Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (272)

Search Parameters:
Keywords = food storage environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3364 KiB  
Review
Principles, Applications, and Future Evolution of Agricultural Nondestructive Testing Based on Microwaves
by Ran Tao, Leijun Xu, Xue Bai and Jianfeng Chen
Sensors 2025, 25(15), 4783; https://doi.org/10.3390/s25154783 - 3 Aug 2025
Viewed by 130
Abstract
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness [...] Read more.
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness in dynamic agricultural inspections. This review highlights the transformative potential of microwave technologies, systematically examining their operational principles, current implementations, and developmental trajectories for agricultural quality control. Microwave technology leverages dielectric response mechanisms to overcome traditional limitations, such as low-frequency penetration for grain silo moisture testing and high-frequency multi-parameter analysis, enabling simultaneous detection of moisture gradients, density variations, and foreign contaminants. Established applications span moisture quantification in cereal grains, oilseed crops, and plant tissues, while emerging implementations address storage condition monitoring, mycotoxin detection, and adulteration screening. The high-frequency branch of the microwave–millimeter wave systems enhances analytical precision through molecular resonance effects and sub-millimeter spatial resolution, achieving trace-level contaminant identification. Current challenges focus on three areas: excessive absorption of low-frequency microwaves by high-moisture agricultural products, significant path loss of microwave high-frequency signals in complex environments, and the lack of a standardized dielectric database. In the future, it is essential to develop low-cost, highly sensitive, and portable systems based on solid-state microelectronics and metamaterials, and to utilize IoT and 6G communications to enable dynamic monitoring. This review not only consolidates the state-of-the-art but also identifies future innovation pathways, providing a roadmap for scalable deployment of next-generation agricultural NDT systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

10 pages, 220 KiB  
Article
Surface Application of Different Insecticides Against Two Coleopteran Pests of Stored Products
by Paraskevi Agrafioti, Marina Gourgouta, Dimitrios Kateris and Christos G. Athanassiou
Appl. Sci. 2025, 15(15), 8306; https://doi.org/10.3390/app15158306 - 25 Jul 2025
Viewed by 168
Abstract
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: [...] Read more.
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: the red flour beetle and the tobacco beetle. Alpha-cypermethrin and spinosad exhibited rapid and high efficacy, particularly on non-porous surfaces such as metal and ceramic, whereas pirimiphos-methyl was less effective initially and required extended exposure to achieve complete mortality, especially against Tribolium castaneum. In contrast, Lasioderma serricorne showed greater susceptibility across all insecticides and surfaces. Spinosad maintained high efficacy across all surface types, suggesting broader applicability under variable conditions. The reduced performance of insecticides on concrete surfaces underscores the influence of substrate porosity on insecticide bioavailability. Additionally, the observed delayed mortality effect in all treatments indicates that even brief exposure can result in lethal outcomes, emphasizing the long-term potential of these applications. These findings underscore the need for surface-specific application strategies and support the integration of surface treatments into comprehensive pest management programs. Further research is warranted under simulated field conditions to assess residual efficacy over time and in the presence of food, thereby enhancing the relevance of laboratory findings to real-world storage environments. Full article
(This article belongs to the Special Issue Advanced Computational Techniques for Plant Disease Detection)
17 pages, 469 KiB  
Article
Assessment of Food Safety and Practices in Nutrition Services: Case Study of Al-Ahsa Hospitals
by Randah Miqbil Alqurashi and Arwa Ibrahim Al-Humud
Healthcare 2025, 13(14), 1723; https://doi.org/10.3390/healthcare13141723 - 17 Jul 2025
Viewed by 321
Abstract
Background/Objectives: This study assessed Knowledge and Practices related to Food Safety (KPFS) among nutrition services employees in hospitals across the Al-Ahsa Governorate, Kingdom of Saudi Arabia. The objective was to evaluate the staff’s understanding of key food safety principles, including foodborne illness prevention, [...] Read more.
Background/Objectives: This study assessed Knowledge and Practices related to Food Safety (KPFS) among nutrition services employees in hospitals across the Al-Ahsa Governorate, Kingdom of Saudi Arabia. The objective was to evaluate the staff’s understanding of key food safety principles, including foodborne illness prevention, food handling, personal hygiene, and food storage and preparation practices. Methods: A descriptive survey method was used, and data were collected using an electronic questionnaire, which was either self-administered by the participants or completed with the assistance of the researcher in cases involving employees who did not speak Arabic or English. This study included 302 staff members involved in the preparation, service, and supervision of food provided to hospital patients. Results: The results indicated a high level of knowledge among nutrition services employees regarding food safety principles, critical temperature control, cross-contamination prevention, and proper hygiene practices. The employees also demonstrated a strong commitment to personal hygiene behaviors, such as handwashing, wearing appropriate clothing, and avoiding unsafe practices. Additionally, a high degree of knowledge and understanding was found regarding food storage procedures and contamination prevention. The study also highlighted a very high level of awareness concerning the cleaning and sterilization of equipment, tools, and food storage surfaces, as well as maintaining a clean and healthy environment. These findings emphasize the importance of continuous training in enhancing food safety knowledge among nutrition services employees. Conclusions: It is recommended that all employees, regardless of education level, experience, or role, participate regularly in food safety training programs to sustain and improve food safety practices within hospital environments. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

