Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (508)

Search Parameters:
Keywords = food supply chain management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1369 KiB  
Article
Optimizing Cold Food Supply Chains for Enhanced Food Availability Under Climate Variability
by David Hernandez-Cuellar, Krystel K. Castillo-Villar and Fernando Rey Castillo-Villar
Foods 2025, 14(15), 2725; https://doi.org/10.3390/foods14152725 - 4 Aug 2025
Viewed by 217
Abstract
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus [...] Read more.
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus on removing inefficiencies, minimizing lead times, refining inventory management, strengthening supplier relationships, and leveraging technological advancements for better visibility and control. However, the majority of models rely on deterministic approaches that overlook the inherent uncertainties of crop yields, which are further intensified by climate variability. Rising atmospheric CO2 concentrations, along with shifting temperature patterns and extreme weather events, have a substantial effect on crop productivity and availability. Such uncertainties can prompt distributors to seek alternative sources, increasing costs due to supply chain reconfiguration. This research introduces a stochastic hub-and-spoke network optimization model specifically designed to minimize transportation expenses by determining optimal distribution routes that explicitly account for climate variability effects on crop yields. A use case involving a cold food supply chain (CFSC) was carried out using several weather scenarios based on climate models and real soil data for California. Strawberries were selected as a representative crop, given California’s leading role in strawberry production. Simulation results show that scenarios characterized by increased rainfall during growing seasons result in increased yields, allowing distributors to reduce transportation costs by sourcing from nearby farms. Conversely, scenarios with reduced rainfall and lower yields require sourcing from more distant locations, thereby increasing transportation costs. Nonetheless, supply chain configurations may vary depending on the choice of climate models or weather prediction sources, highlighting the importance of regularly updating scenario inputs to ensure robust planning. This tool aids decision-making by planning climate-resilient supply chains, enhancing preparedness and responsiveness to future climate-related disruptions. Full article
(This article belongs to the Special Issue Climate Change and Emerging Food Safety Challenges)
Show Figures

Figure 1

20 pages, 9007 KiB  
Review
Marine-Derived Collagen and Chitosan: Perspectives on Applications Using the Lens of UN SDGs and Blue Bioeconomy Strategies
by Mariana Almeida and Helena Vieira
Mar. Drugs 2025, 23(8), 318; https://doi.org/10.3390/md23080318 - 1 Aug 2025
Viewed by 284
Abstract
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across [...] Read more.
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across health, food, wellness, and environmental fields. This review highlights recent advances in the uses of marine-derived collagen and chitin/chitosan. In alignment with the United Nations Sustainable Development Goals (SDGs), we analyze how these applications contribute to sustainability, particularly in SDGs related to responsible consumption and production, good health and well-being, and life below water. Furthermore, we contextualize the advancement of product development using marine collagen and chitin/chitosan within the European Union’s Blue bioeconomy strategies, highlighting trends in scientific research and technological innovation through bibliometric and patent data. Finally, the review addresses challenges facing the development of robust value chains for these marine biopolymers, including collaboration, regulatory hurdles, supply-chain constraints, policy and financial support, education and training, and the need for integrated marine resource management. The paper concludes with recommendations for fostering innovation and sustainability in the valorization of these marine resources. Full article
Show Figures

Graphical abstract

24 pages, 5968 KiB  
Article
Life Cycle Assessment of a Digital Tool for Reducing Environmental Burdens in the European Milk Supply Chain
by Yuan Zhang, Junzhang Wu, Haida Wasim, Doris Yicun Wu, Filippo Zuliani and Alessandro Manzardo
Appl. Sci. 2025, 15(15), 8506; https://doi.org/10.3390/app15158506 - 31 Jul 2025
Viewed by 119
Abstract
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A [...] Read more.
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A cradle-to-grave life cycle assessment (LCA) was used to quantify both the additional environmental burdens from RFID (tag production, usage, and disposal) and the avoided burdens due to reduced milk losses in the farm, processing, and distribution stages. Within the EU’s fresh milk supply chain, the implementation of digital tools could result in annual net reductions of up to 80,000 tonnes of CO2-equivalent greenhouse gas emissions, 81,083 tonnes of PM2.5-equivalent particulate matter, 84,326 tonnes of land use–related carbon deficit, and 80,000 cubic meters of freshwater-equivalent consumption. Spatial analysis indicates that regions with historically high spoilage rates, particularly in Southern and Eastern Europe, see the greatest benefits from RFID enabled digital-decision support tools. These environmental savings are most pronounced during the peak months of milk production. Overall, the study demonstrates that despite the environmental footprint of RFID systems, their integration into the EU’S dairy supply chain enhances transparency, reduces waste, and improves resource efficiency—supporting their strategic value. Full article
(This article belongs to the Special Issue Artificial Intelligence and Numerical Simulation in Food Engineering)
Show Figures

