A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes
Abstract
1. Introduction
2. Carbapenem Resistance
2.1. Beta-Lactam and Carbapenem Resistance Genes in Bacteria
2.2. CR in the Environment and Food Supply Chains
2.3. Surveillance and Prevalence of CR
3. Current Standardized Methods of AMR Detection in Bacteria
3.1. Phenotypic Detection Methods
3.2. Genotypic Detection Methods
3.3. Limitations of Current Methods
4. Emerging Technologies for CR Detection in Bacteria
5. Application of Biosensors for Pathogen and AMR Detection
5.1. Biosensors for AMR Detection
5.2. Gold Nanoparticles and Gold Nanoparticle-Based Biosensors
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (U.S.). Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention (U.S.): Atlanta, GA, USA, 2019.
- Smith, R.D.; Coast, J. Antimicrobial Resistance: A Global Response. Bull. World Health Organ. 2002, 80, 126–133. [Google Scholar]
- Aljeldah, M.M. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics 2022, 11, 1082. [Google Scholar] [CrossRef] [PubMed]
- Chokshi, A.; Sifri, Z.; Cennimo, D.; Horng, H. Global Contributors to Antibiotic Resistance. J. Glob. Infect. Dis. 2019, 11, 36. [Google Scholar] [CrossRef]
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The Antimicrobial Resistance Crisis: Causes, Consequences, and Management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, Present and Future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Collignon, P.C.; Conly, J.M.; Andremont, A.; McEwen, S.A.; Aidara-Kane, A. World Health Organization Ranking of Antimicrobials According to Their Importance in Human Medicine: A Critical Step for Developing Risk Management Strategies to Control Antimicrobial Resistance From Food Animal Production. Clin. Infect. Dis. 2016, 63, 1087–1093. [Google Scholar] [CrossRef]
- Wilke, M.S.; Lovering, A.L.; Strynadka, N.C. β-Lactam Antibiotic Resistance: A Current Structural Perspective. Curr. Opin. Microbiol. 2005, 8, 525–533. [Google Scholar] [CrossRef]
- Mann, A.; Nehra, K.; Rana, J.S.; Dahiya, T. Antibiotic Resistance in Agriculture: Perspectives on Upcoming Strategies to Overcome Upsurge in Resistance. Curr. Res. Microb. Sci. 2021, 2, 100030. [Google Scholar] [CrossRef]
- Sneeringer, S.; Bowman, M.; Clancy, M. The U.S. and EU Animal Pharamceutical Industries in the Age of Antibiotic Resistance; USDA: Washington, DC, USA, 2019.
- Durso, L.M.; Cook, K.L. Impacts of Antibiotic Use in Agriculture: What Are the Benefits and Risks? Curr. Opin. Microbiol. 2014, 19, 37–44. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed]
- Wallinga, D.; Smit, L.A.M.; Davis, M.F.; Casey, J.A.; Nachman, K.E. A Review of the Effectiveness of Current US Policies on Antimicrobial Use in Meat and Poultry Production. Curr. Environ. Health Rep. 2022, 9, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Ogunrinu, O.J.; Norman, K.N.; Vinasco, J.; Levent, G.; Lawhon, S.D.; Fajt, V.R.; Volkova, V.V.; Gaire, T.; Poole, T.L.; Genovese, K.J.; et al. Can the Use of Older-Generation Beta-Lactam Antibiotics in Livestock Production over-Select for Beta-Lactamases of Greatest Consequence for Human Medicine? An in Vitro Experimental Model. PLoS ONE 2020, 15, e0242195. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.E.; Banerjee, R.; Committee on Infectious Diseases; O’Leary, S.T.; Campbell, J.D.; Ardura, M.I.; Bryant, K.A.; Caserta, M.T.; Frenck, R.W.; Gerber, J.S.; et al. Use of Antibiotics in Animal Agriculture: Implications for Pediatrics: Technical Report. Pediatrics 2024, 154, e2024068467. [Google Scholar] [CrossRef] [PubMed]
- Pakpour, S.; Jabaji, S.; Chénier, M.R. Frequency of Antibiotic Resistance in a Swine Facility 2.5 Years After a Ban on Antibiotics. Microb. Ecol. 2012, 63, 41–50. [Google Scholar] [CrossRef]
- Huang, E.; Yang, X.; Leighton, E.; Li, X. Carbapenem Resistance in the Food Supply Chain. J. Food Prot. 2023, 86, 100108. [Google Scholar] [CrossRef]
- Djordjevic, S.P.; Stokes, H.W.; Chowdhury, P.R. Mobile Elements, Zoonotic Pathogens and Commensal Bacteria: Conduits for the Delivery of Resistance Genes into Humans, Production Animals and Soil Microbiota. Front. Microbiol. 2013, 4, 86. [Google Scholar] [CrossRef]
- Agudo, R.; Reche, M.P. Revealing Antibiotic Resistance’s Ancient Roots: Insights from Pristine Ecosystems. Front. Microbiol. 2024, 15, 1445155. [Google Scholar] [CrossRef]
- Fletcher, S. Understanding the Contribution of Environmental Factors in the Spread of Antimicrobial Resistance. Environ. Health Prev. Med. 2015, 20, 243–252. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Wiebe, R.; Dilay, L.; Thomson, K.; Rubinstein, E.; Hoban, D.J.; Noreddin, A.M.; Karlowsky, J.A. Comparative Review of the Carbapenems. Drugs 2007, 67, 1027–1052. [Google Scholar] [CrossRef]
- Potter, R.F.; D’Souza, A.W.; Dantas, G. The Rapid Spread of Carbapenem-Resistant Enterobacteriaceae. Drug Resist. Updat. 2016, 29, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Findlay, J.; Poirel, L.; Kessler, J.; Kronenberg, A.; Nordmann, P. New Delhi Metallo-β-Lactamase–Producing Enterobacterales Bacteria, Switzerland, 2019–2020. Emerg. Infect. Dis. 2021, 27, 2628–2637. [Google Scholar] [CrossRef]
- Jacoby, G.A.; Brooks Low, K. Appendix C Genetics of Antimicrobial Resistance. In The Effects on Human Health of Subtherapeutic Use of Antimicrobials in Animal Feeds; Assembly of Life Sciences (U.S.), Ed.; National Academy of Sciences: Washington, DC, USA, 1980; ISBN 978-0-309-03044-1. [Google Scholar]
- Fatima, H.; Goel, N.; Sinha, R.; Khare, S.K. Recent Strategies for Inhibiting Multidrug-Resistant and β-Lactamase Producing Bacteria: A Review. Colloids Surf. B Biointerfaces 2021, 205, 111901. [Google Scholar] [CrossRef] [PubMed]
- Poole, K. Resistance to β-Lactam Antibiotics. Cell. Mol. Life Sci. 2004, 61, 2200–2223. [Google Scholar] [CrossRef]