12 pages, 243 KiB  
Article
Acaricidal Efficacy of Diatomaceous Earths on Different Life Stages of Acarus siro L. and Tyrophagus putrescentiae (Schrank)
by Maria C. Boukouvala, Constantin S. Filintas and Nickolas G. Kavallieratos
Insects 2025, 16(7), 693; https://doi.org/10.3390/insects16070693 - 4 Jul 2025
Viewed by 497
Abstract
Acarus siro L. and Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) are cosmopolitan mite species in food storage and processing environments, infesting a wide variety of commodities. In the current study, the diatomaceous earths (DEs) InsectoSec and Fossil Shield were evaluated for wheat protection against [...] Read more.
Acarus siro L. and Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) are cosmopolitan mite species in food storage and processing environments, infesting a wide variety of commodities. In the current study, the diatomaceous earths (DEs) InsectoSec and Fossil Shield were evaluated for wheat protection against adults, larvae, and nymphs of A. siro and T. putrescentiae. Both DEs were examined at 200 and 500 ppm at 1, 2, and 5 days post-exposure. The efficacy of both formulations against A. siro and T. putrescentiae life stages depended on dose and exposure. Mortality of A. siro reached 100% in larvae, 99.3% in nymphs, and 95.6% in adults by day 5 at 500 ppm of InsectoSec. Similarly, Fossil Shield achieved almost complete larval mortality (99.3%) of A. siro at 500 ppm. For T. putrescentiae, 100% mortality was observed for larvae at both doses of InsectoSec and for adults or nymphs at 500 ppm by the fifth day. Fossil Shield caused a similar mortality to larvae, reaching 97.0% and 100%, at 200 and 500 ppm, respectively, after 5 days. Our findings indicate that InsectoSec and Fossil Shield can be used as sustainable management tools against A. siro and T. putrescentiae. Full article
(This article belongs to the Special Issue Advances in the Effects of Insecticides on Pests)
15 pages, 1530 KiB  
Article
Melatonin Priming Increases the Tolerance of Tartary Buckwheat Seeds to Abiotic Stress
by Liwei Zhu, Guohong Tang, Xiaoyu An, Hongyou Li and Qingfu Chen
Agronomy 2025, 15(7), 1606; https://doi.org/10.3390/agronomy15071606 - 30 Jun 2025
Viewed by 346
Abstract
Increasing abiotic stress, particularly salinity, poses a significant threat to the germination and seedling development of Tartary buckwheat, thereby limiting its yield potential and broader cultivation. Given Tartary buckwheat’s rich nutritional profile and inherent stress adaptability, enhancing seed tolerance to abiotic stress is [...] Read more.
Increasing abiotic stress, particularly salinity, poses a significant threat to the germination and seedling development of Tartary buckwheat, thereby limiting its yield potential and broader cultivation. Given Tartary buckwheat’s rich nutritional profile and inherent stress adaptability, enhancing seed tolerance to abiotic stress is essential for ensuring food security and the development of functional food resources. To investigate the role of melatonin in mitigating abiotic stress, seeds of the cultivar ‘Jinqiaomai 2’ were primed with varying melatonin concentrations (with water as the control) at multiple time points. The effects of salt stress on germination and seedling quality were evaluated to determine optimal priming conditions. Subsequent analyses examined seed vigor and physiological and biochemical responses during storage under high temperature and humidity, room temperature, and low-temperature conditions. The results showed that a 3 h melatonin priming consistently resulted in high germination rates (98.7–100.0%). Notably, melatonin at 50 μmol·L−1 was identified as the optimal concentration, significantly improving seedling growth under salinity stress, with increases of 61.1% in seedling length, 59.3% in root length, and 38.9% in root fresh weight compared with the control. Across all storage environments, melatonin-primed seeds exhibited superior vigor and enhanced antioxidant enzyme activity relative to water-primed controls. In conclusion, melatonin priming at an appropriate concentration and duration effectively enhanced the vigor of Tartary buckwheat seeds and alleviated the adverse effects of salinity on germination and storage resilience. However, improved seeds may possess a limited safe storage window and should be sown promptly rather than stored long-term. Full article
Show Figures

