Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,827)

Search Parameters:
Keywords = force plates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4221 KiB  
Article
Dynamics Modeling and Control Method for Non-Cooperative Target Capture with a Space Netted Pocket System
by Wenyu Wang, Huibo Zhang, Jinming Yao, Wenbo Li, Zhuoran Huang, Chao Tang and Yang Zhao
Actuators 2025, 14(7), 358; https://doi.org/10.3390/act14070358 - 21 Jul 2025
Viewed by 93
Abstract
The space flexible netted pocket capture system provides a flexible and stable solution for capturing non-cooperative space objects. This paper investigates the control problem for the capture of non-cooperative targets undergoing motion. A dynamic model of the capturing net is established based on [...] Read more.
The space flexible netted pocket capture system provides a flexible and stable solution for capturing non-cooperative space objects. This paper investigates the control problem for the capture of non-cooperative targets undergoing motion. A dynamic model of the capturing net is established based on the absolute nodal coordinate formulation (ANCF) and equivalent plate–shell theory. A contact collision force model is developed using a spring–damper model. Subsequently, a feedforward controller is designed based on the estimated collision force from the dynamic model, aiming to compensate for the collision effects between the target and the net. By incorporating the collision estimation data, an extended state observer is designed, taking into account the collision estimation errors and the flexible uncertainties. A sliding mode feedback controller is then designed using the fast terminal sliding mode control method. Finally, simulation analysis of target capture under different motion states is conducted. The results demonstrate that the spacecraft system’s position and attitude average flutter amplitudes are less than 102 m and 102 deg. In comparison to standard sliding mode control, the designed controller reduces the attitude jitter amplitude by an order of magnitude, thus demonstrating its effectiveness and superiority. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

28 pages, 3409 KiB  
Article
Wobble Board Instability Enhances Compensatory CoP Responses to CoM Movement Across Timescales
by Mahsa Barfi, Theodoros Deligiannis, Brian Schlattmann, Karl M. Newell and Madhur Mangalam
Sensors 2025, 25(14), 4454; https://doi.org/10.3390/s25144454 - 17 Jul 2025
Viewed by 139
Abstract
This study investigated the interplay of bodily degrees of freedom (DoFs) governing the collective variable comprising the center of pressure (CoP) and center of mass (CoM) in postural control through the analytical lens of multiplicative interactions across scales. We employed a task combination [...] Read more.
This study investigated the interplay of bodily degrees of freedom (DoFs) governing the collective variable comprising the center of pressure (CoP) and center of mass (CoM) in postural control through the analytical lens of multiplicative interactions across scales. We employed a task combination involving a wobble board, introducing mechanical instability mainly along the mediolateral (ML) axis and the Trail Making Task (TMT), which imposes precise visual demands primarily along the anteroposterior (AP) axis. Using Multiscale Regression Analysis (MRA), a novel analytical method rooted in Detrended Fluctuation Analysis (DFA), we scrutinized CoP-to-CoM and CoM-to-CoP effects across multiple timescales ranging from 100ms to 10s. CoP was computed from ground reaction forces recorded via a force plate, and CoM was derived from full-body 3D motion capture using a biomechanical model. We found that the wobble board attenuated CoM-to-CoP effects across timescales ranging from 100to400ms. Further analysis revealed nuanced changes: while there was an overall reduction, this encompassed an accentuation of CoM-to-CoP effects along the AP axis and a decrease along the ML axis. Importantly, these alterations in CoP’s responses to CoM movements outweighed any nonsignificant effects attributable to the TMT. CoM exhibited no sensitivity to CoP movements, regardless of the visual and mechanical task demands. In addition to identifying the characteristic timescales associated with bodily DoFs in facilitating upright posture, our findings underscore the critical significance of directionally challenging biomechanical constraints, particularly evident in the amplification of CoP-to-CoM effects along the AP axis in response to ML instability. These results underscore the potential of wobble board training to enhance the coordinative and compensatory responses of bodily DoFs to the shifting CoM by prompting appropriate adjustments in CoP, thereby suggesting their application for reinstating healthy CoM–CoP dynamics in clinical populations with postural deficits. Full article
Show Figures