- Bush, K. Past and Present Perspectives on β-Lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.I.; Aqib, A.I.; Seleem, M.N.; Shabbir, M.A.; Hao, H.; Iqbal, Z.; Kulyar, M.F.-A.; Zaheer, T.; Li, K. Genetic Basis of Molecular Mechanisms in β-Lactam Resistant Gram-Negative Bacteria. Microb. Pathog. 2021, 158, 105040. [Google Scholar] [CrossRef] [PubMed]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, Present, and Future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef]
- Meletis, G. Carbapenem Resistance: Overview of the Problem and Future Perspectives. Ther. Adv. Infect. Dis. 2016, 3, 15–21. [Google Scholar] [CrossRef]
- Egorov, A.M.; Ulyashova, M.M.; Rubtsova, M.Y. Bacterial Enzymes and Antibiotic Resistance. Acta Naturae 2018, 10, 33–48. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef]
- Sakamoto, N.; Akeda, Y.; Sugawara, Y.; Matsumoto, Y.; Motooka, D.; Iida, T.; Hamada, S. Role of Chromosome-and/or Plasmid-Located BlaNDM on the Carbapenem Resistance and the Gene Stability in Escherichia coli. Microbiol. Spectr. 2022, 10, e00587-22. [Google Scholar] [CrossRef] [PubMed]
- Codjoe, F.; Donkor, E. Carbapenem Resistance: A Review. Med. Sci. 2017, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Lerminiaux, N.; Mitchell, R.; Bartoszko, J.; Davis, I.; Ellis, C.; Fakharuddin, K.; Hota, S.S.; Katz, K.; Kibsey, P.; Leis, J.A.; et al. Plasmid Genomic Epidemiology of blaKPC Carbapenemase-Producing Enterobacterales in Canada, 2010–2021. Antimicrob. Agents Chemother. 2023, 67, e0086023. [Google Scholar] [CrossRef] [PubMed]
- Pesesky, M.W.; Hussain, T.; Wallace, M.; Wang, B.; Andleeb, S.; Burnham, C.-A.D.; Dantas, G. KPC and NDM-1 Genes in Related Enterobacteriaceae Strains and Plasmids from Pakistan and the United States. Emerg. Infect. Dis. 2015, 21, 1034–1037. [Google Scholar] [CrossRef]
- Feng, Y.; Xue, G.; Feng, J.; Yan, C.; Cui, J.; Gan, L.; Zhang, R.; Zhao, H.; Xu, W.; Li, N.; et al. Rapid Detection of New Delhi Metallo-β-Lactamase Gene Using Recombinase-Aided Amplification Directly on Clinical Samples From Children. Front. Microbiol. 2021, 12, 691289. [Google Scholar] [CrossRef]
- Yao, Y.; Imirzalioglu, C.; Falgenhauer, L.; Falgenhauer, J.; Heinmüller, P.; Domann, E.; Chakraborty, T. Plasmid-Mediated Spread of Carbapenem Resistance in Enterobacterales: A Three-Year Genome-Based Survey. Antibiotics 2024, 13, 682. [Google Scholar] [CrossRef]
- Queenan, A.M.; Bush, K. Carbapenemases: The Versatile β-Lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.A.; Pierrat, G.; Tenaillon, O.; Bonacorsi, S.; Bercot, B.; Jaouen, E.; Jacquier, H.; Birgy, A. Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: An Evolutionary Overview. Antimicrob. Agents Chemother. 2022, 66, e0044722. [Google Scholar] [CrossRef]
- Diene, S.M.; Rolain, J.-M. Carbapenemase Genes and Genetic Platforms in Gram-Negative Bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter Species. Clin. Microbiol. Infect. 2014, 20, 831–838. [Google Scholar] [CrossRef]
- Acman, M.; Wang, R.; Van Dorp, L.; Shaw, L.P.; Wang, Q.; Luhmann, N.; Yin, Y.; Sun, S.; Chen, H.; Wang, H.; et al. Role of Mobile Genetic Elements in the Global Dissemination of the Carbapenem Resistance Gene blaNDM. Nat. Commun. 2022, 13, 1131. [Google Scholar] [CrossRef]
- Safavi, M.; Bostanshirin, N.; Hajikhani, B.; Yaslianifard, S.; Van Belkum, A.; Goudarzi, M.; Hashemi, A.; Darban-Sarokhalil, D.; Dadashi, M. Global Genotype Distribution of Human Clinical Isolates of New Delhi Metallo-β-Lactamase-Producing Klebsiella pneumoniae; A Systematic Review. J. Glob. Antimicrob. Resist. 2020, 23, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Iovleva, A.; Doi, Y. Carbapenem-Resistant Enterobacteriaceae. Clin. Lab. Med. 2017, 37, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U.; Carrara, E.; Conti, M.; Tacconelli, E. Role of New Antibiotics for KPC-Producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 2021, 76, i47–i54. [Google Scholar] [CrossRef]
- Ramírez-Castillo, F.Y.; Guerrero-Barrera, A.L.; Avelar-González, F.J. An Overview of Carbapenem-Resistant Organisms from Food-Producing Animals, Seafood, Aquaculture, Companion Animals, and Wildlife. Front. Vet. Sci. 2023, 10, 1158588. [Google Scholar] [CrossRef] [PubMed]
- Webb, H.E.; Bugarel, M.; Den Bakker, H.C.; Nightingale, K.K.; Granier, S.A.; Scott, H.M.; Loneragan, G.H. Carbapenem-Resistant Bacteria Recovered from Faeces of Dairy Cattle in the High Plains Region of the USA. PLoS ONE 2016, 11, e0147363. [Google Scholar] [CrossRef] [PubMed]
- Mills, M.; Lee, S.; Evans, M.; Garabed, R.; Lee, J. Enteric Pathogens and Carbapenem Resistance Genes Are Widespread in the Fecal Contaminated Soils of Cattle Farms in the United States. Environ. Adv. 2021, 6, 100137. [Google Scholar] [CrossRef]
- Shaheen, B.W.; Nayak, R.; Boothe, D.M. Emergence of a New Delhi Metallo-β-Lactamase (NDM-1)-Encoding Gene in Clinical Escherichia coli Isolates Recovered from Companion Animals in the United States. Antimicrob. Agents Chemother. 2013, 57, 2902–2903. [Google Scholar] [CrossRef]
- Dewi, D.A.P.R.; Götz, B.; Thomas, T. Diversity and Genetic Basis for Carbapenem Resistance in a Coastal Marine Environment. Appl. Environ. Microbiol. 2020, 86, e02939-19. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, M.S.M.; Rapallini, M.; Geurts, Y.; Harders, F.; Bossers, A.; Mevius, D.J.; Wit, B.; Veldman, K.T. Enterobacter Cloacae Complex Isolated from Shrimps from Vietnam Carrying BlaIMI-1 Resistant to Carbapenems but Not Cephalosporins. Antimicrob. Agents Chemother. 2018, 62, e00398-18. [Google Scholar] [CrossRef] [PubMed]
- Hubeny, J.; Korzeniewska, E.; Buta-Hubeny, M.; Zieliński, W.; Rolbiecki, D.; Harnisz, M. Characterization of Carbapenem Resistance in Environmental Samples and Acinetobacter spp. Isolates from Wastewater and River Water in Poland. Sci. Total Environ. 2022, 822, 153437. [Google Scholar] [CrossRef]
- Garofalo, C.; Cesaro, C.; Milanović, V.; Belleggia, L.; Matricardi, T.; Osimani, A.; Aquilanti, L.; Cardinali, F.; Rampanti, G.; Simoni, S.; et al. Search for Carbapenem-Resistant Bacteria and Carbapenem Resistance Genes along Swine Food Chains in Central Italy. PLoS ONE 2024, 19, e0296098. [Google Scholar] [CrossRef] [PubMed]