Figure 1

29 pages, 4159 KiB  
Review
Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives
by Arjun Muthu, Duyen H. H. Nguyen, Chaima Neji, Gréta Törős, Aya Ferroudj, Reina Atieh, József Prokisch, Hassan El-Ramady and Áron Béni
Foods 2025, 14(15), 2657; https://doi.org/10.3390/foods14152657 - 29 Jul 2025
Viewed by 494
Abstract
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due [...] Read more.
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due to their unique properties, nanomaterials can significantly enhance the functional performance of packaging by boosting mechanical strength, barrier efficiency, antimicrobial activity, and responsiveness to environmental stimuli. This review provides a comprehensive overview of nanomaterials used as smart and sustainable food packaging, focusing on their role in active and intelligent packaging systems. By integrating nanomaterials like metal and metal oxide nanoparticles, carbon-based nanostructures, and nano-biopolymers, packaging can now perform real-time sensing, spoilage detection, and traceability. These systems improve food quality management and supply chain transparency while supporting global sustainability goals. The review also discusses potential risks related to nanomaterials’ migration, environmental impact, and consumer safety, as well as the current regulatory landscape and limitations in industrial scalability. Emphasis is placed on the importance of standardized safety assessments and eco-friendly design to support responsible innovation. Overall, nano-enabled smart packaging represents a promising strategy for advancing food safety and sustainability. Future developments will require collaboration across disciplines and robust regulatory frameworks to ensure the safe and practical application of nanotechnology in food systems. Full article
Show Figures

Graphical abstract

31 pages, 2536 KiB  
Review
Transitioning from a Multi-Agency to an Integrated Food Control System: A Case Study from the Sultanate of Oman
by Moza Abdullah Al Busaidi, Mohammad Shafiur Rahman and Hussein Samh Al Masroori
Foods 2025, 14(15), 2618; https://doi.org/10.3390/foods14152618 - 26 Jul 2025
Viewed by 490
Abstract
Food safety regulations and their implementations are becoming increasingly complex due to various reasons such as diverse food sources, supply chain, processing technologies, distribution systems and environmental concerns. Additionally, it is crucial to address diversified consumers and their preferences. To address these multifaceted [...] Read more.
Food safety regulations and their implementations are becoming increasingly complex due to various reasons such as diverse food sources, supply chain, processing technologies, distribution systems and environmental concerns. Additionally, it is crucial to address diversified consumers and their preferences. To address these multifaceted challenges, adopting an integrated unified management system is essential. This review provides a comprehensive overview of the progressive food safety governance in the Sultanate of Oman. The country is transitioning from a multi-agency to an integrated food control management system. This integrated approach can enhance the coordination between different government agencies and other stakeholders, avoid duplication, identify required resources and ensure optimum use of the resources. The progress can enhance efficiency and effectiveness in managing food safety in Oman. It addresses the issues of the food safety management system, explores the legislative frameworks, risk-based assessment and their enforcement, and creates public awareness and required research for continuous improvement in food safety. This integration approach is expected to continue strengthening food safety governance in the country. Finally, future challenges in achieving food safety are envisioned, including new food sources and technologies, applications of artificial intelligence, and new sensors for quick identification of risks in foods. Full article
(This article belongs to the Special Issue Food Policy, Strategy and Safety in the Middle East)
Show Figures