Figure 1

14 pages, 985 KiB  
Article
Forefoot Centre of Pressure Patterns in Black Male African Recreational Runners with Pes Planus
by Jodie Dickson, Glen James Paton and Yaasirah Mohomed Choonara
J. Funct. Morphol. Kinesiol. 2025, 10(3), 273; https://doi.org/10.3390/jfmk10030273 - 16 Jul 2025
Viewed by 145
Abstract
Background: Pes planus is a condition where the arch of the foot collapses, resulting in the entire sole contacting the ground. The biomechanical implications of pes planus on gait have been widely studied; however, research specific to Black African populations, particularly recreational runners, [...] Read more.
Background: Pes planus is a condition where the arch of the foot collapses, resulting in the entire sole contacting the ground. The biomechanical implications of pes planus on gait have been widely studied; however, research specific to Black African populations, particularly recreational runners, is scarce. Aim: This study aimed to describe the forefoot centre of pressure (CoP) trajectory during the barefoot gait cycle among Black African recreational runners with pes planus. Methods: A prospective explorative and quantitative study design was employed. Participants included Black African male recreational runners aged 18 to 45 years diagnosed with pes planus. A Freemed™ 6050 force plate was used to collect gait data. Statistical analysis included cross-tabulations to identify patterns. Results: This study included 104 male participants across seven weight categories, with the majority in the 70-to-79 kg range (34.6%, n = 36). Most participants with pes planus showed a neutral foot posture (74.0%, n = 77) on the foot posture index 6 (FPI-6) scale. Flexible pes planus (94.2%, n = 98) was much more common than rigid pes planus (5.8%, n = 6). Lateral displacement of the CoP was observed in the right forefoot (90.4%, n = 94) and left forefoot (57.7%, n = 60). Load distribution patterns differed between feet, with the right foot favouring the medial heel, arch, and metatarsal heads, while the left foot favoured the lateral heel, medial heel, and lateral arch. No statistical significance was found in the cross-tabulations, but notable lateral CoP displacement in the forefoot was observed. Conclusions: The findings challenge the traditional view of pes planus causing overpronation and highlight the need for clinicians to reconsider standard diagnostic and management approaches. Further research is needed to explore the implications of these findings for injury prevention and management in this population. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Physical Activity and Sports—2nd Edition)
Show Figures

Figure 1

17 pages, 2884 KiB  
Article
Dynamic System Roughening from Mineral to Tectonic Plate Scale: Similarities Between Stylolites and Mid-Ocean Ridges
by Daniel Hafermaas, Saskia Köhler, Daniel Koehn and Renaud Toussaint
Minerals 2025, 15(7), 743; https://doi.org/10.3390/min15070743 - 16 Jul 2025
Viewed by 191
Abstract
Stylolites are a common mineral dissolution feature in rocks that develop during compression and form distinct tooth structures. On a tectonic plate scale, mid-ocean ridges (MORs) and transform faults are a significant feature of the Earth’s surface that develop due to accretion of [...] Read more.
Stylolites are a common mineral dissolution feature in rocks that develop during compression and form distinct tooth structures. On a tectonic plate scale, mid-ocean ridges (MORs) and transform faults are a significant feature of the Earth’s surface that develop due to accretion of new material in an extensional regime. We present a comparison between the two features and argue that transform faults in MOR are similar to the sides of stylolite teeth, with both features representing kinematic faults (KFs). First, we present a numerical model of both stylolite and MOR growth and show that in both cases, KFs nucleate and grow spontaneously. In addition, we use a well-established technique (Family–Vicsek scaling) of describing fractal self-affine interfaces, which has been used for stylolites, to characterize the pattern of MOR systems in both simulations and natural examples. Our results show that stylolites and MOR have self-affine scaling characteristics with similar scaling regimes. They both show a larger roughness exponent at the small scale, a smaller exponent at the intermediate scale, followed by a flattening of the system at the largest scale. For stylolites, the physical forces behind the scaling are the surface energy at the small mineral scale, the elastic energy at the intermediate scale, followed by the system reaching the correlation length where growth stops. For MORs, the physical forces behind the scaling are not yet clear; however, the self-affine scaling shows that transform faults at MORs do not have a preferred spacing, but that the spacing is fractal. Our study offers a new perspective on the study of natural roughening phenomena on various scales, from minerals to tectonic plates, and a new view on the development of MORs. Full article
Show Figures