- Pletz, M.W.; Wollny, A.; Dobermann, U.-H.; Rödel, J.; Neubauer, S.; Stein, C.; Brandt, C.; Hartung, A.; Mellmann, A.; Trommer, S.; et al. A Nosocomial Foodborne Outbreak of a VIM Carbapenemase-Expressing Citrobacter Freundii. Clin. Infect. Dis. 2018, 67, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Scotta, C.; Juan, C.; Cabot, G.; Oliver, A.; Lalucat, J.; Bennasar, A.; Albertí, S. Environmental Microbiota Represents a Natural Reservoir for Dissemination of Clinically Relevant Metallo-Beta-Lactamases. Antimicrob. Agents Chemother. 2011, 55, 5376–5379. [Google Scholar] [CrossRef] [PubMed]
- Rolain, J.-M. Food and Human Gut as Reservoirs of Transferable Antibiotic Resistance Encoding Genes. Front. Microbiol. 2013, 4, 173. [Google Scholar] [CrossRef]
- Ramkisson, T.; Rip, D. Carbapenem Resistance in Enterobacterales from Agricultural, Environmental and Clinical Origins: South Africa in a Global Context. AIMS Microbiol. 2023, 9, 668–691. [Google Scholar] [CrossRef] [PubMed]
- Rzymski, P.; Gwenzi, W.; Poniedziałek, B.; Mangul, S.; Fal, A. Climate Warming, Environmental Degradation and Pollution as Drivers of Antibiotic Resistance. Environ. Pollut. 2024, 346, 123649. [Google Scholar] [CrossRef]
- Magnano San Lio, R.; Favara, G.; Maugeri, A.; Barchitta, M.; Agodi, A. How Antimicrobial Resistance Is Linked to Climate Change: An Overview of Two Intertwined Global Challenges. Int. J. Environ. Res. Public Health 2023, 20, 1681. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, C.; Ho, H.C.; Shi, L.; Zeng, Y.; Yang, X.; Huang, Q.; Pei, Y.; Huang, C.; Yang, L. Association between Antibiotic Resistance and Increasing Ambient Temperature in China: An Ecological Study with Nationwide Panel Data. Lancet Reg. Health West. Pac. 2023, 30, 100628. [Google Scholar] [CrossRef]
- McGough, S.F.; MacFadden, D.R.; Hattab, M.W.; Mølbak, K.; Santillana, M. Rates of Increase of Antibiotic Resistance and Ambient Temperature in Europe: A Cross-National Analysis of 28 Countries between 2000 and 2016. Eurosurveillance 2020, 25, 1900414. [Google Scholar] [CrossRef] [PubMed]
- MacFadden, D.R.; McGough, S.F.; Fisman, D.; Santillana, M.; Brownstein, J.S. Antibiotic Resistance Increases with Local Temperature. Nat. Clim. Chang. 2018, 8, 510–514. [Google Scholar] [CrossRef]
- Fernández Salgueiro, M.; Cernuda Martínez, J.A.; Gan, R.K.; Arcos González, P. Climate Change and Antibiotic Resistance: A Scoping Review. Environ. Microbiol. Rep. 2024, 16, e70008. [Google Scholar] [CrossRef] [PubMed]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Ștefan, M.G.; Loghin, F. Antibiotics in the Environment: Causes and Consequences. Med. Pharm. Rep. 2020, 93, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Furlan, J.P.R.; Sellera, F.P.; Lincopan, N.; Debone, D.; Miraglia, S.G.E.K.; Tavella, R.A. Catastrophic Floods and Antimicrobial Resistance: Interconnected Threats with Wide-Ranging Impacts. One Health 2024, 19, 100891. [Google Scholar] [CrossRef]
- Lee, J.; Beck, K.; Bürgmann, H. Wastewater Bypass Is a Major Temporary Point-Source of Antibiotic Resistance Genes and Multi-Resistance Risk Factors in a Swiss River. Water Res. 2022, 208, 117827. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS); WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Iskandar, K.; Molinier, L.; Hallit, S.; Sartelli, M.; Hardcastle, T.C.; Haque, M.; Lugova, H.; Dhingra, S.; Sharma, P.; Islam, S.; et al. Surveillance of Antimicrobial Resistance in Low- and Middle-Income Countries: A Scattered Picture. Antimicrob. Resist. Infect. Control 2021, 10, 63. [Google Scholar] [CrossRef]
- Robillard, D.W.; Sundermann, A.J.; Raux, B.R.; Prinzi, A.M. Navigating the Network: A Narrative Overview of AMR Surveillance and Data Flow in the United States. Antimicrob. Steward. Healthc. Epidemiol. 2024, 4, e55. [Google Scholar] [CrossRef] [PubMed]
- CDC. Antimicrobial Resistance, Food, and Food Animals; CDC: Atlanta, GA, USA, 2024.
- CDC. Nantional Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS); CDC: Atlanta, GA, USA, 2024.
- Simjee, S.; McDermott, P.; Trott, D.J.; Chuanchuen, R. Present and Future Surveillance of Antimicrobial Resistance in Animals: Principles and Practices. Microbiol. Spectr. 2018, 6, 6.4.06. [Google Scholar] [CrossRef]
- WHO. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- WHO. GLASS AMR Data Global Summaries; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Wise, M.G.; Karlowsky, J.A.; Mohamed, N.; Hermsen, E.D.; Kamat, S.; Townsend, A.; Brink, A.; Soriano, A.; Paterson, D.L.; Moore, L.S.P.; et al. Global Trends in Carbapenem- and Difficult-to-Treat-Resistance among World Health Organization Priority Bacterial Pathogens: ATLAS Surveillance Program 2018–2022. J. Glob. Antimicrob. Resist. 2024, 37, 168–175. [Google Scholar] [CrossRef]
- Jones, L.S.; Howe, R.A. Microbial Resistance and Superbugs. In Biofilms in Infection Prevention and Control; Elsevier: Amsterdam, The Netherlands, 2014; pp. 257–285. ISBN 978-0-12-397043-5. [Google Scholar]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef]
- Duffy, N.; Li, R.; Czaja, C.A.; Johnston, H.; Janelle, S.J.; Jacob, J.T.; Smith, G.; Wilson, L.E.; Vaeth, E.; Lynfield, R.; et al. Trends in Incidence of Carbapenem-Resistant Enterobacterales in 7 US Sites, 2016–2020. Open Forum Infect. Dis. 2023, 10, ofad609. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, M.; Kassa, Y.; Gedefie, A.; Belete, M.A. Emerging Carbapenem-Resistant Enterobacteriaceae Infection, Its Epidemiology and Novel Treatment Options: A Review. Infect. Drug Resist. 2021, 14, 4363–4374. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak, K.; Kiedrzyński, M.; Korzeniewska, E.; Kiedrzyńska, E.; Harnisz, M. Preliminary Insights on Carbapenem Resistance in Enterobacteriaceae in High-Income and Low-/Middle-Income Countries. Sci. Total Environ. 2024, 957, 177593. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. About One Health; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- CDC. One Health History; CDC: Atlanta, GA, USA, 2025.
