Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = food texture modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3800 KB  
Review
Pea Protein Isolates: From Extraction to Functionality
by Joanna Harasym, Oliwia Paroń and Ewa Pejcz
Molecules 2025, 30(23), 4650; https://doi.org/10.3390/molecules30234650 - 3 Dec 2025
Viewed by 813
Abstract
Pea protein isolates (PPIs) from Pisum sativum have emerged as strategic ingredients at the interface of nutrition, sustainability, and functional food design. This review synthesizes advances linking isolation procedures with molecular structure and techno-functional performance. We compare alkaline extraction–isoelectric precipitation with wet and [...] Read more.
Pea protein isolates (PPIs) from Pisum sativum have emerged as strategic ingredients at the interface of nutrition, sustainability, and functional food design. This review synthesizes advances linking isolation procedures with molecular structure and techno-functional performance. We compare alkaline extraction–isoelectric precipitation with wet and dry fractionation, as well as green/fermentation-assisted methods, highlighting the purity–functionality trade-offs driven by denaturation, aggregation, and the removal of anti-nutritional factors. We relate globulin composition (vicilin/legumin ratio), secondary/tertiary structure, and disulfide chemistry to interfacial activity, solubility, gelation thresholds, and long-term emulsion stability. Structure-guided engineering strategies are critically evaluated, including enzymatic hydrolysis, deamidation, transglutaminase cross-linking, ultrasound, high-pressure homogenization, pH shifting, cold plasma, and selected chemical/glycation approaches. Application case studies cover high-moisture texturization for meat analogues, emulsion and Pickering systems, fermented dairy alternatives, edible films, and bioactive peptide-oriented nutraceuticals. We identify bottlenecks—weak native gel networks, off-flavors, acidic pH performance, and batch variability—and outline process controls and synergistic modifications that close functionality gaps relative to animal proteins. Finally, we discuss sustainability and biorefinery opportunities that valorize soluble peptide streams alongside globulin-rich isolates. By integrating extraction, structure, and function, the review provides a roadmap for designing PPI with predictable, application-specific performance. Full article
(This article belongs to the Special Issue Featured Review Papers in Food Chemistry—2nd Edition)
Show Figures

Graphical abstract

17 pages, 752 KB  
Article
Effects of Selective Enzymatic Hydrolysis on Structural Properties and Gel Properties of Soybean Protein Isolate
by Zhijun Fan, Yue San, Saike Tang, Anhui Ren, Yuejiao Xing, Li Zheng and Zhongjiang Wang
Foods 2025, 14(22), 3892; https://doi.org/10.3390/foods14223892 - 14 Nov 2025
Viewed by 844
Abstract
Soybean protein isolate (SPI) gel has been demonstrated to exhibit suboptimal stability and a coarse texture. Selective enzymatic hydrolysis modification has been demonstrated to effectively enhance the functional properties and structural stability of the protein. The objective of this study was to modify [...] Read more.
Soybean protein isolate (SPI) gel has been demonstrated to exhibit suboptimal stability and a coarse texture. Selective enzymatic hydrolysis modification has been demonstrated to effectively enhance the functional properties and structural stability of the protein. The objective of this study was to modify SPI using alkaline protease and papain. The impact of selective enzymatic hydrolysis on SPI was examined through the analysis of hydrolysis degree (DH), particle size, and protein purity. A systematic exploration was conducted in order to investigate the structural and quality characteristics of SPI gel. Indicators such as secondary structure changes, texture characteristics, water-holding capacity (WHC), rheology, and microstructure were analyzed. The findings indicate that when the DH of the SPI solution is 1%, its particle size is reduced relative to that when DH is 0.5%. The SDS-PAGE results indicated that alkaline protease could hydrolyze most of the 7S and 11S components in SPI into shorter peptides, while papain retained more of the 7S and 11S components and generated peptides with larger molecular weights. Fourier-transform infrared (FT-IR) spectral analysis indicated that following the process of enzymatic modification, the contents of α-helix and β-sheet in the secondary structure of SPI increased, while the contents of β-turns and random coils decreased. In the context of gel performance, it has been demonstrated that papain-modified SPI, attributable to its elevated content of macromolecular peptides, manifests superior WHC, hardness, springiness, cohesiveness, chewiness, storage modulus (G), and microstructure in comparison to alkaline protease-modified gel. Concurrently, the gel performance of papain modified SPI is significantly superior to that of unmodified SPI gel. This research provides a significant theoretical foundation and practical reference for promoting the efficient application of SPI in the domain of food processing. Full article
Show Figures