Figure 1

23 pages, 2728 KiB  
Article
Shear Stress-Dependent Modulation of Endothelin B Receptor: The Role of Endothelial Glycocalyx Heparan Sulfate
by Camden Holm, Son Nam Nguyen and Solomon A. Mensah
Cells 2025, 14(14), 1088; https://doi.org/10.3390/cells14141088 - 16 Jul 2025
Viewed by 227
Abstract
The endothelial glycocalyx (GCX) plays a crucial role in vascular health and integrity and influences many biochemical activities through mechanotransduction, in which heparan sulfate (HS) plays a major role. Endothelin-1 (ET-1) is a potent vasoregulator that binds to the endothelin B receptor (ETB) [...] Read more.
The endothelial glycocalyx (GCX) plays a crucial role in vascular health and integrity and influences many biochemical activities through mechanotransduction, in which heparan sulfate (HS) plays a major role. Endothelin-1 (ET-1) is a potent vasoregulator that binds to the endothelin B receptor (ETB) on endothelial cells (ECs), stimulating vasodilation, and to the endothelin A receptor on smooth muscle cells, stimulating vasoconstriction. While the shear stress (SS) dependence of ET-1 and HS is well documented, there is limited research documenting the SS dependence of the ETB. Understanding the SS dependence of the ETB is crucial for clarifying the role of hemodynamic forces in the endothelin system. We hypothesize that GCX HS regulates the expression of the ETB on the EC surface in an SS-dependent manner. Human lung microvascular ECs were exposed to SS in a parallel-plate flow chamber for 12 h. Damage to the GCX was simulated by treatment with 15 mU/mL heparinase-III during SS exposure. Immunostaining and qPCR were used to evaluate changes in ET-1, ETB, and HS expression. Results indicate that ETB expression is SS sensitive, with at least a 1.3-fold increase in ETB protein expression and a 0.6 to 0.4-fold-change decrease in ETB mRNA expression under SS. This discrepancy suggests post-translational regulation. In some cases, enzymatic degradation of HS attenuated the SS-induced increase in ETB protein, reducing the fold-change difference to 1.1 relative to static controls. This implies that ETB expression may be partially dependent on HS-mediated mechanotransduction, though inconclusively. Furthermore, ET-1 mRNA levels were elevated two-fold under SS without a corresponding rise in ET-1 protein expression or significant impact from HS degradation, implying that post-translational regulation of ET-1 occurs independently of HS. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Vascular-Related Diseases)
Show Figures