Figure 1

24 pages, 911 KiB  
Article
Integrated Process-Oriented Approach for Digital Authentication of Honey in Food Quality and Safety Systems—A Case Study from a Research and Development Project
by Joanna Katarzyna Banach, Przemysław Rujna and Bartosz Lewandowski
Appl. Sci. 2025, 15(14), 7850; https://doi.org/10.3390/app15147850 - 14 Jul 2025
Viewed by 340
Abstract
The increasing scale of honey adulteration poses a significant challenge for modern food quality and safety management systems. Honey authenticity, defined as the conformity of products with their declared botanical and geographical origin, is challenging to verify solely through documentation and conventional physicochemical [...] Read more.
The increasing scale of honey adulteration poses a significant challenge for modern food quality and safety management systems. Honey authenticity, defined as the conformity of products with their declared botanical and geographical origin, is challenging to verify solely through documentation and conventional physicochemical analyses. This study presents an integrated, process-oriented approach for digital honey authentication, building on initial findings from an interdisciplinary research and development project. The approach includes the creation of a comprehensive digital pollen database and the application of AI-driven image segmentation and classification methods. The developed system is designed to support decision-making processes in quality assessment and VACCP (Vulnerability Assessment and Critical Control Points) risk evaluation, enhancing the operational resilience of honey supply chains against fraudulent practices. This study aligns with current trends in the digitization of food quality management and the use of Industry 4.0 technologies in the agri-food sector, demonstrating the practical feasibility of integrating AI-supported palynological analysis into industrial workflows. The results indicate that the proposed approach can significantly improve the accuracy and efficiency of honey authenticity assessments, supporting the integrity and transparency of global honey markets. Full article
(This article belongs to the Special Issue Advances in Safety Detection and Quality Control of Food)
Show Figures

Figure 1

34 pages, 2356 KiB  
Article
A Knowledge-Driven Smart System Based on Reinforcement Learning for Pork Supply-Demand Regulation
by Haohao Song and Jiquan Wang
Agriculture 2025, 15(14), 1484; https://doi.org/10.3390/agriculture15141484 - 10 Jul 2025
Viewed by 243
Abstract
With the advancement of Agriculture 4.0, intelligent systems and data-driven technologies offer new opportunities for pork supply-demand balance regulation, while also confronting challenges such as production cycle fluctuations and epidemic outbreaks. This paper introduces a knowledge-driven smart system for pork supply-demand regulation, which [...] Read more.
With the advancement of Agriculture 4.0, intelligent systems and data-driven technologies offer new opportunities for pork supply-demand balance regulation, while also confronting challenges such as production cycle fluctuations and epidemic outbreaks. This paper introduces a knowledge-driven smart system for pork supply-demand regulation, which integrates essential components including a knowledge base, a mathematical-model-based expert system, an enhanced optimization framework, and a real-time feedback mechanism. Around the core of the system, a nonlinear constrained optimization model is established, which uses adjustments to newly retained gilts as decision variables and minimizes supply-demand squared errors as its objective function, incorporating multi-dimensional factors such as pig growth dynamics, epidemic impacts, consumption trends, and international trade into its analytical framework. By harnessing dynamic decision-making capabilities of reinforcement learning (RL), we design an optimization architecture centered on the Q-learning mechanism and dual-strategy pools, which is integrated into the honey badger algorithm to form the RL-enhanced honey badger algorithm (RLEHBA). This innovation achieves an efficient balance between exploration and exploitation in model solving and improves system adaptability. Numerical experiments demonstrate RLEHBA’s superior performance over State-of-the-Art algorithms on the CEC 2017 benchmark. A case study of China’s 2026 pork regulation confirms the system’s practical value in stabilizing the supply-demand balance and optimizing resource allocation. Finally, some targeted managerial insights are proposed. This study constructs a replicable framework for intelligent livestock regulation, and it also holds transformative significance for sustainable and adaptive supply chain management in global agri-food systems. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