Graphical abstract

25 pages, 452 KB  
Review
Polysaccharide-Enriched Bakery and Pasta Products: Advances, Functional Benefits, and Challenges in Modern Food Innovation
by Jovana Petrović, Jana Zahorec, Dragana Šoronja-Simović, Ivana Lončarević, Ivana Nikolić, Biljana Pajin, Milica Stožinić, Drago Šubarić, Đurđica Ačkar and Antun Jozinović
Appl. Sci. 2025, 15(21), 11839; https://doi.org/10.3390/app152111839 - 6 Nov 2025
Viewed by 1338
Abstract
The increasing consumer demand for healthier food choices has stimulated research into functional bakery products enriched with bioactive ingredients. This review summarizes recent developments in the application of key polysaccharides—such as inulin and fructooligosaccharides (FOS), β-glucan, arabinoxylan, pectin, cellulose derivatives, resistant starch, maltodextrins, [...] Read more.
The increasing consumer demand for healthier food choices has stimulated research into functional bakery products enriched with bioactive ingredients. This review summarizes recent developments in the application of key polysaccharides—such as inulin and fructooligosaccharides (FOS), β-glucan, arabinoxylan, pectin, cellulose derivatives, resistant starch, maltodextrins, and dextrins—in bread, pasta, and fine bakery systems. Their incorporation affects dough rheology, fermentation behavior, and gas retention, leading to modifications in texture, volume, and shelf-life stability. Technologically, polysaccharides function as hydrocolloids, fat and sugar replacers, or water-binding agents, influencing gluten network formation and starch gelatinization. Nutritionally, they contribute to higher dietary fiber intake, improved postprandial glycemic response, enhanced satiety, and favorable modulation of gut microbiota. From a sensory perspective, optimized formulations can maintain or even improve product acceptability despite structural changes. However, challenges remain related to dosage optimization, interactions with the gluten–starch matrix, and gastrointestinal tolerance (particularly in FODMAP-sensitive individuals). This review summarizes current knowledge and future opportunities for creating innovative bakery products that unite technological functionality with nutritional and sensory excellence. Full article
(This article belongs to the Section Food Science and Technology)
16 pages, 2634 KB  
Article
Cold Plasma-Treated Chickpea Protein Isolate: Effects on Rheological Behavior and Quality Characteristics of Allergen-Free Rice Muffins
by Jiayu Sun, Jian Wang, Zimo Wen, Ye Liu, Daodong Pan and Lihui Du
Foods 2025, 14(21), 3635; https://doi.org/10.3390/foods14213635 - 24 Oct 2025
Viewed by 597
Abstract
Allergen-free (AF) baked goods usually show inferior texture and mouth-feel due to lack of functional proteins. This study evaluated the quality characteristics of AF muffins incorporated with three different sources of chickpea protein isolate (CPI), including commercial CPI, laboratory CPI, and cold plasma-modified [...] Read more.
Allergen-free (AF) baked goods usually show inferior texture and mouth-feel due to lack of functional proteins. This study evaluated the quality characteristics of AF muffins incorporated with three different sources of chickpea protein isolate (CPI), including commercial CPI, laboratory CPI, and cold plasma-modified laboratory CPI at varying addition levels (5%, 10%, and 15%). Results indicate that commercially available CPI exhibits high viscoelasticity in whole wheat muffin batter due to mixed protein types and severe denaturation, but the finished muffins are excessively hard with insufficient elasticity. Adding 15% laboratory CPI treated with cold plasma significantly enhanced the viscoelasticity of the muffin batter. The final product achieved a volume of 99.43 cm3, representing a 20.1% increase compared to the protein-free control group. This resulted in a superior product with enhanced elasticity, moderate hardness, and improved color. This study confirms that cold plasma modification technology effectively unlocks the structural and functional potential of chickpea protein in AF baking systems, offering an innovative solution for developing high-quality, high-protein AF foods. Future research will focus on the industrial scalability of this technology, product sensory characteristics, and shelf-life evaluation. Full article
Show Figures