Figure 1

13 pages, 286 KiB  
Article
Lack of Neuromuscular Fatigue in Singles Pickleball Tournament: A Preliminary Study
by Eric A. Martin, Steven B. Kim, George K. Beckham and James J. Annesi
J. Funct. Morphol. Kinesiol. 2025, 10(3), 267; https://doi.org/10.3390/jfmk10030267 - 16 Jul 2025
Viewed by 164
Abstract
Objectives: The objective of this study was to examine the neuromuscular fatigue response to playing in a singles pickleball tournament, as measured by performance on a countermovement jump test (CMJ). We hypothesized that players would exhibit neuromuscular fatigue after the tournament. Methods: Six [...] Read more.
Objectives: The objective of this study was to examine the neuromuscular fatigue response to playing in a singles pickleball tournament, as measured by performance on a countermovement jump test (CMJ). We hypothesized that players would exhibit neuromuscular fatigue after the tournament. Methods: Six adult pickleball players (five male and one female, M ± SD: 40.2 ± 10.1 years old, height = 178.7 ± 12.3 cm, body mass = 85.4 ± 16.7 kg) participated in a 15 game singles pickleball tournament. Prior to the tournament, everyone completed the CMJ to assess lower body strength and power on paired Hawkin Dynamics force plates. After the tournament, players repeated the CMJ. Mixed-effects regression modeling was used to examine changes in key outcomes measured from the CMJ. Results: All nine outcomes from the CMJ significantly changed from pre to post-tournament (e.g., means for net impulse increased from 2.32 ± 0.22 to 2.40 ± 0.18 N·s, p = 0.0006; RSImod increased from 0.28 ± 0.07 to 0.33 ± 0.05, p = 0.0001, and propulsive peak power increased from 41.79 ± 6.14 to 44.34 ± 4.70 W/kg, p < 0.0001). All the changes demonstrated improved performance in the CMJ test. Seven out of the nine outcomes demonstrated a large effect size by the partial-eta square statistic, with η2-partial of 0.153–0.487, and three key outcomes (RSImod, propulsive peak power, and propulsive mean power) also demonstrated large effect sizes by the F2 statistic (F2 of 0.4603–0.9495). Conclusions: Contrary to our hypothesis, participants did not demonstrate significant neuromuscular fatigue. In contrast, they showed significant improvements in CMJ performance. It is possible that adequate rest between games prevented neuromuscular fatigue; alternately, singles pickleball may not provide enough stimulus in the lower body musculature to induce neuromuscular fatigue. Full article
(This article belongs to the Special Issue Racket Sport Dynamics)
24 pages, 10860 KiB  
Article
Dynamic Characteristics of ‘Floating’ Valve Plate for Internal Curve Hydraulic Motor
by Wei Ma, Guolai Yang, Wenbin Cao, Shaohui Yao, Guixiang Bai, Chuanchuan Cao and Shoupeng Song
Lubricants 2025, 13(7), 307; https://doi.org/10.3390/lubricants13070307 - 15 Jul 2025
Viewed by 176
Abstract
The internal curve hydraulic motor valve plate has a clearance self-compensation performance that can effectively improve the working efficiency of the valve plate. However, the dynamic characteristics of the valve plates require further investigation. This study considers the self-compensating ‘floating’ valve plate as [...] Read more.
The internal curve hydraulic motor valve plate has a clearance self-compensation performance that can effectively improve the working efficiency of the valve plate. However, the dynamic characteristics of the valve plates require further investigation. This study considers the self-compensating ‘floating’ valve plate as the research object, proposes a dynamic characteristic analysis method for the internal curve hydraulic motor valve plate, and explores the changing rule of oil film thickness and surplus pressing force of the valve plate. The results showed that an increase in the inlet pressure and oil temperature led to an increase in the thickness of the oil film, and the amplitude of the oil film thickness was larger, whereas the rotational speed of the oil film thickness of the valve plate pair was not obvious. When the inlet pressure is lower than 8 MPa, and the oil temperature is in the range of 20–30 °C, the oil film is mainly subjected to the squeezing effect of the valve plate, and the displacement of the valve plate decreased with increasing rotational speed. The inlet pressure is the main factor affecting the displacement of the ‘floating’ valve plate, and when the inlet pressure reaches 8.7 MPa, the valve plate is in hydrostatic balance support. In addition, the surplus pressing force coefficient of the valve plate decreased with increasing inlet pressures. This study provides theoretical support for the design of variable pressing force valve plates for internal curve hydraulic motors by investigating the dynamic characteristics of “floating” valve plates. Full article
Show Figures