25 pages, 877 KiB  
Systematic Review
Systematic Review of Integrating Technology for Sustainable Agricultural Transitions: Ecuador, a Country with Agroecological Potential
by William Viera-Arroyo, Liliane Binego, Francis Ryans, Duther López, Martín Moya, Lya Vera and Carlos Caicedo
Sustainability 2025, 17(13), 6053; https://doi.org/10.3390/su17136053 - 2 Jul 2025
Viewed by 669
Abstract
Agroecology has traditionally been implemented using conventional methods. However, the integration of precision equipment, advanced methodologies, and digital technologies (DT) is now essential for transitioning to a more modern and efficient approach. While agroecological principles remain fundamental for planning and managing sustainable food [...] Read more.
Agroecology has traditionally been implemented using conventional methods. However, the integration of precision equipment, advanced methodologies, and digital technologies (DT) is now essential for transitioning to a more modern and efficient approach. While agroecological principles remain fundamental for planning and managing sustainable food systems by optimizing natural resources, technological tools can significantly support their implementation and adoption by farmers. This transition, however, must also consider socioeconomic factors and policy frameworks to ensure that technological advancements lead to meaningful improvements in farms and agroecosystems. Across both industrialized and emerging economies, various initiatives, such as precision agriculture, digital platforms, and e-commerce, are driving the digitalization of agroecology. These innovations offer clear benefits, including enhanced knowledge generation and direct improvements to the food supply chain; however, several barriers remain, including limited understanding of digital tools, high-energy demands, insufficient financial resources, economical constrains, weak policy support, lack of infrastructure, low digital learning by framers, etc. to facilitate the transition. This review looks for the understanding of how digitalization can align or conflict with local agroecological dynamics across distinct political frameworks and reality contexts because the information about DT adoption in agroecological practices is limited and it remains unclear if digital agriculture for scaling agroecology can considerably change power dynamics within the productive systems in regions of Europe and Latin America. In South America, among countries like Ecuador, with strong potential for agroecological development, where 60% of farms are less than 1 ha, and where farmers have expressed interest in agroecological practices, 80% have reported lacking sufficient information to make the transition to digitalization, making slow the adoption progress of these DT. While agroecology is gaining global recognition, its modernization through DT requires further research in technical, social, economic, cultural, and political dimensions to more guide the adoption of DT in agroecology with more certainty. Full article
(This article belongs to the Special Issue Green Technology and Biological Approaches to Sustainable Agriculture)
Show Figures

Figure 1

23 pages, 1389 KiB  
Article
Strategic Dynamics of Circular Economy Initiatives in Food Systems: A Game Theory Perspective
by Valérie Lacombe and Juste Rajaonson
Sustainability 2025, 17(13), 6025; https://doi.org/10.3390/su17136025 - 30 Jun 2025
Viewed by 418
Abstract
This paper analyses how strategic interactions between actors influence the development of circular economy (CE) initiatives in food systems. Using a case study from Saint-Hyacinthe, a mid-sized and agri-food technopole in Québec (Canada), we investigate how cooperation, competition, and power asymmetries shape CE [...] Read more.
This paper analyses how strategic interactions between actors influence the development of circular economy (CE) initiatives in food systems. Using a case study from Saint-Hyacinthe, a mid-sized and agri-food technopole in Québec (Canada), we investigate how cooperation, competition, and power asymmetries shape CE adoption across the supply chain. Drawing on game theory and a typology of management dynamics, the study identifies four patterns: negotiated management, constrained leadership, hierarchical relationships, and competitive behaviour. Empirical data were collected through two collaborative workshops involving public, private, and community-based actors, resulting in 244 coded entries across 12 boards. These allowed us to assess actors’ interests, attitudes, and capacities in relation to CE strategies at upstream, midstream, and downstream stages. The results show that strategies aligned with dominant interests and existing capacities are more likely to be supported, while those requiring structural change are tolerated or marginalized. Findings highlight the role of incentive mechanisms, institutional flexibility, and coordination in enabling more transformative circular initiatives. By adopting a stage-sensitive perspective, this study also fills a gap in the literature by examining how actor dynamics differ across upstream, midstream, and downstream segments of the food system, contributing to CE research by applying game theory to actor configurations and interaction dynamics in food systems. It calls for further exploration of interdependencies and contextual conditions that either facilitate or hinder the emergence of effective, inclusive, and systemic CE transitions. Full article
(This article belongs to the Special Issue Food, Supply Chains, and Sustainable Development—Second Edition)
Show Figures