Figure 1

31 pages, 5850 KB  
Article
Evaluation of the Nutritional, Rheological, Functional, and Sensory Properties of Cookies Enriched with Taro (Colocasia esculenta) Flour as a Partial Substitute for Wheat Flour
by Sylvestre Dossa, Christine Neagu, Dacian Lalescu, Monica Negrea, Daniela Stoin, Călin Jianu, Adina Berbecea, Liliana Cseh, Adrian Rivis, Mariana Suba and Ersilia Alexa
Foods 2025, 14(20), 3526; https://doi.org/10.3390/foods14203526 - 16 Oct 2025
Cited by 2 | Viewed by 1911
Abstract
This study evaluated the impact of incorporating taro flour (Colocasia esculenta) into wheat-based biscuit formulations, focusing on nutritional, phytochemical, rheological, technological, and organoleptic characteristics. Four distinct types of biscuits were formulated with 0% (CC), 10% (TWC1), 20% (TWC2), and 30% (TWC3) [...] Read more.
This study evaluated the impact of incorporating taro flour (Colocasia esculenta) into wheat-based biscuit formulations, focusing on nutritional, phytochemical, rheological, technological, and organoleptic characteristics. Four distinct types of biscuits were formulated with 0% (CC), 10% (TWC1), 20% (TWC2), and 30% (TWC3) taro. The results indicate that taro flour (TF) has a higher moisture, ash, and gallic acid content, as well as significant mineral richness, particularly in potassium, magnesium, and calcium, compared to wheat flour (WF). It has been shown that the gradual incorporation of TF (10 to 30%) into composite flours improves the bioavailability of certain micronutrients and polyphenols, while maintaining a harmonious balance with the flavonoids characteristic of wheat, such as quercetin. The evaluation of antioxidant activity indicates a higher value for TF (50.71%) compared to WF (36.53%), with a significant increase in activity observed in enriched cookies (58.92% for TWC3 vs. 31.36% for CC). In addition, the incorporation of taro flour modifies the technological properties of the cookies, resulting in a decrease in thickness and baking yield, as well as an increase in diameter and spread rate. This modification may result in a crisper texture. However, a high substitution rate (30%) resulted in a decrease in dough stability and baking yield due to a reduction in gluten and a change in dough structure. In terms of antinutritional profile, partially replacing wheat flour with taro flour significantly reduces phytic acid content, while moderately increasing oxalate content. Sensory analysis of different types of cookies indicated that moderate substitution levels (10%) tended to improve or maintain sensory quality, while higher substitution levels (20% and 30%) tended to reduce overall acceptability. Linear correlations showed a positive relationship between antioxidant activity and polyphenols and minerals, but a negative relationship with proteins and specific technological properties. In summary, the incorporation of taro flour into cookie formulations represents a promising strategy for improving the nutritional value and functional potential of baked goods without compromising their technological quality. These results confirm the value of taro as a functional ingredient that can contribute to the development of healthy foods. Full article
Show Figures

Figure 1

40 pages, 3054 KB  
Review
Techno-Functional Properties and Applications of Inulin in Food Systems
by Elisa Canazza, Miriam Grauso, Dasha Mihaylova and Anna Lante
Gels 2025, 11(10), 829; https://doi.org/10.3390/gels11100829 - 15 Oct 2025
Cited by 1 | Viewed by 4062
Abstract
Inulin, a type of fructan primarily extracted from chicory, Jerusalem artichoke, and dahlia, is a prebiotic dietary fiber increasingly valued for its multifunctional roles in food systems. Beyond its well-established nutritional benefits linked to gut microbiota modulation and metabolic health, inulin also provides [...] Read more.
Inulin, a type of fructan primarily extracted from chicory, Jerusalem artichoke, and dahlia, is a prebiotic dietary fiber increasingly valued for its multifunctional roles in food systems. Beyond its well-established nutritional benefits linked to gut microbiota modulation and metabolic health, inulin also provides unique techno-functional properties that make it a versatile structuring ingredient. This review emphasizes inulin’s ability to form gel-like networks and emulsion gels, examining the mechanisms of gelation and the influence of chain length, degree of polymerization, and processing conditions on gel stability and performance. Inulin-based gels act as effective fat replacers, texture modifiers, and carriers of bioactive compounds, supporting the reformulation of foods with reduced fat and sugar while maintaining desirable texture and sensory quality. Applications span a wide range of food systems, including dairy, meat, bakery, confectionery, plant-based, and gluten-free products, where inulin contributes to enhanced structure, stability, and palatability. Furthermore, the potential to obtain inulin from agro-industrial by-products strengthens its role in sustainable food design within a circular economy framework. By integrating nutritional, structural, and technological functionalities, inulin and inulin-based gels emerge as promising tools for the development of innovative and health-oriented food products. Full article
Show Figures

