Read more.
Understanding the salinity transport process around the sediment–water interface is important for water resources management in the upper reach of an estuary. In this study, we developed a baroclinic fluid dynamic model for investigating the flow and salt transport characteristics within the sediment–water interface under tidal forcing. The validation showed robust model performance on the salinity transport within the sediment–water interface. The results revealed that the turbulent kinetic energy, dissipation rate, and kinetic energy production rate exhibited periodic variations within the seabed boundary layer. The thickness of the viscous sublayer and the mean flow showed an inverse relationship. Water and salinity exchange within the sediment–water interface occurred predominantly via turbulent diffusion, with extreme turbulent kinetic energy production rates appearing during the tidal reversal, flood, and ebb stages. The sediment acted as a source of salinity release during ebb tides and a sink for salinity absorption during flood tides. As the sediment depth increased, fluctuations in salinity were weakened. These results clearly illustrated that the sediment layer is important in modulating the salinity transport in the upper reach of an estuary. However, such an important process was usually excluded by previous studies. The model developed in this study can be used as a sediment–water interface module that, coupled with other hydrodynamic models, can evaluate the contributions of the sediment layer to the salinity exchange in coastal water. Full article
Show Figures

Figure 1

10 pages, 1346 KiB  
Article
Efficacy of High-Definition Transcranial Alternating Current Stimulation (HD-tACS) at the M1 Hotspot Versus C3 Site in Modulating Corticospinal Tract Excitability
by Hao Meng, Michael Houston, Nicholas Dias, Chen Guo, Gerard Francisco, Yingchun Zhang and Sheng Li
Biomedicines 2024, 12(11), 2635; https://doi.org/10.3390/biomedicines12112635 - 19 Nov 2024
Viewed by 1535
Abstract
Previous studies have shown that beta-band transcranial alternating current stimulation (tACS) applied at the M1 hotspot can modulate corticospinal excitability. However, it remains controversial whether tACS can influence motor unit activities at the spinal cord level. This study aims to compare the efficacy [...] Read more.
Previous studies have shown that beta-band transcranial alternating current stimulation (tACS) applied at the M1 hotspot can modulate corticospinal excitability. However, it remains controversial whether tACS can influence motor unit activities at the spinal cord level. This study aims to compare the efficacy of applying tACS over the hotspot versus the conventional C3 site on motor unit activities and subsequent behavioral changes. This study used a randomized crossover trial design, where fifteen healthy participants performed a paced ball-squeezing exercise while receiving high-definition tACS (HD-tACS) at 21 Hz and 2 mA for 20 min. HD-tACS targeted either the flexor digitorum superficialis (FDS) hotspot or the C3 site, with the order of stimulation randomized for each participant and a 1-week washout period between sessions. Motor unit activities were recorded from the FDS. HD-tACS intervention significantly reduced the variability of motor unit firing rates and increased force variability during isometric force production. The significant modulation effects were seen only when the intervention was applied at the hotspot, but not at the C3 site. Our findings demonstrate that HD-tACS significantly modulates motor unit activities and force variability. The results indicate that cortical-level entrainment by tACS can lead to the modulation of spinal motor neuron activities. Additionally, this study provides further evidence that the C3 site may not be the optimal target for tACS intervention for hand muscles, highlighting the need for personalized neuromodulation strategies. Full article
(This article belongs to the Collection Feature Papers in Neuromodulation and Brain Stimulation)
Show Figures

