Characterizing the Supercooled Cloud over the TP Eastern Slope in 2016 via Himawari-8 Products
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Letu, H.; Shang, H.; Zhao, C.; Li, J.; Ma, R. A Supercooled Water Cloud Detection Algorithm Using Himawari-8 Satellite Measurements. J. Geophys. Res. Atmos. 2019, 124, 2724–2738. [Google Scholar] [CrossRef]
- Jiang, H.; Cotton, W.R.; Pinto, J.O.; Curry, J.A.; Weissbluth, M.J. Cloud Resolving Simulations of Mixed-Phase Arctic Stratus Observed during BASE: Sensitivity to Concentration of Ice Crystals and Large-Scale Heat and Moisture Advection. J. Atmos. Sci. 2000, 57, 2105–2117. [Google Scholar] [CrossRef]
- Tabazadeh, A.; Djikaev, Y.S.; Reiss, H. Surface Crystallization of Supercooled Water in Clouds. Proc. Natl. Acad. Sci. USA 2002, 99, 15873–15878. [Google Scholar] [CrossRef] [PubMed]
- Maciel, F.V.; Diao, M. The Transition from Supercooled Liquid Water to Ice Crystals in Mixed-Phase Clouds Based on Airborne In-Situ Observations. Atmos. Meas. Tech. Discuss. 2022, 17, 4843–4861. [Google Scholar] [CrossRef]
- Bruintjes, R.T. A Review of Cloud Seeding Experiments to Enhance Precipitation and Some New Prospects. Bull. Am. Meteorol. Soc. 1999, 80, 805–820. [Google Scholar] [CrossRef]
- Morrison, A.E.; Siems, S.T.; Manton, M.J. On a Natural Environment for Glaciogenic Cloud Seeding. J. Appl. Meteorol. Climatol. 2013, 52, 1097–1104. [Google Scholar] [CrossRef]
- Li, D.; Zhao, C.; Yue, Z.; Liu, C.; Sun, Y.; Cohen, J.B. Response of Cloud and Precipitation Properties to Seeding at a Supercooled Cloud-Top Layer. Earth Space Sci. 2022, 9, e2021EA001791. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, C.; Fu, J.; Cui, Y.; Dong, X.; Mai, R.; Xu, F. Response of Mixed-Phase Cloud Microphysical Properties to Cloud-Seeding Near Cloud Top Over Hebei, China. Front. Environ. Sci. 2022, 10, 865966. [Google Scholar] [CrossRef]
- Brown, S.; Lengaigne, J.; Sharifi, N.; Pugh, M.; Moreau, C.; Dolatabadi, A.; Martinu, L.; Klemberg-Sapieha, J.E. Durability of Superhydrophobic Duplex Coating Systems for Aerospace Applications. Surf. Coat. Technol. 2020, 401, 126249. [Google Scholar] [CrossRef]
- Li, S.; Paoli, R. Modeling of Ice Accretion over Aircraft Wings Using a Compressible OpenFOAM Solver. Int. J. Aerosp. Eng. 2019, 2019, e4864927. [Google Scholar] [CrossRef]
- Chen, C.; Cotton, W.R. The Physics of the Marine Stratocumulus-Capped Mixed Layer. J. Atmos. Sci. 1987, 44, 2951–2977. [Google Scholar] [CrossRef]
- Bodas-Salcedo, A.; Hill, P.G.; Furtado, K.; Williams, K.D.; Field, P.R.; Manners, J.C.; Hyder, P.; Kato, S. Large Contribution of Supercooled Liquid Clouds to the Solar Radiation Budget of the Southern Ocean. J. Clim. 2016, 29, 4213–4228. [Google Scholar] [CrossRef]
- Murray, B.J.; Carslaw, K.S.; Field, P.R. Opinion: Cloud-Phase Climate Feedback and the Importance of Ice-Nucleating Particles. Atmos. Chem. Phys. 2021, 21, 665–679. [Google Scholar] [CrossRef]
- Li, J.; Lv, Q.; Zhang, M.; Wang, T.; Kawamoto, K.; Chen, S.; Zhang, B. Effects of Atmospheric Dynamics and Aerosols on the Fraction of Supercooled Water Clouds. Atmos. Chem. Phys. 2017, 17, 1847–1863. [Google Scholar] [CrossRef]