Graphical abstract

15 pages, 878 KB  
Article
Development and Validation of the Eating Support for Healthcare Aides (ESHA) Questionnaire in Long-Term Care
by Chia-Hui Lin and Ming-Yi Liu
Nutrients 2025, 17(20), 3235; https://doi.org/10.3390/nu17203235 - 15 Oct 2025
Viewed by 659
Abstract
Background: Swallowing difficulties (dysphagia) are highly prevalent among older adults and significantly contribute to malnutrition, dehydration, and poor health outcomes. Healthcare aides (HCAs), as frontline caregivers in long-term care, play a pivotal role in supporting residents’ nutritional intake. However, validated tools to evaluate [...] Read more.
Background: Swallowing difficulties (dysphagia) are highly prevalent among older adults and significantly contribute to malnutrition, dehydration, and poor health outcomes. Healthcare aides (HCAs), as frontline caregivers in long-term care, play a pivotal role in supporting residents’ nutritional intake. However, validated tools to evaluate their competencies in nutrition-related eating support are lacking. Methods: A cross-sectional study was conducted to develop and validate a competency-based questionnaire assessing healthcare aides’ knowledge, attitudes, and behaviors toward nutrition-focused eating support. Core domains, including oral function care, safe feeding practices, food texture modification, and nutrition safety, were identified through a systematic literature review and refined using a two-round modified Delphi process involving 26 experts. A 47-item questionnaire was then administered to 202 HCAs in Taiwan. Psychometric testing included item analysis, KR-20, Cronbach’s α, confirmatory factor analysis (CFA), composite reliability (CR), and average variance extracted (AVE). Results: The final instrument demonstrated strong content validity. The knowledge domain achieved acceptable reliability (KR-20 = 0.61), while the attitude and behavior domains showed excellent internal consistency (Cronbach’s α = 0.98). CFA confirmed good structural validity (χ2/df = 3.86, CFI = 0.93). CR and AVE values further supported construct validity. Conclusions: This nutrition-centered questionnaire is a valid and reliable tool to assess HCAs’ competencies in providing eating support. It offers a foundation for identifying training needs and designing educational programs aimed at preventing malnutrition and enhancing person-centered mealtime care in long-term care facilities. Full article
(This article belongs to the Special Issue Advances in Technology for Dietary Assessment)
Show Figures

Figure 1

30 pages, 1009 KB  
Review
Advances in Genetic Transformation of Lactic Acid Bacteria: Overcoming Barriers and Enhancing Plasmid Tools
by Aleksei S. Rozanov, Leonid A. Shaposhnikov, Kseniya D. Bondarenko and Alexey E. Sazonov
Int. J. Mol. Sci. 2025, 26(18), 9146; https://doi.org/10.3390/ijms26189146 - 19 Sep 2025
Cited by 2 | Viewed by 3387
Abstract
Lactic acid bacteria (LAB) are central to food fermentation, probiotic delivery, and emerging synthetic biology applications, yet their robust cell envelopes and restriction–modification systems complicate DNA uptake. This review synthesizes practical routes for introducing DNA into LAB—natural competence, electroporation, conjugation, phage-mediated transduction, and [...] Read more.
Lactic acid bacteria (LAB) are central to food fermentation, probiotic delivery, and emerging synthetic biology applications, yet their robust cell envelopes and restriction–modification systems complicate DNA uptake. This review synthesizes practical routes for introducing DNA into LAB—natural competence, electroporation, conjugation, phage-mediated transduction, and biolistics—and outlines vector systems for expression and chromosomal editing, including food-grade strategies. We highlight recent advances that broaden strain tractability while noting strain-to-strain variability and host-specific barriers that still require tailored solutions. These advances directly enable applications in food and probiotic biotechnology, including improving starter robustness, tailoring flavor and texture pathways, and installing food-grade traits without residual selection markers. We close with near-term priorities for standardizing protocols, widening replicon compatibility, and leveraging modern genome-editing platforms to accelerate safe, marker-free engineering of industrial and probiotic LAB. Full article
Show Figures