Figure 1

27 pages, 7003 KiB  
Article
Resonant Forcing by Solar Declination of Rossby Waves at the Tropopause and Implications in Extreme Precipitation Events and Heat Waves—Part 2: Case Studies, Projections in the Context of Climate Change
by Jean-Louis Pinault
Atmosphere 2024, 15(10), 1226; https://doi.org/10.3390/atmos15101226 - 14 Oct 2024
Cited by 1 | Viewed by 1117
Abstract
Based on the properties of Rossby waves at the tropopause resonantly forced by solar declination in harmonic modes, which was the subject of a first article, case studies of heatwaves and extreme precipitation events are presented. They clearly demonstrate that extreme events only [...] Read more.
Based on the properties of Rossby waves at the tropopause resonantly forced by solar declination in harmonic modes, which was the subject of a first article, case studies of heatwaves and extreme precipitation events are presented. They clearly demonstrate that extreme events only form under specific patterns of the amplitude of the speed of modulated airflows of Rossby waves at the tropopause, in particular period ranges. This remains true even if extreme events appear as compound events where chaos and timing are crucial. Extreme events are favored when modulated cold and warm airflows result in a dual cyclone-anticyclone system, i.e., the association of two joint vortices of opposite signs. They reverse over a period of the dominant harmonic mode in spatial and temporal coherence with the modulated airflow speed pattern. This key role could result from a transfer of humid/dry air between the two vortices during the inversion of the dual system. Finally, focusing on the two period ranges 17.1–34.2 and 8.56–17.1 days corresponding to 1/16- and 1/32-year period harmonic modes, projections of the amplitude of wind speed at 250 mb, geopotential height at 500 mb, ground air temperature, and precipitation rate are performed by extrapolating their amplitude observed from January 1979 to March 2024. Projected amplitudes are regionalized on a global scale for warmest and coldest half-years, referring to extratropical latitudes. Causal relationships are established between the projected amplitudes of modulated airflow speed and those of ground air temperature and precipitation rate, whether they increase or decrease. The increase in the amplitude of modulated airflow speed of polar vortices induces their latitudinal extension. This produces a tightening of Rossby waves embedded in the polar and subtropical jet streams. In the context of climate change, this has the effect of increasing the efficiency of the resonant forcing of Rossby waves from the solar declination, the optimum of which is located at mid-latitudes. Hence the increased or decreased vulnerability to heatwaves or extreme precipitation events of some regions. Europe and western Asia are particularly affected, which is due to increased activity of the Arctic polar vortex between longitudes 20° W and 40° E. This is likely a consequence of melting ice and changing albedo, which appears to amplify the amplitude of variation in the period range 17.1–34.2 days of poleward circulation at the tropopause of the Arctic polar cell. Full article
Show Figures

Figure 1

21 pages, 6180 KiB  
Article
Adaptive Measurement and Parameter Estimation for Low-SNR PRBC-PAM Signal Based on Adjusting Zero Value and Chaotic State Ratio
by Minghui Lv, Xiaopeng Yan, Ke Wang, Xinhong Hao and Jian Dai
Mathematics 2024, 12(20), 3203; https://doi.org/10.3390/math12203203 - 12 Oct 2024
Viewed by 1168
Abstract
Accurately estimating the modulation parameters of pseudorandom binary code–pulse amplitude modulation (PRBC–PAM) signals damaged by strong noise poses a significant challenge in emitter identification and countermeasure. Traditionally, weak signal detection methods based on chaos theory can handle situations with low signal-to-noise ratio, but [...] Read more.
Accurately estimating the modulation parameters of pseudorandom binary code–pulse amplitude modulation (PRBC–PAM) signals damaged by strong noise poses a significant challenge in emitter identification and countermeasure. Traditionally, weak signal detection methods based on chaos theory can handle situations with low signal-to-noise ratio, but most of them are developed for simple sin/cos waveform and cannot face PRBC–PAM signals commonly used in ultra-low altitude performance equipment. To address the issue, this article proposes a novel adaptive detection and estimation method utilizing the in-depth analysis of the Duffing oscillator’s behaviour and output characteristics. Firstly, the short-time Fourier transform (STFT) is used for chaotic state identification and ternary processing. Then, two novel approaches are proposed, including the adjusting zero value (AZV) method and the chaotic state ratio (CSR) method. The proposed weak signal detection system exhibits unique capability to adaptively modify its internal periodic driving force frequency, thus altering the difference frequency to estimate the signal parameters effectively. Furthermore, the accuracy of the proposed method is substantiated in carrier frequency estimation under varying SNR conditions through extensive experiments, demonstrating that the method maintains high precision in carrier frequency estimation and a low bit error rate in both the pseudorandom sequence and carrier frequency, even at an SNR of −30 dB. Full article
Show Figures