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial Resistance: One Health Approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, 6.2.10. [Google Scholar] [CrossRef] [PubMed]
- Arnold, K.E.; Laing, G.; McMahon, B.J.; Fanning, S.; Stekel, D.J.; Pahl, O.; Coyne, L.; Latham, S.M.; McIntyre, K.M. The Need for One Health Systems-Thinking Approaches to Understand Multiscale Dissemination of Antimicrobial Resistance. Lancet Planet. Health 2024, 8, e124–e133. [Google Scholar] [CrossRef]
- Thakur, S.; Gray, G.C. The Mandate for a Global “One Health” Approach to Antimicrobial Resistance Surveillance. Am. J. Trop. Med. Hyg. 2019, 100, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Lappan, R.; Chown, S.L.; French, M.; Perlaza-Jiménez, L.; Macesic, N.; Davis, M.; Brown, R.; Cheng, A.; Clasen, T.; Conlan, L.; et al. Towards Integrated Cross-Sectoral Surveillance of Pathogens and Antimicrobial Resistance: Needs, Approaches, and Considerations for Linking Surveillance to Action. Environ. Int. 2024, 192, 109046. [Google Scholar] [CrossRef] [PubMed]
- Tannert, A.; Grohs, R.; Popp, J.; Neugebauer, U. Phenotypic Antibiotic Susceptibility Testing of Pathogenic Bacteria Using Photonic Readout Methods: Recent Achievements and Impact. Appl. Microbiol. Biotechnol. 2019, 103, 549–566. [Google Scholar] [CrossRef]
- Cusack, T.P.; Ashley, E.A.; Ling, C.L.; Roberts, T.; Turner, P.; Wangrangsimakul, T.; Dance, D.a.B. Time to Switch from CLSI to EUCAST? A Southeast Asian Perspective. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2019, 25, 782–785. [Google Scholar] [CrossRef]
- Sundsfjord, A.; Simonsen, G.S.; Haldorsen, B.C.; Haaheim, H.; Hjelmevoll, S.; Littauer, P.; Dahl, K.H. Genetic Methods for Detection of Antimicrobial Resistance. Apmis 2004, 112, 815–837. [Google Scholar] [CrossRef]
- Maddock, K.J.; Burbick, C.R.; Cole, S.D.; Daniels, J.B.; LeCuyer, T.E.; Li, X.-Z.; Loy, J.D.; Sanchez, S.; Stenger, B.L.S.; Diaz-Campos, D. A One Health Perspective on the Use of Genotypic Methods for Antimicrobial Resistance Prediction. J. Am. Vet. Med. Assoc. 2024, 262, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Jonasson, E.; Matuschek, E.; Kahlmeter, G. The EUCAST Rapid Disc Diffusion Method for Antimicrobial Susceptibility Testing Directly from Positive Blood Culture Bottles. J. Antimicrob. Chemother. 2020, 75, 968–978. [Google Scholar] [CrossRef]
- Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST Disk Diffusion Antimicrobial Susceptibility Testing Method and Its Implementation in Routine Microbiology Laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef]
- European Committee on Antimocrbial Susceptibility. European Committee on Antimicrobial Susceptibility Testing; Breakpoint tables for interpretation of MICs and zone diameters; European Committee on Antimocrbial Susceptibility: Växjö, Sweden, 2025. [Google Scholar]
- Li, K.; Zhong, W.; Li, P.; Ren, J.; Jiang, K.; Wu, W. Antibacterial Mechanism of Lignin and Lignin-Based Antimicrobial Materials in Different Fields. Int. J. Biol. Macromol. 2023, 252, 126281. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, A.; Vranken, T.; Malhotra, A.; Arts, J.J.C.; Habibovic, P. In Vitro Antimicrobial Susceptibility Testing Methods: Agar Dilution to 3D Tissue-Engineered Models. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 187–208. [Google Scholar] [CrossRef] [PubMed]
- Lozano, G.E.; Beatriz, S.R.; Cervantes, F.M.; María, G.N.P.; Francisco, J.M.C. Low Accuracy of the McFarland Method for Estimation of Bacterial Populations. Afr. J. Microbiol. Res. 2018, 12, 736–740. [Google Scholar] [CrossRef]
- Tenover, F.C. The Quest to Identify Heterogeneously Resistant Vancomycin-Intermediate Staphylococcus Aureus Strains. Int. J. Antimicrob. Agents 2010, 36, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.B.; Baker, C.N.; Banerjee, S.; Tenover, F.C. Accuracy of the E Test for Determining Antimicrobial Susceptibilities of Staphylococci, Enterococci, Campylobacter Jejuni, and Gram-Negative Bacteria Resistant to Antimicrobial Agents. J. Clin. Microbiol. 1992, 30, 3243–3248. [Google Scholar] [CrossRef] [PubMed]
- Khehra, N.; Padda, I.S.; Swift, C.J. Polymerase Chain Reaction (PCR). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Delidow, B.C.; Lynch, J.P.; Peluso, J.J.; White, B.A. Polymerase Chain Reaction: Basic Protocols. In PCR Protocols; Humana Press: Totowa, NJ, USA, 1993; Volume 15, pp. 1–30. ISBN 978-0-89603-244-6. [Google Scholar]
- Galhano, B.S.P.; Ferrari, R.G.; Panzenhagen, P.; De Jesus, A.C.S.; Conte-Junior, C.A. Antimicrobial Resistance Gene Detection Methods for Bacteria in Animal-Based Foods: A Brief Review of Highlights and Advantages. Microorganisms 2021, 9, 923. [Google Scholar] [CrossRef]
- Dymond, J.S. Explanatory Chapter. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 529, pp. 279–289. ISBN 978-0-12-418687-3. [Google Scholar]
- Arredondo-Alonso, S.; Willems, R.J.; van Schaik, W.; Schürch, A.C. On the (Im)Possibility of Reconstructing Plasmids from Whole-Genome Short-Read Sequencing Data. Microb. Genom. 2017, 3, e000128. [Google Scholar] [CrossRef] [PubMed]
- Collins, A. The Challenge of Genome Sequence Assembly. Open Bioinform. J. 2018, 11, 231–239. [Google Scholar] [CrossRef]
- Yin, R.; Kwoh, C.K.; Zheng, J. Whole Genome Sequencing Analysis. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 176–183. ISBN 978-0-12-811432-2. [Google Scholar]
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef]
- Bard, J.D.; Lee, F. Why Can’t We Just Use PCR? The Role of Genotypic versus Phenotypic Testing for Antimicrobial Resistance Testing. Clin. Microbiol. Newsl. 2018, 40, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Moran, R.A.; Anantham, S.; Holt, K.E.; Hall, R.M. Prediction of Antibiotic Resistance from Antibiotic Resistance Genes Detected in Antibiotic-Resistant Commensal Escherichia coli Using PCR or WGS. J. Antimicrob. Chemother. 2016, 72, dkw511. [Google Scholar] [CrossRef] [PubMed]