Figure 1

23 pages, 4479 KB  
Article
Optimizing Texture and Drying Behavior of Squid (Todarodes pacificus) for Elder-Friendly Applications Using Alkaline Pretreatment and Intermittent Drying: An Experimental and Numerical Study
by Timilehin Martins Oyinloye and Won Byong Yoon
Processes 2025, 13(8), 2592; https://doi.org/10.3390/pr13082592 - 16 Aug 2025
Cited by 1 | Viewed by 1661
Abstract
This study addresses the increasing demand for texture-modified seafood products suitable for elderly consumers by focusing on dried squid, a popular protein source. The aim was to optimize the softening and drying procedures to produce a dried squid product with improved chewability and [...] Read more.
This study addresses the increasing demand for texture-modified seafood products suitable for elderly consumers by focusing on dried squid, a popular protein source. The aim was to optimize the softening and drying procedures to produce a dried squid product with improved chewability and quality. Fresh squid was pretreated using sodium bicarbonate or potassium carbonate solutions (0, 0.3, 0.6, and 0.9 mol/kg) and dried at 40 °C using either continuous (CD) or intermittent drying (ID) until the final moisture content reached 18.34 ± 0.44%. Hardness generally increased with higher alkaline concentrations, with the potassium carbonate-treated samples showing better softening effects. Based on standards for elderly-friendly foods targeting chewable hardness (10,000–50,000 N/m2), low water activity (<0.58), and limited color change (ΔE = 14.32), the optimal result was achieved with 0.3 mol/kg potassium carbonate and ID. Among the thin-layer drying models, the Midilli–Kucuk model showed the best fit, with the highest average R2 (0.9974), and lowest SSE (0.0481) and RMSE (0.1688), effectively capturing the drying kinetics. Scanning electron microscopy (SEM) revealed smoother surfaces and consistent porosity in samples dried intermittently, indicating less structural degradation. Finite element analysis showed that ID improved internal moisture distribution, reduced surface crusting, and alleviated internal stresses. These results support mild alkaline soaking combined with ID as an effective strategy for enhancing dried squid quality for elderly individuals. Full article
(This article belongs to the Special Issue Feature Papers in the "Food Process Engineering" Section)
Show Figures

Figure 1

19 pages, 1664 KB  
Review
Recent Advances, Challenges, and Functional Applications of Protein Chemical Modification in the Food Industry
by Peiming Zhao, Zhiyan Zhang, Wei Ran, Ting Bai, Jie Cheng and Jiamin Zhang
Foods 2025, 14(16), 2784; https://doi.org/10.3390/foods14162784 - 10 Aug 2025
Cited by 4 | Viewed by 3362
Abstract
Proteins serve as crucial functional components in food processing, with their unique physicochemical properties directly influencing the texture and stability of food products. Proteins exhibit a range of functional properties, including emulsification, foaming, gelation, and hydration. These properties arise from the structural differences [...] Read more.
Proteins serve as crucial functional components in food processing, with their unique physicochemical properties directly influencing the texture and stability of food products. Proteins exhibit a range of functional properties, including emulsification, foaming, gelation, and hydration. These properties arise from the structural differences in protein molecules. To equip proteins with enhanced and diversified biological functions, researchers have developed a variety of protein modification techniques. Recent breakthroughs in artificial intelligence technologies have opened new opportunities for research on protein chemical modifications. Novel algorithms based on advanced techniques, such as deep learning, image recognition, and natural language processing, have been developed for intelligent prediction of protein modification sites. The application of these AI technologies provides innovative research tools and methodological support for rational design and targeted engineering of protein functions. This review delves into the applications of chemical modification methods aimed at improving protein solubility, emulsifying capabilities, gelation capacity, antioxidant activity, antimicrobial properties, and nutritional value. These modifications alter the structural and functional attributes of proteins, significantly enhancing their performance within food systems and expanding their application prospects in such domains as medicine and biomaterials. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