Figure 1

13 pages, 1617 KiB  
Article
Attempts to Use Thermal Imaging to Assess the Microbiological Safety of Poultry Meat in Modified Atmosphere Packaging
by Edyta Lipińska, Katarzyna Pobiega, Kamil Piwowarek, Piotr Koczoń and Stanisław Błażejak
Appl. Sci. 2025, 15(13), 7301; https://doi.org/10.3390/app15137301 - 28 Jun 2025
Viewed by 264
Abstract
Meat provides a favorable environment for the growth of microorganisms, so increasingly advanced methods are being sought to ensure the rapid detection of their presence and determine the degree of contamination. These measures are intended to ensure consumer health and reduce food losses. [...] Read more.
Meat provides a favorable environment for the growth of microorganisms, so increasingly advanced methods are being sought to ensure the rapid detection of their presence and determine the degree of contamination. These measures are intended to ensure consumer health and reduce food losses. The aim of this study was to evaluate the suitability of a thermal imaging camera and FT-IR spectrophotometry for microbiological quality control of poultry meat. This study used poultry meat fillets packaged in a modified atmosphere and stored at 4 °C for 10 days. During the successive days of storage, the following were determined: the total number of microorganisms, the count of Enterobacteriaceae, the temperature of the samples tested using a thermal imaging camera, and the spectral data contained in the spectra recorded by the FT technique of IR spectroscopy. The results were analyzed using Tukey’s test in the STATISTICA 13.3 statistical program with an assumed significance level of α ≤ 0.05. Spectral data obtained by the FT-IR method were subjected to interpretation using the T.Q. Analyst 8 program. This study found that the number of microorganisms increased between the 2nd and 10th days of storage for the poultry meat samples of four log CFU/g, leading to a temperature increase of 2.61 °C, and also, the intensities and frequencies of selected IR bands generated by vibrations of various groups of atoms changed, including functional groups present in the compounds contained in the tested samples. It was shown that modern techniques such as FT-IR spectroscopy and thermal imaging cameras have significant potential applications in the food industry for assessing the microbiological quality of food. Full article
(This article belongs to the Special Issue Innovative Technology in Food Analysis and Processing)
Show Figures