- Yee, R.; Dien Bard, J.; Simner, P.J. The Genotype-to-Phenotype Dilemma: How Should Laboratories Approach Discordant Susceptibility Results? J. Clin. Microbiol. 2021, 59, e00138-20. [Google Scholar] [CrossRef]
- Walker, G.T.; Quan, J.; Higgins, S.G.; Toraskar, N.; Chang, W.; Saeed, A.; Sapiro, V.; Pitzer, K.; Whitfield, N.; Lopansri, B.K.; et al. Predicting Antibiotic Resistance in Gram-Negative Bacilli from Resistance Genes. Antimicrob. Agents Chemother. 2019, 63, e02462-18. [Google Scholar] [CrossRef] [PubMed]
- Szalai, C. Arguments for and against the Whole-Genome Sequencing of Newborns. Am. J. Transl. Res. 2023, 15, 6255–6263. [Google Scholar] [PubMed]
- Liu, H.Y.; Hopping, G.C.; Vaidyanathan, U.; Ronquillo, Y.C.; Hoopes, P.C.; Moshirfar, M. Polymerase Chain Reaction and Its Application in the Diagnosis of Infectious Keratitis. Med. Hypothesis Discov. Innov. Ophthalmol. J. 2019, 8, 152–155. [Google Scholar]
- Olaru, I.D.; Patel, H.; Kranzer, K.; Perera, N. Turnaround Time of Whole Genome Sequencing for Mycobacterial Identification and Drug Susceptibility Testing in Routine Practice. Clin. Microbiol. Infect. 2018, 24, 659.e5–659.e7. [Google Scholar] [CrossRef]
- Andersson, D.I.; Nicoloff, H.; Hjort, K. Mechanisms and Clinical Relevance of Bacterial Heteroresistance. Nat. Rev. Microbiol. 2019, 17, 479–496. [Google Scholar] [CrossRef]
- Dao, T.H.; Alsallaq, R.; Parsons, J.B.; Ferrolino, J.; Hayden, R.T.; Rubnitz, J.E.; Rafiqullah, I.M.; Robinson, D.A.; Margolis, E.B.; Rosch, J.W.; et al. Vancomycin Heteroresistance and Clinical Outcomes in Bloodstream Infections Caused by Coagulase-Negative Staphylococci. Antimicrob. Agents Chemother. 2020, 64, e00944-20. [Google Scholar] [CrossRef] [PubMed]
- Margolis, E.; Rosch, J.W. Fitness Landscape of the Immune Compromised Favors the Emergence of Antibiotic Resistance. ACS Infect. Dis. 2018, 4, 1275–1277. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.S.; Wong, C.T.H.; Aung, T.T.; Lakshminarayanan, R.; Mehta, J.S.; Rauz, S.; McNally, A.; Kintses, B.; Peacock, S.J.; De La Fuente-Nunez, C.; et al. Antimicrobial Resistance: A Concise Update. Lancet Microbe 2025, 6, 100947. [Google Scholar] [CrossRef]
- Tiseo, G.; Galfo, V.; Falcone, M. What Is the Clinical Significance of “heteroresistance” in Nonfermenting Gram-Negative Strains? Curr. Opin. Infect. Dis. 2023, 36, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Fukuzawa, S.; Sato, T.; Aoki, K.; Yamamoto, S.; Ogasawara, N.; Nakajima, C.; Suzuki, Y.; Horiuchi, M.; Takahashi, S.; Yokota, S. High Prevalence of Colistin Heteroresistance in Specific Species and Lineages of Enterobacter Cloacae Complex Derived from Human Clinical Specimens. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 60. [Google Scholar] [CrossRef]
- Band, V.I.; Satola, S.W.; Smith, R.D.; Hufnagel, D.A.; Bower, C.; Conley, A.B.; Rishishwar, L.; Dale, S.E.; Hardy, D.J.; Vargas, R.L.; et al. Colistin Heteroresistance Is Largely Undetected among Carbapenem-Resistant Enterobacterales in the United States. mBio 2021, 12, e02881-20. [Google Scholar] [CrossRef]
- Richens, J.G.; Lee, C.M.; Johri, S. Improving the Accuracy of Medical Diagnosis with Causal Machine Learning. Nat. Commun. 2020, 11, 3923. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Luna, S.A.; Siddique, Z. Machine-Learning-Based Disease Diagnosis: A Comprehensive Review. Healthcare 2022, 10, 541. [Google Scholar] [CrossRef]
- Chandan, R.R.; Singh, J.; Ravi, V.; Shivahare, B.D.; Alahmadi, T.J.; Singh, P.; Diwakar, M. Reviewing the Impact of Machine Learning on Disease Diagnosis and Prognosis: A Comprehensive Analysis. Open Pain J. 2024, 17, e18763863291395. [Google Scholar] [CrossRef]
- Sakagianni, A.; Koufopoulou, C.; Feretzakis, G.; Kalles, D.; Verykios, V.S.; Myrianthefs, P.; Fildisis, G. Using Machine Learning to Predict Antimicrobial Resistance―A Literature Review. Antibiotics 2023, 12, 452. [Google Scholar] [CrossRef]
- McGuire, R.J.; Yu, S.C.; Payne, P.R.O.; Lai, A.M.; Vazquez-Guillamet, M.C.; Kollef, M.H.; Michelson, A.P. A Pragmatic Machine Learning Model To Predict Carbapenem Resistance. Antimicrob. Agents Chemother. 2021, 65, e00063-21. [Google Scholar] [CrossRef] [PubMed]
- Giske, C.G.; Bressan, M.; Fiechter, F.; Hinic, V.; Mancini, S.; Nolte, O.; Egli, A. GPT-4-Based AI Agents—The New Expert System for Detection of Antimicrobial Resistance Mechanisms? J. Clin. Microbiol. 2024, 62, e00689-24. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Ahmed, S.; Aslam, M. Artificial Intelligence for Antimicrobial Resistance Prediction: Challenges and Opportunities towards Practical Implementation. Antibiotics 2023, 12, 523. [Google Scholar] [CrossRef]
- Braun, P.; Raab, R.; Bugert, J.J.; Braun, S. Recombinant Reporter Phage rTUN1::nLuc Enables Rapid Detection and Real-Time Antibiotic Susceptibility Testing of Klebsiella pneumoniae K64 Strains. ACS Sens. 2023, 8, 630–639. [Google Scholar] [CrossRef]
- Sachdeva, P.; Nath, G.; Jain, U. Phage Based Biosensors: Enhancing Early Detection of Emerging Pathogens in Diagnostics. Talanta Open 2024, 10, 100345. [Google Scholar] [CrossRef]
- Xu, J.; Chau, Y.; Lee, Y. Phage-Based Electrochemical Sensors: A Review. Micromachines 2019, 10, 855. [Google Scholar] [CrossRef]
- Schofield, D.; Sharp, N.J.; Westwater, C. Phage-Based Platforms for the Clinical Detection of Human Bacterial Pathogens. Bacteriophage 2012, 2, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Meile, S.; Du, J.; Staubli, S.; Grossmann, S.; Koliwer-Brandl, H.; Piffaretti, P.; Leitner, L.; Matter, C.I.; Baggenstos, J.; Hunold, L.; et al. Engineered Reporter Phages for Detection of Escherichia coli, Enterococcus, and Klebsiella in Urine. Nat. Commun. 2023, 14, 4336. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wisuthiphaet, N.; Young, G.M.; Nitin, N. Rapid Detection of Escherichia coli Using Bacteriophage-Induced Lysis and Image Analysis. PLoS ONE 2020, 15, e0233853. [Google Scholar] [CrossRef]