Figure 1

33 pages, 4996 KiB  
Article
Rain-Induced Vibration Energy Harvesting Using Nonlinear Plates with Piezoelectric Integration and Power Management
by Yi-Ren Wang, Wei Ting Lin and Bo-Jang Huang
Sensors 2025, 25(14), 4347; https://doi.org/10.3390/s25144347 - 11 Jul 2025
Viewed by 239
Abstract
Vibration energy offers promising potential for renewable energy harvesting, especially in conditions where conventional sources such as solar power may be limited or intermittent. This study proposes a rain energy harvester (REH) that converts the kinetic energy of raindrops into electrical energy using [...] Read more.
Vibration energy offers promising potential for renewable energy harvesting, especially in conditions where conventional sources such as solar power may be limited or intermittent. This study proposes a rain energy harvester (REH) that converts the kinetic energy of raindrops into electrical energy using nonlinear thin plates, integrated with piezoelectric elements. Two plate configurations—fully hinged (H-H-H-H) and clamped–hinged–free–hinged (C-H-F-H)—are investigated. Theoretical modeling and simulation results are compared with experimental data, with special attention paid to the role of slapping forces in improving prediction accuracy. A power management system is also introduced to stabilize and regulate the harvested voltage. Results confirm the feasibility of rain-induced energy harvesting, showing potential for application in rain-prone areas and integration with existing infrastructure such as solar panels, tents, or canopies. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting and Sensor Systems)
Show Figures

Figure 1

21 pages, 5008 KiB  
Article
Dynamic Study on a Passive Damping Scheme for Permanent Magnet Electrodynamic Suspension Vehicle Utilizing Onboard Magnets End Effects
by Shanqiang Fu, Mingang Chi, Anqi Shu, Junzhi Liu, Shuqing Zhang, Hongfu Shi and Zigang Deng
Actuators 2025, 14(7), 344; https://doi.org/10.3390/act14070344 - 11 Jul 2025
Viewed by 154
Abstract
The permanent magnet electrodynamic suspension system (PMEDS) has demonstrated significant advantages in high-speed and ultra-high-speed applications due to its simple structure, low cost, and stable levitation force. However, the weak damping characteristic remains a critical issue limiting its practical implementation. This work investigates [...] Read more.
The permanent magnet electrodynamic suspension system (PMEDS) has demonstrated significant advantages in high-speed and ultra-high-speed applications due to its simple structure, low cost, and stable levitation force. However, the weak damping characteristic remains a critical issue limiting its practical implementation. This work investigates a passive damping plate utilizing the end field of onboard magnets, focusing on magnet-damping plate optimization and vehicle dynamics. Firstly, the configuration, operation principles, and electromagnetic parameters of the PMEDS vehicle are elucidated. Secondly, the dependences of magnet-conductive plate specifications on the damping force are examined. An optimization index based on the levitation-to-damping force ratio is proposed to enable collaborative optimization of magnet and conductive plate parameters. Finally, the vehicle dynamic model is developed using Simpack software to investigate payload and speed effects on dynamic responses under random track excitation, validating the effectiveness of the proposed passive damping solution. This study provides technical references for the design, engineering applications, and performance evaluation of passive damping schemes in PMEDS vehicles. Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
Show Figures