Figure 1

11 pages, 3674 KiB  
Communication
Characterizing the Supercooled Cloud over the TP Eastern Slope in 2016 via Himawari-8 Products
by Qiuyu Wu, Jinghua Chen and Yan Yin
Remote Sens. 2024, 16(19), 3643; https://doi.org/10.3390/rs16193643 - 29 Sep 2024
Viewed by 1009
Abstract
Supercooled liquid water (SLW) refers to droplets in clouds that remain unfrozen at temperatures below 0 °C. SLW is an important intermediate hydrometeor in the processes of snowfall and rainfall that can modulate the radiation budget. This study investigates the distribution of supercooled [...] Read more.
Supercooled liquid water (SLW) refers to droplets in clouds that remain unfrozen at temperatures below 0 °C. SLW is an important intermediate hydrometeor in the processes of snowfall and rainfall that can modulate the radiation budget. This study investigates the distribution of supercooled cloud water over mainland China using the East Asia–Pacific cloud macro- and microphysical properties dataset (2016), derived from Himawari-8 observations. The results show that the highest frequency of SLW in liquid-phase stratus clouds occur at the eastern slope of the Tibetan Plateau, the western side of the Sichuan Basin. Additional SLW is mostly found in liquid-phase clouds over the Sichuan Basin and its adjacent areas in southern China. In the region with the highest frequency of SLW, the mechanical forcing of the Tibetan Plateau causes the convergence of low-level airflow within the basin, which also carries moisture that is forced to ascend stably, creating a favorable condition for the formation of supercooled clouds. As the airflow continues to ascend, it encounters the mid-to-upper-level westerlies and temperature inversion. At the mid-to-upper level, the westerlies exhibit stronger wind speeds, directing flow towards the basin. Concurrently, the temperature inversion stabilizes the atmospheric stratification, limiting the further ascent of airflow. This inversion can also restrain convection and upward motion within the clouds, allowing for SLW to exist and persist for an extended period. Full article
Show Figures

Figure 1

19 pages, 1991 KiB  
Article
Intelligent Combustion Control in Waste-to-Energy Facilities: Enhancing Efficiency and Reducing Emissions Using AI and IoT
by Dongmin Shin, Jaeho Lee, Jihoon Son, Yongkeun Yun, Yoonchan Song and Jaeman Song
Energies 2024, 17(18), 4634; https://doi.org/10.3390/en17184634 - 17 Sep 2024
Cited by 3 | Viewed by 2352
Abstract
Expanding waste-to-energy (WtE) facilities is difficult, and with tightening incineration regulations, improvements in WtE facility operations are required to dispose of waste that is increasing by an average of 4.8% annually. To achieve this, an intelligent combustion control (ICC) system was studied using [...] Read more.
Expanding waste-to-energy (WtE) facilities is difficult, and with tightening incineration regulations, improvements in WtE facility operations are required to dispose of waste that is increasing by an average of 4.8% annually. To achieve this, an intelligent combustion control (ICC) system was studied using digital technologies such as the Internet of Things and artificial intelligence to improve the operation of WtE facilities. The ICC system in this study is composed of three modules: perception, decision, and control. Perception: collecting and visualizing digital data on the operating status of WtE facilities; Decision: using AI to propose optimal operation methods; Control: automatically controlling the WtE facility according to the AI-suggested optimization methods. The ICC system was applied to the “G” WtE facility, a solid waste WtE facility operating in Gyeonggi province, Republic of Korea, and the digital data collected over six months showed high quality, with low delay and a data loss rate of only 0.12%. Additionally, in January 2024, the ICC system was used to automatically control the second forced draft fan and induced draft fan over a four-day period. As a result, the incinerator flue gas temperature decreased by 0.66%, steam flow rate improved by 2.41%, power generation increased by 3.09%, CO emissions were reduced by 60.72%, and NOx emissions decreased by 7.33%. Future research will expand the ICC system to include the automatic control of the first forced draft fan and the operation time of the stoker. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

Back to TopTop