- Moses, S.; Aftalion, M.; Mamroud, E.; Rotem, S.; Steinberger-Levy, I. Reporter-Phage-Based Detection and Antibiotic Susceptibility Testing of Yersinia Pestis for a Rapid Plague Outbreak Response. Microorganisms 2021, 9, 1278. [Google Scholar] [CrossRef]
- Singh, S.; Verma, T.; Khamari, B.; Bulagonda, E.P.; Nandi, D.; Umapathy, S. Antimicrobial Resistance Studies Using Raman Spectroscopy on Clinically Relevant Bacterial Strains. Anal. Chem. 2023, 95, 11342–11351. [Google Scholar] [CrossRef]
- Liu, W.; Tang, J.-W.; Lyu, J.-W.; Wang, J.-J.; Pan, Y.-C.; Shi, X.-Y.; Liu, Q.-H.; Zhang, X.; Gu, B.; Wang, L. Discrimination between Carbapenem-Resistant and Carbapenem-Sensitive Klebsiella pneumoniae Strains through Computational Analysis of Surface-Enhanced Raman Spectra: A Pilot Study. Microbiol. Spectr. 2022, 10, e02409-21. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Huang, Y.; Zhao, Y.; Fang, X.; Cong, Y.; Tang, Z.; Chen, L.; Zhong, J.; Li, R.; et al. Raman Spectrum Combined with Deep Learning for Precise Recognition of Carbapenem-Resistant Enterobacteriaceae. Anal. Bioanal. Chem. 2024, 416, 2465–2478. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.L.; Kang, W.C.M.; Reyes, M.; Teo, J.W.P.; Kah, J.C.Y. Rapid Detection of Carbapenemase-Producing Enterobacteriacae Based on Surface-Enhanced Raman Spectroscopy with Gold Nanostars. ACS Infect. Dis. 2020, 6, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.; Wieland, K.; Qiu, L.; Neumann-Cip, A.-C.; Magistro, G.; Stief, C.; Wieser, A.; Haisch, C. Heteroresistant Bacteria Detected by an Extended Raman-Based Antibiotic Susceptibility Test. Anal. Chem. 2020, 92, 8722–8731. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, M.M.; Abudayyeh, O.O.; Gootenberg, J.S.; Zhang, F.; Collins, J.J. CRISPR-Based Diagnostics. Nat. Biomed. Eng. 2021, 5, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Cartagena, C.; Pablo-Marcos, D.; Fernández-García, L.; Blasco, L.; Pacios, O.; Bleriot, I.; Siller, M.; López, M.; Fernández, J.; Aracil, B.; et al. CRISPR-Cas13a-Based Assay for Accurate Detection of OXA-48 and GES Carbapenemases. Microbiol. Spectr. 2023, 11, e01329-23. [Google Scholar] [CrossRef]
- Cao, Y.; Tian, Y.; Huang, J.; Xu, L.; Fan, Z.; Pan, Z.; Chen, S.; Gao, Y.; Wei, L.; Zheng, S.; et al. CRISPR/Cas13-Assisted Carbapenem-Resistant Klebsiella pneumoniae Detection. J. Microbiol. Immunol. Infect. 2024, 57, 118–127. [Google Scholar] [CrossRef]
- Shin, J.; Kim, S.R.; Xie, Z.; Jin, Y.-S.; Wang, Y.-C. A CRISPR/Cas12a-Based System for Sensitive Detection of Antimicrobial-Resistant Genes in Carbapenem-Resistant Enterobacterales. Biosensors 2024, 14, 194. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef]
- Ioannou, P.; Baliou, S.; Samonis, G. Nanotechnology in the Diagnosis and Treatment of Antibiotic-Resistant Infections. Antibiotics 2024, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- Lino, C.; Barrias, S.; Chaves, R.; Adega, F.; Martins-Lopes, P.; Fernandes, J.R. Biosensors as Diagnostic Tools in Clinical Applications. Biochim. Biophys. Acta BBA—Rev. Cancer 2022, 1877, 188726. [Google Scholar] [CrossRef]
- Wang, C.; Liu, M.; Wang, Z.; Li, S.; Deng, Y.; He, N. Point-of-Care Diagnostics for Infectious Diseases: From Methods to Devices. Nano Today 2021, 37, 101092. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Mittal, S.; Das, M.; Saharia, A.; Tiwari, M. Optical Biosensors: A Decade in Review. Alex. Eng. J. 2023, 67, 673–691. [Google Scholar] [CrossRef]
- Ong, J.J.; Pollard, T.D.; Goyanes, A.; Gaisford, S.; Elbadawi, M.; Basit, A.W. Optical Biosensors—Illuminating the Path to Personalized Drug Dosing. Biosens. Bioelectron. 2021, 188, 113331. [Google Scholar] [CrossRef]
- Irkham, I.; Ibrahim, A.U.; Pwavodi, P.C.; Al-Turjman, F.; Hartati, Y.W. Smart Graphene-Based Electrochemical Nanobiosensor for Clinical Diagnosis: Review. Sensors 2023, 23, 2240. [Google Scholar] [CrossRef]
- Yaghoubi, M.; Rahimi, F.; Negahdari, B.; Rezayan, A.H.; Shafiekhani, A. A Lectin-Coupled Porous Silicon-Based Biosensor: Label-Free Optical Detection of Bacteria in a Real-Time Mode. Sci. Rep. 2020, 10, 16017. [Google Scholar] [CrossRef]
- Dell’Atti, D.; Zavaglia, M.; Tombelli, S.; Bertacca, G.; Cavazzana, A.O.; Bevilacqua, G.; Minunni, M.; Mascini, M. Development of Combined DNA-Based Piezoelectric Biosensors for the Simultaneous Detection and Genotyping of High Risk Human Papilloma Virus Strains. Clin. Chim. Acta 2007, 383, 140–146. [Google Scholar] [CrossRef]
- Fu, X.; Cheng, Z.; Yu, J.; Choo, P.; Chen, L.; Choo, J. A SERS-Based Lateral Flow Assay Biosensor for Highly Sensitive Detection of HIV-1 DNA. Biosens. Bioelectron. 2016, 78, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Mahmudin, L.; Wulandani, R.; Riswan, M.; Kurnia Sari, E.; Dwi Jayanti, P.; Syahrul Ulum, M.; Arifin, M.; Suharyadi, E. Silver Nanoparticles-Based Localized Surface Plasmon Resonance Biosensor for Escherichia coli Detection. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2024, 311, 123985. [Google Scholar] [CrossRef]
- Suea-Ngam, A.; Howes, P.D.; deMello, A.J. An Amplification-Free Ultra-Sensitive Electrochemical CRISPR/Cas Biosensor for Drug-Resistant Bacteria Detection. Chem. Sci. 2021, 12, 12733–12743. [Google Scholar] [CrossRef]
- Boodoo, C.; Dester, E.; David, J.; Patel, V.; Kc, R.; Alocilja, E.C. Multi-Probe Nano-Genomic Biosensor to Detect S. Aureus from Magnetically-Extracted Food Samples. Biosensors 2023, 13, 608. [Google Scholar] [CrossRef] [PubMed]
- Sharief, S.A.; Caliskan-Aydogan, O.; Alocilja, E.C. Carbohydrate-Coated Nanoparticles for PCR-Less Genomic Detection of Salmonella from Fresh Produce. Food Control 2023, 150, 109770. [Google Scholar] [CrossRef]
- Dester, E.; Kao, K.; Alocilja, E.C. Detection of Unamplified E. Coli O157 DNA Extracted from Large Food Samples Using a Gold Nanoparticle Colorimetric Biosensor. Biosensors 2022, 12, 274. [Google Scholar] [CrossRef] [PubMed]
- Sin, M.L.; Mach, K.E.; Wong, P.K.; Liao, J.C. Advances and Challenges in Biosensor-Based Diagnosis of Infectious Diseases. Expert Rev. Mol. Diagn. 2014, 14, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Senf, B.; Yeo, W.-H.; Kim, J.-H. Recent Advances in Portable Biosensors for Biomarker Detection in Body Fluids. Biosensors 2020, 10, 127. [Google Scholar] [CrossRef]