Figure 1

17 pages, 944 KiB  
Article
Lower Limb Muscle Strength Matters: Effect of Relative Isometric Strength on Countermovement and Rebound Jump Performance in Elite Youth Female Soccer Players
by Jack Fahey, Paul Comfort and Nicholas Joel Ripley
Muscles 2025, 4(3), 23; https://doi.org/10.3390/muscles4030023 - 10 Jul 2025
Viewed by 282
Abstract
Background: Expression of maximal and rapid force in the hip, knee, and plantar flexors is important for athletic performance in female soccer. This study was designed to determine the effect of relative isometric strength in the isometric mid-thigh pull (IMTP) on countermovement jump [...] Read more.
Background: Expression of maximal and rapid force in the hip, knee, and plantar flexors is important for athletic performance in female soccer. This study was designed to determine the effect of relative isometric strength in the isometric mid-thigh pull (IMTP) on countermovement jump (CMJ) and rebound jump (CMJ-R) performance in female youth soccer players. Methods: Ninety-six female soccer players (age: 14.1 ± 2.3 years, height: 160.5 ± 9.7 cm, mass: 55.0 ± 10.3 kg) completed three trials of the IMTP, CMJ, and CMJ-R using force plates. Players were categorized as stronger (top quartile, n = 19) and weaker players (bottom quartile, n = 23) based on IMTP relative net peak force. One-way Bayesian independent t-tests were performed between stronger and weaker players. Results: Very large difference in lower limb strength between groups (g = 5.05). Moderate to very strong evidence to support that stronger players had greater countermovement depth and time to take-off with similar jump heights than weaker players. Strong evidence was observed for CMJ-R height, with stronger players falling from a greater height and executing similar ground contact times compared to weaker players. Conclusions: Relative strength has implications for CMJ-R, highlighting the importance of developing relative strength in hip, knee, and plantar extensors. Full article
Show Figures

Figure 1

27 pages, 5964 KiB  
Article
Investigation of Improved Labyrinth Seal Stability Accounting for Radial Deformation
by Guozhe Ren, Hongyuan Tang, Dan Sun, Wenfeng Xu and Yu Li
Aerospace 2025, 12(7), 621; https://doi.org/10.3390/aerospace12070621 - 10 Jul 2025
Viewed by 209
Abstract
This study examines the labyrinth seal disc of an aero-engine, specifically analysing the radial deformation caused by centrifugal force and heat stress during operation. This distortion may lead to discrepancies in the performance attributes of the labyrinth seal and could potentially result in [...] Read more.
This study examines the labyrinth seal disc of an aero-engine, specifically analysing the radial deformation caused by centrifugal force and heat stress during operation. This distortion may lead to discrepancies in the performance attributes of the labyrinth seal and could potentially result in contact between the labyrinth seal tip and neighbouring components. A numerical analytical model incorporating the rotor and stator cavities, along with the labyrinth seal disc structure, has been established. The sealing integrity of a standard labyrinth seal disc’s flow channel is evaluated and studied at different clearances utilising the fluid–solid-thermal coupling method. The findings demonstrate that, after considering radial deformation, a cold gap of 0.5 mm in the conventional labyrinth structure leads to stabilisation of the final hot gap and flow rate, with no occurrence of tooth tip rubbing; however, both the gap value and flow rate show considerable variation relative to the cold state. When the cold gap is 0.3 mm, the labyrinth plate makes contact with the stator wall. To resolve the problem of tooth tip abrasion in the conventional design with a 0.3 mm cold gap, two improved configurations are proposed, and a stability study for each configuration is performed independently. The leakage and temperature rise attributes of the two upgraded configurations are markedly inferior to those of the classic configuration at a cold gap of 0.5 mm. At a cold gap of 0.3 mm, the two improved designs demonstrate no instances of tooth tip rubbing. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 9169 KiB  
Article
Impact of Acute and Chronic Stressors on the Morphofunctional Characteristics of Long Bones in Spontaneously Hypertensive Rats: A Pilot Study Using Histological and Microtomographic Analysis
by Marina Ribeiro Paulini, Dimitrius Leonardo Pitol, Sara Feldman, Camila Aparecida Ribeiro, Daniela Vieira Buchaim, Rogerio Leone Buchaim and João Paulo Mardegan Issa
Biomedicines 2025, 13(7), 1689; https://doi.org/10.3390/biomedicines13071689 - 10 Jul 2025
Viewed by 279
Abstract
Background/Objectives: Hypertension is a major contributor to cardiovascular diseases and is often intensified by psychological stress, which can also affect bone metabolism. Although both conditions independently compromise bone health, their combined impact—particularly under acute and chronic stress—remains unclear. This pilot study aimed to [...] Read more.
Background/Objectives: Hypertension is a major contributor to cardiovascular diseases and is often intensified by psychological stress, which can also affect bone metabolism. Although both conditions independently compromise bone health, their combined impact—particularly under acute and chronic stress—remains unclear. This pilot study aimed to assess the effects of such stressors on bone structure in spontaneously hypertensive rats (SHRs). Methods: Forty male rats, both normotensive and SHRs, were randomly assigned to control, acute stress, or chronic stress groups. Acute stress involves a single 2 h physical restraint. Chronic stress was induced over 10 days using alternating stressors: agitation, forced swimming, physical restraint, cold exposure, and water deprivation. Tibial bones were analyzed by microcomputed tomography (micro-CT), and histology was performed using Hematoxylin and Eosin and Masson’s Trichrome stains. Results: Micro-CT showed increased trabecular bone volume in normotensive rats under chronic stress, whereas SHRs displayed impaired remodeling under both stress types. Histological analysis revealed preserved connective tissue overall but evident changes in growth plate structure among stressed rats. SHRs exhibited exacerbated trabecular formation and cartilage abnormalities, including necrotic zones. Conclusions: Both acute and chronic stress, especially in the context of hypertension, negatively affect bone remodeling and maturation. Despite the absence of overt inflammation, structural bone changes were evident, indicating potential long-term risks. These findings highlight the importance of further studies on stress–hypertension interactions in bone health as well as the exploration of therapeutic approaches to mitigate skeletal damage under such conditions. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