Figure 1

36 pages, 6279 KiB  
Article
Eel and Grouper Optimization-Based Fuzzy FOPI-TIDμ-PIDA Controller for Frequency Management of Smart Microgrids Under the Impact of Communication Delays and Cyberattacks
by Kareem M. AboRas, Mohammed Hamdan Alshehri and Ashraf Ibrahim Megahed
Mathematics 2025, 13(13), 2040; https://doi.org/10.3390/math13132040 - 20 Jun 2025
Cited by 1 | Viewed by 490
Abstract
In a smart microgrid (SMG) system that deals with unpredictable loads and incorporates fluctuating solar and wind energy, it is crucial to have an efficient method for controlling frequency in order to balance the power between generation and load. In the last decade, [...] Read more.
In a smart microgrid (SMG) system that deals with unpredictable loads and incorporates fluctuating solar and wind energy, it is crucial to have an efficient method for controlling frequency in order to balance the power between generation and load. In the last decade, cyberattacks have become a growing menace, and SMG systems are commonly targeted by such attacks. This study proposes a framework for the frequency management of an SMG system using an innovative combination of a smart controller (i.e., the Fuzzy Logic Controller (FLC)) with three conventional cascaded controllers, including Fractional-Order PI (FOPI), Tilt Integral Fractional Derivative (TIDμ), and Proportional Integral Derivative Acceleration (PIDA). The recently released Eel and Grouper Optimization (EGO) algorithm is used to fine-tune the parameters of the proposed controller. This algorithm was inspired by how eels and groupers work together and find food in marine ecosystems. The Integral Time Squared Error (ITSE) of the frequency fluctuation (ΔF) around the nominal value is used as an objective function for the optimization process. A diesel engine generator (DEG), renewable sources such as wind turbine generators (WTGs), solar photovoltaics (PVs), and storage components such as flywheel energy storage systems (FESSs) and battery energy storage systems (BESSs) are all included in the SMG system. Additionally, electric vehicles (EVs) are also installed. In the beginning, the supremacy of the adopted EGO over the Gradient-Based Optimizer (GBO) and the Smell Agent Optimizer (SAO) can be witnessed by taking into consideration the optimization process of the recommended regulator’s parameters, in addition to the optimum design of the membership functions of the fuzzy logic controller by each of these distinct algorithms. The subsequent phase showcases the superiority of the proposed EGO-based FFOPI-TIDμ-PIDA structure compared to EGO-based conventional structures like PID and EGO-based intelligent structures such as Fuzzy PID (FPID) and Fuzzy PD-(1 + PI) (FPD-(1 + PI)); this is across diverse symmetry operating conditions and in the presence of various cyberattacks that result in a denial of service (DoS) and signal transmission delays. Based on the simulation results from the MATLAB/Simulink R2024b environment, the presented control methodology improves the dynamics of the SMG system by about 99.6% when compared to the other three control methodologies. The fitness function dropped to 0.00069 for the FFOPI-TIDμ-PIDA controller, which is about 200 times lower than the other controllers that were compared. Full article
(This article belongs to the Special Issue Mathematical Methods Applied in Power Systems, 2nd Edition)
Show Figures

Figure 1

16 pages, 1761 KiB  
Article
Biogas from Food Waste on the Island of Tenerife: Potential from Kitchens and Restaurants, Stabilisation and Conversion in a Biogas Plant Made of Textile Materials
by Verónica Hidalgo-Sánchez, María Emma Borges, Josef Hofmann, Daniel Cuñarro, Sophie Schneider and Tobias Finsterwalder
Appl. Sci. 2025, 15(12), 6922; https://doi.org/10.3390/app15126922 - 19 Jun 2025
Viewed by 462
Abstract
Municipal solid waste management (MSWM) on islands involves several challenges relating to politics, society, the environment, and technology. This paper addresses the potential for producing biogas and biomethane from food waste on Tenerife, including waste from households, with the aim of reducing landfill [...] Read more.
Municipal solid waste management (MSWM) on islands involves several challenges relating to politics, society, the environment, and technology. This paper addresses the potential for producing biogas and biomethane from food waste on Tenerife, including waste from households, with the aim of reducing landfill and primary fossil energy consumption. The study also introduces the European and Regional policy framework and requirements. Effective microorganisms have been studied as proposals to stabilise the food waste from households, avoiding odours and decomposition during storage. The trials show positive results in terms of the preservation of organic matter until the food waste is transported to the biogas plant. In addition, a new concept for a small biogas plant made of textile materials, which are suited to the municipalities of Tenerife, is presented to provide an easy-to-build solution, with ranges of up to 75 kW in electrical power. With a theoretical potential of 299,012 tons of food waste being available per year (based on 2022), preliminary laboratory experiments with real samples of the island showed a theoretical potential of 28.97 × 106 Nm3 for biogas and 264,612 tons for digestate, which can be used as fertilisers, with potential savings of 18.15 × 106 L of gasoline and 42.66 × 103 equivalent CO2 tons. Full article
Show Figures