- Gunasekaran, D.; Rostovsky, I.; Taussig, D.; Bar-Am, T.; Wine, Y.; Sal-Man, N.; Vernick, S. A Dual-Channel Electrochemical Biosensor Enables Concurrent Detection of Pathogens and Antibiotic Resistance. Biosens. Bioelectron. 2024, 257, 116314. [Google Scholar] [CrossRef]
- Li, C.; Sun, F. Graphene-Assisted Sensor for Rapid Detection of Antibiotic Resistance in Escherichia coli. Front. Chem. 2021, 9, 696906. [Google Scholar] [CrossRef] [PubMed]
- Ucak Ozkaya, G.; Durak, M.Z.; Akyar, I.; Karatuna, O. Antimicrobial Susceptibility Test for the Determination of Resistant and Susceptible S. Aureus and Enterococcus spp. Using a Multi-Channel Surface Plasmon Resonance Device. Diagnostics 2019, 9, 191. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, S.; Meng, J.; Feng, J.; Mecklenburg, M.; Zhu, L.; Zhou, L.; Bülow, L.; Liu, J.; Song, D.; et al. Rapid Personalized AMR Diagnostics Using Two-Dimensional Antibiotic Resistance Profiling Strategy Employing a Thermometric NDM-1 Biosensor. Biosens. Bioelectron. 2021, 193, 113526. [Google Scholar] [CrossRef]
- Srisrattakarn, A.; Lulitanond, A.; Wilailuckana, C.; Charoensri, N.; Daduang, J.; Chanawong, A. A Novel GoldNano Carb Test for Rapid Phenotypic Detection of Carbapenemases, Particularly OXA Type, in Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter spp. J. Antimicrob. Chemother. 2017, 72, 2519–2527. [Google Scholar] [CrossRef] [PubMed]
- Srisrattakarn, A.; Lulitanond, A.; Charoensri, N.; Wonglakorn, L.; Kenprom, S.; Sukkasem, C.; Kuwatjanakul, W.; Piyapatthanakul, S.; Luanphairin, O.; Phukaw, W.; et al. Multi Evaluation of a Modified GoldNano Carb Test for Carbapenemase Detection in Clinical Isolates of Gram-Negative Bacilli. Antibiotics 2022, 11, 684. [Google Scholar] [CrossRef]
- Kotsakis, S.D.; Miliotis, G.; Tzelepi, E.; Tzouvelekis, L.S.; Miriagou, V. Detection of Carbapenemase Producing Enterobacteria Using an Ion Sensitive Field Effect Transistor Sensor. Sci. Rep. 2021, 11, 12061. [Google Scholar] [CrossRef] [PubMed]
- Kus-Liśkiewicz, M.; Fickers, P.; Ben Tahar, I. Biocompatibility and Cytotoxicity of Gold Nanoparticles: Recent Advances in Methodologies and Regulations. Int. J. Mol. Sci. 2021, 22, 10952. [Google Scholar] [CrossRef]
- Sarma, P.P.; Rai, A.; Baruah, P.K. Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance. Antibiotics 2024, 13, 124. [Google Scholar] [CrossRef]
- Fan, Y.; Pauer, A.C.; Gonzales, A.A.; Fenniri, H. Enhanced Antibiotic Activity of Ampicillin Conjugated to Gold Nanoparticles on PEGylated Rosette Nanotubes. Int. J. Nanomed. 2019, 14, 7281–7289. [Google Scholar] [CrossRef]
- Deng, J.; Zhao, S.; Liu, Y.; Liu, C.; Sun, J. Nanosensors for Diagnosis of Infectious Diseases. ACS Appl. Bio Mater. 2021, 4, 3863–3879. [Google Scholar] [CrossRef] [PubMed]
- Reynoso, E.C.; Laschi, S.; Palchetti, I.; Torres, E. Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review. Chemosensors 2021, 9, 232. [Google Scholar] [CrossRef]
- Sharief, S.A.; Caliskan-Aydogan, O.; Alocilja, E. Carbohydrate-Coated Magnetic and Gold Nanoparticles for Point-of-Use Food Contamination Testing. Biosens. Bioelectron. X 2023, 13, 100322. [Google Scholar] [CrossRef]
- Caliskan-Aydogan, O.; Sharief, S.A.; Alocilja, E.C. Nanoparticle-Based Plasmonic Biosensor for the Unamplified Genomic Detection of Carbapenem-Resistant Bacteria. Diagnostics 2023, 13, 656. [Google Scholar] [CrossRef]
- Hu, S.; Niu, L.; Zhao, F.; Yan, L.; Nong, J.; Wang, C.; Gao, N.; Zhu, X.; Wu, L.; Bo, T.; et al. Identification of Acinetobacter Baumannii and Its Carbapenem-Resistant Gene blaOXA-23-like by Multiple Cross Displacement Amplification Combined with Lateral Flow Biosensor. Sci. Rep. 2019, 9, 17888. [Google Scholar] [CrossRef] [PubMed]
- Coorevits, L.; Boelens, J.; Claeys, G. Direct Susceptibility Testing by Disk Diffusion on Clinical Samples: A Rapid and Accurate Tool for Antibiotic Stewardship. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Guo, H.; Peng, T.; Ding, E.; Zhao, H.; Liu, Q.; He, S.; Zhao, G. Advances in the Detection of β-Lactamase: A Review. Int. J. Biol. Macromol. 2023, 251, 126159. [Google Scholar] [CrossRef] [PubMed]
- Mayrhofer, S.; Domig, K.J.; Mair, C.; Zitz, U.; Huys, G.; Kneifel, W. Comparison of Broth Microdilution, Etest, and Agar Disk Diffusion Methods for Antimicrobial Susceptibility Testing of Lactobacillus acidophilus Group Members. Appl. Environ. Microbiol. 2008, 74, 3745–3748. [Google Scholar] [CrossRef]
- Sader, H.S.; Pignatari, A.C.C. E Test: A Novel Technique for Antimicrobial Susceptibility Testing. Sao Paulo Med. J. 1994, 112, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Benkova, M.; Soukup, O.; Marek, J. Antimicrobial Susceptibility Testing: Currently Used Methods and Devices and the near Future in Clinical Practice. J. Appl. Microbiol. 2020, 129, 806–822. [Google Scholar] [CrossRef]
- Eberhardt, K.; Stiebing, C.; Matthäus, C.; Schmitt, M.; Popp, J. Advantages and Limitations of Raman Spectroscopy for Molecular Diagnostics: An Update. Expert Rev. Mol. Diagn. 2015, 15, 773–787. [Google Scholar] [CrossRef]
- Ghouneimy, A.; Mahas, A.; Marsic, T.; Aman, R.; Mahfouz, M. CRISPR-Based Diagnostics: Challenges and Potential Solutions toward Point-of-Care Applications. ACS Synth. Biol. 2023, 12, 1–16. [Google Scholar] [CrossRef]
- Koczula, K.M.; Gallotta, A. Lateral Flow Assays. Essays Biochem. 2016, 60, 111–120. [Google Scholar] [CrossRef]
- Momeni, N.; Javadifar, K.; Patrick, M.A.; Hasan, M.H.; Chowdhury, F. Review on Gold Nanoparticles-Based Biosensors in Clinical and Non-Clinical Applications. Int. J. Eng. Mater. Manuf. 2022, 7, 1–12. [Google Scholar] [CrossRef]
- Ch, A.; U, U.S. Biosensors–The Point of Care Diagnostics (POCD): A Review. SSR Inst. Int. J. Life Sci. 2024, 10, 5979–5984. [Google Scholar] [CrossRef]