Figure 1

25 pages, 799 KiB  
Review
A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes
by Kaily Kao and Evangelyn C. Alocilja
Genes 2025, 16(7), 794; https://doi.org/10.3390/genes16070794 - 30 Jun 2025
Viewed by 584
Abstract
Antimicrobial resistance (AMR) is a rapidly growing global concern resulting from the overuse of antibiotics in both agricultural and clinical settings, the lack of surveillance for resistant bacteria, and the low quality of some available antimicrobial agents. Resistant pathogens are no longer susceptible [...] Read more.
Antimicrobial resistance (AMR) is a rapidly growing global concern resulting from the overuse of antibiotics in both agricultural and clinical settings, the lack of surveillance for resistant bacteria, and the low quality of some available antimicrobial agents. Resistant pathogens are no longer susceptible to common clinical antimicrobials, which decreases the effectiveness of medicines used to treat infections caused by these organisms. Carbapenems are an important class of antibiotics due to their broad-spectrum effectiveness in treating infections caused by Gram-positive and Gram-negative organisms. Carbapenem-resistant bacteria have been found not only in healthcare but also in the environment and food supply chain, where they have the potential to spread to pathogens and infect humans and animals. Current methods of detecting AMR genes are expensive and time-consuming. While these methods, like polymerase chain reactions or whole-genome sequencing, are considered the “gold standard” for diagnostics, the development of inexpensive, rapid diagnostic assays is necessary for effective AMR detection and management. Biosensors have shown potential for success in diagnostic testing due to their ease of use, inexpensive materials, rapid results, and portable nature. Biosensors can be combined with nanomaterials to produce sensitive and easily interpretable results. This review presents an overview of carbapenem resistance, current and emerging detection methods of antimicrobial resistance, and the application of biosensors for rapid diagnostic testing for bacterial resistance. Full article
(This article belongs to the Special Issue Mobile Genetic Elements and Microbial Multidrug Resistance)
Show Figures

Figure 1

12 pages, 2527 KiB  
Proceeding Paper
Structural Properties of Co-Citation and Co-Occurrence Networks in Cold Chain Logistic Management Using Bibliometric Computation
by Yu-Jin Hsu, Chih-Wen Hsiao and Kuei-Kuei Lai
Eng. Proc. 2025, 98(1), 24; https://doi.org/10.3390/engproc2025098024 - 30 Jun 2025
Viewed by 240
Abstract
In the past two decades, particularly through the pandemic, the demand for real-time logistics has significantly increased. Cold chain logistics ensures specific temperature conditions for perishable goods such as food and pharmaceuticals, which is crucial for maintaining product quality, safety, and regulatory compliance. [...] Read more.
In the past two decades, particularly through the pandemic, the demand for real-time logistics has significantly increased. Cold chain logistics ensures specific temperature conditions for perishable goods such as food and pharmaceuticals, which is crucial for maintaining product quality, safety, and regulatory compliance. The integration of the Internet of Things (IoT) into cold chain logistics has transformed supply chain operations. The COVID-19 pandemic and the global urgency for vaccine distribution accelerated the adoption of cold chain technologies, emphasizing their role in preserving perishable goods’ integrity. IoT enables real-time monitoring, remote control, predictive analytics, and data-driven decision-making, all of which are essential for modern logistics. We conducted a bibliometric analysis of 50 publications from 1997 to 2024 to examine IoT’s role in cold chain management. Through co-occurrence and co-citation network analysis, core themes, influential works, and major contributors were identified. Thematic mapping highlighted the importance of temperature monitoring, logistics optimization, and risk management. Additionally, the transition from conventional logistics practices to IoT-driven methodologies was investigated in cold chain operations. The findings of this study provide a basis for understanding the structural properties of co-citation and co-occurrence networks in cold chain logistics and the evolving landscape of cold chain technology, and its impact on logistics, emphasizing the importance of intelligent, reliable, and sustainable cold chain systems to meet the growing demands in global supply chains. Full article
Show Figures