18 pages, 2925 KiB  
Article
Study on the Effect of Pile Spacing on the Bearing Performance of Low-Capping Concrete Expanded-Plate Group Pile Foundations Under Composite Stress
by Yongmei Qian, Yawen Yu, Miao Ma, Yu Mu, Zhongwei Ma and Tingting Zhou
Buildings 2025, 15(14), 2412; https://doi.org/10.3390/buildings15142412 - 9 Jul 2025
Viewed by 194
Abstract
The spacing between piles plays a crucial role in determining the load-bearing capacity of CEP group pile foundations equipped with a bearing platform. In this research, five sets of six-pile models with different pile spacings were created using ANSYS finite element analysis. To [...] Read more.
The spacing between piles plays a crucial role in determining the load-bearing capacity of CEP group pile foundations equipped with a bearing platform. In this research, five sets of six-pile models with different pile spacings were created using ANSYS finite element analysis. To understand how damage impacts the system, this study examined displacement patterns and stress distribution within both the piles and the adjacent soil. Additionally, the force interaction between the piles and soil was explored to uncover the underlying failure mechanisms. The results shed light on how varying pile spacing affects the overall bearing capacity of the foundations. Based on our thorough analysis, we pinpoint the most effective pile spacing configuration. The findings reveal that, generally speaking, increasing the distance between piles tends to boost the load-bearing capacity of the entire group foundation. However, this relationship is not linear; once the spacing surpasses four times the cantilever’s diameter, further widening does not yield noticeable gains in performance. In real-world scenarios, it is advisable to keep the spacing between 3.5 to 4 times the cantilever diameter for optimal results. Moreover, the stability of the bearing platform and the plate plays a vital role in resisting sideways forces. Ensuring that the shear strength of the surrounding soil aligns with established standards is essential for maintaining the overall durability and safety of the group pile system. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 518 KiB  
Study Protocol
Development and Implementation of a Core Training Protocol: Effects on Muscle Activation, Hypertrophy, Balance, and Quality of Life in Recreationally Active Adults
by Ioannis Tsartsapakis, Aglaia Zafeiroudi, Ioannis Trigonis, Christos Lyrtzis and Konstantinos Astrapellos
Methods Protoc. 2025, 8(4), 77; https://doi.org/10.3390/mps8040077 - 8 Jul 2025
Viewed by 533
Abstract
Core stability is fundamental to posture, balance, and force transmission throughout the kinetic chain. Although traditionally associated with athletic performance, emerging research highlights its broader applicability to recreational fitness. This study investigates the effects of an eight-week core training program on muscle hypertrophy, [...] Read more.
Core stability is fundamental to posture, balance, and force transmission throughout the kinetic chain. Although traditionally associated with athletic performance, emerging research highlights its broader applicability to recreational fitness. This study investigates the effects of an eight-week core training program on muscle hypertrophy, static balance, and neuromuscular control in recreationally active, non-athletic adults. Participants will undertake a structured intervention comprising progressive triads targeting core stability, strength, and power. Assessment methods include surface electromyography (EMG), ultrasound imaging, three-dimensional force plates, Kinovea motion analysis, and the Satisfaction With Life Scale (SWLS) questionnaire. Expected outcomes include enhanced core muscle activation, improved static balance, and increased core-generated force during overhead medicine ball slam trials. Additionally, the intervention aims to facilitate hypertrophy of the transverse abdominis, internal oblique, and lumbar multifidus muscles, contributing to spinal resilience and motor control. This protocol bridges gaps in core training methodologies and advances their scalability for recreational populations. The proposed model offers a structured, evidence-informed framework for improving core activation, postural stability, muscle adaptation, movement efficiency, and perceived quality of life in recreationally active individuals. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