- Hemdan, M.; Ali, M.A.; Doghish, A.S.; Mageed, S.S.A.; Elazab, I.M.; Khalil, M.M.; Mabrouk, M.; Das, D.B.; Amin, A.S. Innovations in Biosensor Technologies for Healthcare Diagnostics and Therapeutic Drug Monitoring: Applications, Recent Progress, and Future Research Challenges. Sensors 2024, 24, 5143. [Google Scholar] [CrossRef]
Pathogen | Meropenem | Imipenem | Doripenem | Ertapenem |
---|---|---|---|---|
Acinetobacter spp. | 64.29% (n = 57) | 64% (n = 55) | 54.67% (n = 4) | Not reported |
E. coli | 0.5% (n = 58) | 0.5% (n = 60) | 8.2% (n = 4) | 1.2% (n = 45) |
K. pneumoniae | 11% (n = 59) | 8.8% (n = 58) | 14.5% (n = 5) | 17% (n = 45) |
Method | Time to Result | Source |
---|---|---|
Phenotypic | ||
Disk Diffusion | 16–20 h | [94] |
Broth Microdilution | 24–48 h | [97] |
Broth Macrodilution | 24 h | [98] |
Epsilometer Testing | 24 h | [101] |
Agar Dilution | 12–24 h | [97] |
Genotypic | ||
PCR-Based Methods | 4–8 h | [115] |
WGS | 1–6 d | [116] |
Type of Biosensor | Transduction | Target | Source |
---|---|---|---|
Porous silicon (PSi)-based biosensor | Optical | Detection of E. coli, S. aureus, K. aerogenes, and B. subtilis | [154] |
DNA-based piezoelectric biosensor | Mass-based | Simultaneous detection and genotyping of Human Papilloma Virus (HPV) | [155] |
Nanoparticle-based lateral flow biosensor | Optical | Detection of target genes in HIV-1 | [156] |
Silver nanoparticle-based surface plasmon resonance (SPR) biosensor | Optical | Detection of E. coli by enhancing SPR signals with L-His-capped silver nanoparticles | [157] |
Electrochemical CRISPR biosensor | Electrochemical | Detection of target genes in methicillin-resistant S. aureus (MRSA) | [158] |
DNA-based plasmonic biosensor | Optical | Detection of thermonuclease (nuc) gene in S. aureus, invA gene in Salmonella, and StxA1 gene in E. coli O157 | [159,160,161] |
AMR Detection Method | Advantages | Disadvantages | Sources |
---|---|---|---|
Phenotypic Methods | |||
Disk diffusion | Inexpensive, allows visibility of growth, and direct susceptibility testing, clinical relevance for bacterial response to antibiotic | Time-consuming, not standardized, qualitative results, requires cultivable organisms | [109,179] |
Broth dilution | Standardized, accurate results, quantitative results, clinical relevance for bacterial response to antibiotic | Time-consuming, complicated procedure, laborious, requires cultivable organisms | [180,181] |
Agar dilution | Standardized, high reproducibility, quantitative results, clinical relevance for bacterial response to antibiotic | Time-consuming, complex procedure, laborious, requires cultivable organisms | [109,180,181] |
Epsilometer test | Simple procedure, flexible applications, quantitative result, clinical relevance for bacterial response to antibiotic | Time-consuming, moderately expensive, requires cultivable organisms | [182,183] |
Genotypic Methods | |||
PCR-based detection | Rapid, high specificity, ability to detect AMR in non-cultivable organisms | Complicated procedure, laborious validation, sensitive to experimental conditions, expensive, genotypic result does not guarantee phenotypic response | [104,111] |
Whole-genome sequencing | High accuracy, sensitive, ability to detect non-cultivable organisms | Time-consuming, expensive, requires known resistance genes, complex data analysis, qualitative results, genotypic result does not guarantee phenotypic response, fragmented genomic sequences | [106,107,109,111] |
Emerging Methods | |||
Machine learning and artificial intelligence-based assays | Rapid, predictive, and real-time results | Requires existing large databases and ML algorithms, data privacy concerns | [125,128] |
Phage-based assays | Rapid, sensitive, inexpensive, accurate | Requires cultivable organisms, requires high bacterial concentration | [134] |
Raman spectroscopy-based assays | Rapid, real-time results, specific, accurate, and shown to successfully detect resistance in subpopulations of heteroresistant bacteria | Potentially damages samples with laser exposure, requires cultivable organisms, requires large databases and machine learning algorithms | [142,184] |
Clustered regularly interspaced short palindromic repeats-based assays | Inexpensive, do not require special equipment, simple procedures | Can be unstable, require complicated sample processing, often require pre-amplification | [185] |
Biosensors | |||
Dual-channel electrochemical biosensor | Low detection limit, portable, detects virulence and antibiotic resistance markers simultaneously | Time-consuming, complicated procedure, non-specific binding, requires cultivable organisms | [164] |
Gold nanoparticle-based lateral flow biosensor | Rapid, identifies two targets simultaneously, simple procedure | Qualitative or semi-quantitative result, complex device structure, can be affected by sample matrix | [178,186] |
Surface plasmon resonance multi-channel sensor platform | Rapid, simultaneous detection capability, less laborious procedure than similar existing methods | Requires special equipment, qualitative or semi-quantitative results, abnormalities in bacterial adhesion can affect results | [166] |
Gold nanoparticle-based optical biosensors | Rapid, inexpensive, simple procedures, accurate | Lack of testing in real-world applications | [177,187] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, K.; Alocilja, E.C. A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes. Genes 2025, 16, 794. https://doi.org/10.3390/genes16070794
Kao K, Alocilja EC. A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes. Genes. 2025; 16(7):794. https://doi.org/10.3390/genes16070794
Chicago/Turabian StyleKao, Kaily, and Evangelyn C. Alocilja. 2025. "A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes" Genes 16, no. 7: 794. https://doi.org/10.3390/genes16070794
APA StyleKao, K., & Alocilja, E. C. (2025). A Review of the Diagnostic Approaches for the Detection of Antimicrobial Resistance, Including the Role of Biosensors in Detecting Carbapenem Resistance Genes. Genes, 16(7), 794. https://doi.org/10.3390/genes16070794