Figure 1

25 pages, 579 KiB  
Article
Leveraging Milk-Traceability Technologies for Supply-Chain Performance: Evidence from Saudi Dairy Firms
by Afyaa Alessa, Himanshu Shee and Tharaka De Vass
Sustainability 2025, 17(13), 5902; https://doi.org/10.3390/su17135902 - 26 Jun 2025
Viewed by 608
Abstract
Growing concern over food safety and adulteration has thrust milk traceability technologies to the forefront of agrifood supply chains. This qualitative study explores the technological, organisational, and environmental (TOE) determinants of traceability technology adoption in Saudi Arabia’s dairy sector. In-depth semi-structured interviews with [...] Read more.
Growing concern over food safety and adulteration has thrust milk traceability technologies to the forefront of agrifood supply chains. This qualitative study explores the technological, organisational, and environmental (TOE) determinants of traceability technology adoption in Saudi Arabia’s dairy sector. In-depth semi-structured interviews with nine senior managers from small-, medium-, and large-scale dairy farms were analysed thematically in NVivo. Thematic analysis revealed that technological cost and compatibility played crucial role, while contrary to the prior literature, respondents downplayed technological complexity, arguing that training could offset it. Organisational culture and employee resistance were the primary inhibitors within dairy firms. Saudi Vision 2030, post COVID-19 consumer pressure and competitor pressure emerged as the dominant environmental factors. The findings offer insights for managers and policymakers on how to improve supply chain transparency, operational efficiency, product quality, and consumer trust while advancing several UN SDGs. Full article
(This article belongs to the Special Issue Digital Transformation of Supply Chain Innovation)
Show Figures

Figure 1

46 pages, 2741 KiB  
Review
Innovative Technologies Reshaping Meat Industrialization: Challenges and Opportunities in the Intelligent Era
by Qing Sun, Yanan Yuan, Baoguo Xu, Shipeng Gao, Xiaodong Zhai, Feiyue Xu and Jiyong Shi
Foods 2025, 14(13), 2230; https://doi.org/10.3390/foods14132230 - 24 Jun 2025
Viewed by 1053
Abstract
The Fourth Industrial Revolution and artificial intelligence (AI) technology are driving the transformation of the meat industry from mechanization and automation to intelligence and digitization. This paper provides a systematic review of key technological innovations in this field, including physical technologies (such as [...] Read more.
The Fourth Industrial Revolution and artificial intelligence (AI) technology are driving the transformation of the meat industry from mechanization and automation to intelligence and digitization. This paper provides a systematic review of key technological innovations in this field, including physical technologies (such as smart cutting precision improved to the millimeter level, pulse electric field sterilization efficiency exceeding 90%, ultrasonic-assisted marinating time reduced by 12 h, and ultra-high-pressure processing extending shelf life) and digital technologies (IoT real-time monitoring, blockchain-enhanced traceability transparency, and AI-optimized production decision-making). Additionally, it explores the potential of alternative meat production technologies (cell-cultured meat and 3D bioprinting) to disrupt traditional models. In application scenarios such as central kitchen efficiency improvements (e.g., food companies leveraging the “S2B2C” model to apply AI agents, supply chain management, and intelligent control systems, resulting in a 26.98% increase in overall profits), end-to-end temperature control in cold chain logistics (e.g., using multi-array sensors for real-time monitoring of meat spoilage), intelligent freshness recognition of products (based on deep learning or sensors), and personalized customization (e.g., 3D-printed customized nutritional meat products), these technologies have significantly improved production efficiency, product quality, and safety. However, large-scale application still faces key challenges, including high costs (such as the high investment in cell-cultured meat bioreactors), lack of standardization (such as the absence of unified standards for non-thermal technology parameters), and consumer acceptance (surveys indicate that approximately 41% of consumers are concerned about contracting illnesses from consuming cultured meat, and only 25% are willing to try it). These challenges constrain the economic viability and market promotion of the aforementioned technologies. Future efforts should focus on collaborative innovation to establish a truly intelligent and sustainable meat production system. Full article
Show Figures