18 pages, 3160 KiB  
Article
Acute Effects of Different Types of Compression Legwear on Biomechanics of Countermovement Jump: A Statistical Parametric Mapping Analysis
by Rui-Feng Huang, Kit-Lun Yick, Qiu-Qiong Shi, Lin Liu and Chu-Hao Li
J. Funct. Morphol. Kinesiol. 2025, 10(3), 257; https://doi.org/10.3390/jfmk10030257 - 7 Jul 2025
Viewed by 220
Abstract
Background: Compression garments (CG) may influence countermovement jump (CMJ) performance by altering hip and knee biomechanics, but existing evidence remains controversial. This study aimed to compare the effects of compression tights (CTs), compression shorts (CSs), and control shorts (CCs) on CMJ performance [...] Read more.
Background: Compression garments (CG) may influence countermovement jump (CMJ) performance by altering hip and knee biomechanics, but existing evidence remains controversial. This study aimed to compare the effects of compression tights (CTs), compression shorts (CSs), and control shorts (CCs) on CMJ performance and lower-limb biomechanics. Methods: Nine physically active men from a university were recruited to perform CMJ while wearing CTs, CSs, and CCs in a randomized sequence for a within-subjects repeated-measures design. A Vicon 3D motion capture system and an AMTI 3D force plate were used to collect biomechanical data. Visual3D software was used to calculate the joint angle, moment, and force of the lower limbs. Results: Statistical parametric mapping analysis with repeated measures analysis of variance (ANOVA) revealed that during the propulsion phase of the CMJ, wearing CSs significantly reduced the hip flexion angle compared to wearing CCs (25–36%); meanwhile, wearing CTs significantly reduced the knee extension and flexion moment (34–35%) and decreased the hip extension moment during the propulsion phase (36–37%). In addition, CTs significantly reduced the hip abduction angle during the flight phase (37–39%), and CSs significantly reduced the hip anterior force during the landing phase (59–60%). Conclusions: Compression legwear significantly affected the hip and knee biomechanics in propulsion, but these differences were not sufficient to improve the CMJ height. Due to the improvement in hip biomechanics in the flight and landing phases, there may be potential benefits for movement transitions and landing performance in CMJ. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

Back to TopTop