21 pages, 1442 KB  
Article
Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications
by Tereza Novotná, Jana Pavlačková, Robert Gál, Ladislav Šiška, Miroslav Fišera and Pavel Mokrejš
Molecules 2025, 30(15), 3293; https://doi.org/10.3390/molecules30153293 - 6 Aug 2025
Viewed by 1106
Abstract
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of [...] Read more.
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of this study is the enzymatic modification of red deer fat, leading to modification of its physicochemical properties, and the study of changes in phase transitions of modified fat, its structure, color, and texture. Hydrolysis was performed using sn-1,3-specific lipase at different water concentrations (10–30%) and reaction times (2–6 h). The results showed that there was a significant decrease in melting and crystallization temperatures with an increasing degree of hydrolysis, which was confirmed by differential scanning calorimetry. FTIR spectra revealed a decrease in the intensity of the ester bonds, indicating cleavage of triacylglycerols. Texture analysis of the modified fats confirmed a decrease in hardness of up to 50% and an increase in spreadability. The color parameter values remained within an acceptable range. The results show that enzymatic modification is an effective tool for targeted modification of red deer fat properties, and this expands the possibilities of its application in cosmetic matrices and food applications as functional lipids. Full article
Show Figures

Graphical abstract

17 pages, 1522 KB  
Article
Investigating the Microstructural and Textural Properties of Cookies Using Plant-Based Bigel as an Alternative to Commercial Solid Fat
by Ingrid Contardo, Sonia Millao, Eduardo Morales, Mónica Rubilar and Marcela Quilaqueo
Gels 2025, 11(8), 571; https://doi.org/10.3390/gels11080571 - 23 Jul 2025
Cited by 1 | Viewed by 1468
Abstract
In response to the growing demand for improving the nutritional profile of widely consumed products, such as cookies, there has been an increasing interest in fat replacers that preserve sensory attributes and have a more positive health effect. Among the novel fat replacement [...] Read more.
In response to the growing demand for improving the nutritional profile of widely consumed products, such as cookies, there has been an increasing interest in fat replacers that preserve sensory attributes and have a more positive health effect. Among the novel fat replacement strategies, the incorporation of bigels into food formulations has been studied; however, the impact of Arabic gum hydrogel-based bigels on microstructural properties and their correlation with the texture and quality of bakery products remains underexplored. In this study, cookies were formulated using a plant-based bigel (canola oil-carnauba wax oleogel mixed with Arabic gum hydrogel) as a fat substitute, and their microstructural, textural, and quality parameters were compared with those of commercial butter-based cookies. Compared to butter (firmness of 29,102 g, spreadability of 59,624 g∙s, and adhesiveness of 2282 g), bigel exhibited a softer (firmness of 576 g), more spreadable (spreadability of 457 g∙s), and less adhesive texture (adhesiveness of 136 g), while its rheological properties showed similar behavior but at a lower magnitude. Bigel exhibited high thermal stability and good elastic and thixotropic behaviors, indicating reversible structural breakdown and recovery. Cookies prepared with bigels instead of butter exhibited a similar proximate composition, with a slight increase in lipid content (11.7%). The physical dimensions and density were similar across the formulations. However, the microstructural analysis revealed differences when bigels were incorporated into cookies, reducing porosity (55%) and increasing the mean pore size (1781 µm); in contrast, mean wall thickness remained unaffected. Despite these structural modifications, the potential of bigels as viable and nutritionally enhanced substitutes for conventional fats in bakery products was demonstrated. Full article
(This article belongs to the Special Issue Food Gels: Structure and Function)
Show Figures

Graphical abstract

23 pages, 1012 KB  
Review
Prospects of Gels for Food Applications from Marine Sources: Exploring Microalgae
by Antonia Terpou, Divakar Dahiya and Poonam Singh Nigam
Gels 2025, 11(8), 569; https://doi.org/10.3390/gels11080569 - 23 Jul 2025
Cited by 4 | Viewed by 1816
Abstract
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins [...] Read more.
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins that exhibit unique gelling, emulsifying, and stabilizing properties. This study focuses on microalgal species with demonstrated potential to produce viscoelastic, shear-thinning gels, making them suitable for applications in food stabilization, texture modification, and nutraceutical delivery. Recent advances in biotechnology and cultivation methods have improved access to high-value strains, which exhibit promising physicochemical properties for the development of novel food textures, structured formulations, and sustainable food packaging materials. Furthermore, these microalgae-derived gels offer additional health benefits, such as antioxidant and prebiotic activities, aligning with current trends toward functional foods containing prebiotic materials. Key challenges in large-scale production, including low EPS productivity, high processing costs, and lack of regulatory frameworks, are critically discussed. Despite these barriers, advances in cultivation technologies and biorefinery approaches offer new avenues for commercial application. Overall, microalgal gels hold significant promise as sustainable, multifunctional ingredients for clean-label food formulations. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Graphical abstract