Figure 1

28 pages, 1393 KiB  
Article
Integrated Economic and Environmental Dimensions in the Strategic and Tactical Optimization of Perishable Food Supply Chain: Application to an Ethiopian Real Case
by Asnakech Biza, Ludovic Montastruc, Stéphane Negny and Shimelis Admassu Emire
Logistics 2025, 9(3), 80; https://doi.org/10.3390/logistics9030080 - 23 Jun 2025
Viewed by 591
Abstract
Background: The agri-food sector is a major contributor to environmental degradation and emissions, highlighting the need for sustainable practices to mitigate its impact. Within this sector, perishable food crops require targeted efforts to reduce their environmental footprint. Vertical integration is crucial for ensuring [...] Read more.
Background: The agri-food sector is a major contributor to environmental degradation and emissions, highlighting the need for sustainable practices to mitigate its impact. Within this sector, perishable food crops require targeted efforts to reduce their environmental footprint. Vertical integration is crucial for ensuring alignment between strategic and tactical decision making in supply chain management. This article presents a multi-objective mathematical model that integrates both economic and environmental considerations within the perishable food supply chain, aiming to determine optimal solutions for conflicting objectives. Methods: In this research, we employed combining goal programming with the epsilon constraint approach; this comprehensive methodology reveals optimal solutions by discretizing the values derived from the payoff table. Results: The model is applied to a real case study of the tomato paste supply chain in Ethiopia. To identify Pareto-efficient points, the results are presented in two scenarios: Case I and Case II. Conclusions: The findings emphasize the significant influence of the geographical location of manufacturing centers in supplier selection, which helps optimize the trade-off between environmental impact and total cost. The proposed solution provides decision makers with an effective strategy to optimize both total cost and eco-costs in the design of perishable food supply chain networks. Full article
(This article belongs to the Section Sustainable Supply Chains and Logistics)
Show Figures

Figure 1

27 pages, 2401 KiB  
Review
Balancing Growth and Sustainability in China’s Carp Aquaculture: Practices, Policies, and Sustainability Pathways
by Yang Song and Wenbo Zhang
Sustainability 2025, 17(12), 5593; https://doi.org/10.3390/su17125593 - 18 Jun 2025
Viewed by 1066
Abstract
China leads global carp aquaculture (farming of species within the family Cyprinidae), producing 20 million tons annually in a sector shaped by favorable policies, infrastructure, and innovation. Carp farming in China is rooted in millennia of traditional practices and transformative post-1978 economic [...] Read more.
China leads global carp aquaculture (farming of species within the family Cyprinidae), producing 20 million tons annually in a sector shaped by favorable policies, infrastructure, and innovation. Carp farming in China is rooted in millennia of traditional practices and transformative post-1978 economic reforms. This review synthesizes the historical trajectory, technological advancements, policy frameworks, and sustainability challenges shaping China’s carp aquaculture sector. Historically, carp polyculture systems, developed during the Tang Dynasty (618–907 CE), laid the foundation for resource-efficient practices. Modern intensification, driven by state-led policies, genetic innovations, and feed-based systems, enabled unprecedented growth. However, rapid expansion has exacerbated environmental trade-offs, including nutrient pollution, habitat loss, and antibiotic resistance, while socioeconomic disparities, aging labor forces, and market volatility threaten sectoral resilience. Policy shifts since the 2000s prioritize ecological sustainability, exemplified by effluent regulations, wetland restoration, and green technologies. Despite progress, challenges persist in reconciling economic viability with environmental safeguards. Key success factors include long-term policy support, smallholder capacity building, vertically integrated supply chains, product differentiation, and adaptive management. With balanced policies emphasizing economic, social, and environmental sustainability, carp aquaculture can enhance domestic food and nutrition security. China’s experience showcases the potential of aquaculture to bolster food security but highlights the urgent need to harmonize productivity with ecological and social equity to ensure long-term resilience. Lessons from China’s model offer actionable insights for global aquaculture systems navigating similar sustainability imperatives. Full article
Show Figures

Figure 1

Back to TopTop