- Hou, T.; Lei, H.; Hu, Z. A Comparative Study of the Microstructure and Precipitation Mechanisms for Two Stratiform Clouds in China. Atmos. Res. 2010, 96, 447–460. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, X.; Zhao, T.; Xu, X.; Zheng, X.; Li, Y.; Luo, L.; Gui, K.; Zheng, Y.; Shu, Z. Effect of Large Topography on Atmospheric Environment in Sichuan Basin: A Climate Analysis Based on Changes in Atmospheric Visibility. Front. Earth Sci. 2022, 10, 997586. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, B.; Zhang, W.; Yang, S.; Xu, X. Formation Mechanisms of Persistent Extreme Precipitation Events over the Eastern Periphery of the Tibetan Plateau: Synoptic Conditions, Moisture Transport and the Effect of Steep Terrain. Atmos. Res. 2024, 304, 107341. [Google Scholar] [CrossRef]
- National Tibetan Plateau Data Center. HUSI Letu East Asia-Pacific Cloud Macro- and Microphysical Properties Data Set (2016). 2022. Available online: https://data.tpdc.ac.cn/en/data/70c753d2-0471-4689-abab-798e2270c8b2/ (accessed on 8 September 2022).
- Letu, H.; Yang, K.; Nakajima, T.Y.; Ishimoto, H.; Nagao, T.M.; Riedi, J.; Baran, A.J.; Ma, R.; Wang, T.; Shang, H.; et al. High-Resolution Retrieval of Cloud Microphysical Properties and Surface Solar Radiation Using Himawari-8/AHI next-Generation Geostationary Satellite. Remote Sens. Environ. 2020, 239, 111583. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Baum, B.A.; Menzel, W.P.; Frey, R.A.; Tobin, D.C.; Holz, R.E.; Ackerman, S.A.; Heidinger, A.K.; Yang, P. MODIS Cloud-Top Property Refinements for Collection 6. J. Appl. Meteorol. Climatol. 2012, 51, 1145–1163. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.D.; Meyer, K.G.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Ridgway, B.; et al. MODIS Cloud Optical Properties: User Guide for the Collection 6 Level-2 MOD06/MYD06 Product and Associated Level-3 Datasets. Version 2015, 1, 145. [Google Scholar]
- Hu, Y.; Rodier, S.; Xu, K.; Sun, W.; Huang, J.; Lin, B.; Zhai, P.; Josset, D. Occurrence, Liquid Water Content, and Fraction of Supercooled Water Clouds from Combined CALIOP/IIR/MODIS Measurements. J. Geophys. Res. 2010, 115, 2009JD012384. [Google Scholar] [CrossRef]
- Yu, R.; Wang, B.; Zhou, T. Climate Effects of the Deep Continental Stratus Clouds Generated by the Tibetan Plateau. J. Clim. 2004, 17, 2702–2713. [Google Scholar] [CrossRef]
- Qi, H.; Cai, F.; Lei, G.; Cao, H.; Shi, F. The Response of Three Main Beach Types to Tropical Storms in South China. Mar. Geol. 2010, 275, 244–254. [Google Scholar] [CrossRef]
- Yang, C.A.; Diao, M.; Gettelman, A.; Zhang, K.; Sun, J.; McFarquhar, G.; Wu, W. Ice and Supercooled Liquid Water Distributions Over the Southern Ocean Based on In Situ Observations and Climate Model Simulations. J. Geophys. Res. Atmos. 2021, 126, e2021JD036045. [Google Scholar] [CrossRef]
- Yang, S.; Zou, X. Temperature Profiles and Lapse Rate Climatology in Altostratus and Nimbostratus Clouds Derived from GPS RO Data. J. Clim. 2013, 26, 6000–6014. [Google Scholar] [CrossRef]