20 pages, 1065 KB  
Review
Microbial Genome Editing with CRISPR–Cas9: Recent Advances and Emerging Applications Across Sectors
by Chhavi Dudeja, Amish Mishra, Ansha Ali, Prem Pratap Singh and Atul Kumar Jaiswal
Fermentation 2025, 11(7), 410; https://doi.org/10.3390/fermentation11070410 - 16 Jul 2025
Cited by 10 | Viewed by 12831
Abstract
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. [...] Read more.
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. The economies of fermentation-based manufacturing are changing because of its quick acceptance in both academic and industry labs. CRISPR processes have been used to modify industrially significant bacteria, including the lactic acid producers, Clostridium spp., Escherichia coli, and Corynebacterium glutamicum, in order to increase the yields of bioethanol, butanol, succinic acid, acetone, and polyhydroxyalkanoate precursors. CRISPR-mediated promoter engineering and single-step multiplex editing have improved inhibitor tolerance, raised ethanol titers, and allowed for the de novo synthesis of terpenoids, flavonoids, and recombinant vaccines in yeasts, especially Saccharomyces cerevisiae and emerging non-conventional species. While enzyme and biopharmaceutical manufacturing use CRISPR for quick strain optimization and glyco-engineering, food and beverage fermentations benefit from starter-culture customization for aroma, texture, and probiotic functionality. Off-target effects, cytotoxicity linked to Cas9, inefficient delivery in specific microorganisms, and regulatory ambiguities in commercial fermentation settings are some of the main challenges. This review provides an industry-specific summary of CRISPR–Cas9 applications in microbial fermentation and highlights technical developments, persisting challenges, and industrial advancements. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

25 pages, 13700 KB  
Article
Development of NADES–Annatto Seed Extract for Enhancing 3D Printed Food Designed for Dysphagia Patients
by Sara Kierulff Balabram, Larissa Tessaro, Maria Eduarda de Almeida Astolfo, Pedro Augusto Invernizzi Sponchiado, Stanislau Bogusz Junior and Bianca C. Maniglia
Foods 2025, 14(9), 1604; https://doi.org/10.3390/foods14091604 - 1 May 2025
Cited by 2 | Viewed by 2394
Abstract
This study develops a 3D printed food designed for dysphagia patients, incorporating a natural deep eutectic solvent (NADES)–annatto seed extract. The objective was to enhance textural properties and bioactive retention in food matrices tailored for individuals with swallowing difficulties. NADES extraction was compared [...] Read more.
This study develops a 3D printed food designed for dysphagia patients, incorporating a natural deep eutectic solvent (NADES)–annatto seed extract. The objective was to enhance textural properties and bioactive retention in food matrices tailored for individuals with swallowing difficulties. NADES extraction was compared to ethanol, with the extracts incorporated into gelatin and starch hydrogels. Gelatin, a widely used biopolymer, improved mechanical properties and printability, ensuring a cohesive and structured matrix for 3D printing. Textural analysis showed that starch-based 3D printed hydrogels exhibited lower hardness, adhesiveness, and gumminess compared to molded samples, making them more suitable for dysphagia-friendly diets than gelatin-based formulations. The IDDSI fork test confirmed that selected 3D printed samples met essential texture requirements for safe consumption by dysphagia patients. The combination of NADES-extracted bioactive compounds and 3D printing enabled the development of functional foods with optimized texture and nutritional properties. Additionally, gelatin played a key role in enhancing elasticity and structural integrity in printed samples, reinforcing its potential for food texture modification. This study presents an innovative approach to dysphagia-friendly food formulation, integrating green extraction methods with advanced food processing technologies, paving the way for safer, nutritionally enhanced, and customizable functional foods for individuals with swallowing disorders. Full article
Show Figures

Graphical abstract

Back to TopTop