- Schiemann, R.; Lüthi, D.; Schär, C. Seasonality and Interannual Variability of the Westerly Jet in the Tibetan Plateau Region. J. Clim. 2009, 22, 2940–2957. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, T.; Tie, X.; Wang, Z. The Warming Tibetan Plateau Improves Winter Air Quality in the Sichuan Basin, China. Atmos. Chem. Phys. 2020, 20, 14873–14887. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y. Southwesterly Water Vapor Transport Induced by Tropical Cyclones over the Bay of Bengal during the South Asian Monsoon Transition Period. J. Meteorol. Res. 2022, 36, 140–153. [Google Scholar] [CrossRef]
- Ning, G.; Yim, S.H.L.; Wang, S.; Duan, B.; Nie, C.; Yang, X.; Wang, J.; Shang, K. Synergistic Effects of Synoptic Weather Patterns and Topography on Air Quality: A Case of the Sichuan Basin of China. Clim Dyn 2019, 53, 6729–6744. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, X.; Zheng, J.; Yan, P.; Wang, Y.; Cai, W. The Characteristics of Abnormal Wintertime Pollution Events in the Jing-Jin-Ji Region and Its Relationships with Meteorological Factors. Sci. Total Environ. 2018, 626, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Enz, J.W.; Hofman, V.; Thostenson, A. Air Temperature Inversions. NDSU Ext. 2019, 1705, 1–16. [Google Scholar]
- Zhang, J.; Zheng, Y.; Li, Z.; Xia, X.; Chen, H. A 17-Year Climatology of Temperature Inversions above Clouds over the ARM SGP Site: The Roles of Cloud Radiative Effects. Atmos. Res. 2020, 237, 104810. [Google Scholar] [CrossRef]
- Ricaud, P.; Del Guasta, M.; Lupi, A.; Roehrig, R.; Bazile, E.; Durand, P.; Attié, J.-L.; Nicosia, A.; Grigioni, P. Supercooled Liquid Water Clouds Observed over Dome C, Antarctica: Temperature Sensitivity and Surface Radiation Impact. Atmos. Chem. Phys. Discuss. 2022, 24, 613–630. [Google Scholar] [CrossRef]
Frequency of Temperature Inversion | The Height and Frequency of Temperature Inversions | |||||
---|---|---|---|---|---|---|
600 hPa | 650 hPa | 700 hPa | 750 hPa | 775 hPa | ||
January | 0.795 | 7817 | 6007 | 4661 | 3288 | 1908 |
February | 0.819 | 2566 | 3102 | 1934 | 779 | 289 |
November | 0.687 | 5042 | 5432 | 5204 | 3005 | 1571 |
December | 0.685 | 7169 | 8275 | 6138 | 4239 | 1939 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Chen, J.; Yin, Y. Characterizing the Supercooled Cloud over the TP Eastern Slope in 2016 via Himawari-8 Products. Remote Sens. 2024, 16, 3643. https://doi.org/10.3390/rs16193643
Wu Q, Chen J, Yin Y. Characterizing the Supercooled Cloud over the TP Eastern Slope in 2016 via Himawari-8 Products. Remote Sensing. 2024; 16(19):3643. https://doi.org/10.3390/rs16193643
Chicago/Turabian StyleWu, Qiuyu, Jinghua Chen, and Yan Yin. 2024. "Characterizing the Supercooled Cloud over the TP Eastern Slope in 2016 via Himawari-8 Products" Remote Sensing 16, no. 19: 3643. https://doi.org/10.3390/rs16193643
APA StyleWu, Q., Chen, J., & Yin, Y. (2024). Characterizing the Supercooled Cloud over the TP Eastern Slope in 2016 via Himawari-8 Products. Remote Sensing, 16(19), 3643. https://doi.org/10.3390/rs16193643