Figure 1

29 pages, 753 KiB  
Article
Sustainable Thermal Energy Storage Systems: A Mathematical Model of the “Waru-Waru” Agricultural Technique Used in Cold Environments
by Jorge Luis Mírez Tarrillo
Energies 2025, 18(12), 3116; https://doi.org/10.3390/en18123116 - 13 Jun 2025
Viewed by 3295
Abstract
The provision of food in pre-Inca/Inca cultures (1000 BC–≈1532 AD) in environments near Lake Titikaka (approximately 4000 m above sea level) was possible through an agricultural technique called “Waru-Waru”, which consists of filling the space (volume) between rows of land containing plants that [...] Read more.
The provision of food in pre-Inca/Inca cultures (1000 BC–≈1532 AD) in environments near Lake Titikaka (approximately 4000 m above sea level) was possible through an agricultural technique called “Waru-Waru”, which consists of filling the space (volume) between rows of land containing plants that are cultivated (a series of earth platforms surrounded by water canals) with water, using water as thermal energy storage to store energy during the day and to regulate the temperature of the soil and crop atmosphere at night. The problem is that these cultures left no evidence in written documents that have been preserved to this day indicating the mathematical models, the physics involved, and the experimental part they performed for the research, development, and innovation of the “Waru-Waru” technique. From a review of the existing literature, there is (1) bibliography that is devoted to descriptive research (about the geometry, dimensions, and shapes of the crop fields (and more based on archaeological remains that have survived to the present day) and (2) studies presenting complex mathematical models with many physical parameters measured only with recently developed instrumentation. The research objectives of this paper are as follows: (1) develop a mathematical model that uses finite differences in fluid mechanics, thermodynamics, and heat transfer to explain the experimental and theory principles of this pre-Inca/Inca technique; (2) the proposed mathematical model must be in accordance with the mathematical calculation tools available in pre-Inca/Inca cultures (yupana and quipu), which are mainly based on arithmetic operations such as addition, subtraction, and multiplication; (3) develop a mathematical model in a sequence of steps aimed at determining the best geometric form for thermal energy storage and plant cultivation and that has a simple design (easy to transmit between farmers); (4) consider the assumptions necessary for the development of the mathematical model from the point of view of research on the geometry of earth platforms and water channels and their implantation in each cultivation area; (5) transmit knowledge of the construction and maintenance of “Waru-Waru” agricultural technology to farmers who have cultivated these fields since pre-Hispanic times. The main conclusion is that, in the mathematical model developed, algebraic mathematical expressions based on addition and multiplication are obtained to predict and explain the evolution of soil and water temperatures in a specific crop field using crop field characterization parameters for which their values are experimentally determined in the crop area where a “Waru-Waru” is to be built. Therefore, the storage of thermal energy in water allows crops to survive nights with low temperatures, and indirectly, it allows the interpretation that the Inca culture possessed knowledge of mathematics (addition, subtraction, multiplication, finite differences, approximation methods, and the like), physics (fluids, thermodynamics, and heat transfer), and experimentation, with priority given to agricultural techniques (and in general, as observed in all archaeological evidence) that are in-depth, exact, practical, lasting, and easy to transmit. Understanding this sustainable energy storage technique can be useful in the current circumstances of global warming and climate change within the same growing areas and/or in similar climatic and environmental scenarios. This technique can help in reducing the use of fossil or traditional fuels and infrastructure (greenhouses) that generate heat, expanding the agricultural frontier. Full article
(This article belongs to the Special Issue Sustainable Energy, Environment and Low-Carbon Development)
Show Figures

Figure 1

25 pages, 2165 KiB  
Review
A Review on Improving the Oxidative Stability of Pine Nut Oil in Extraction, Storage, and Encapsulation
by Jingwen Zhu, Zhenzhou Li, Yisen Wang, Zhexuan Mu, Xiaohong Lv, Zhenyu Wang, Aijun Dong, Ziluan Fan and Hua Zhang
Antioxidants 2025, 14(6), 716; https://doi.org/10.3390/antiox14060716 - 12 Jun 2025
Viewed by 663
Abstract
Pine nut oil (PNO) is highly valued by consumers for its rich content of unsaturated fatty acids, which confer unique nutritional benefits. However, PNO is highly susceptible to lipid oxidation during storage and extraction. This chemical degradation compromises product quality and poses potential [...] Read more.
Pine nut oil (PNO) is highly valued by consumers for its rich content of unsaturated fatty acids, which confer unique nutritional benefits. However, PNO is highly susceptible to lipid oxidation during storage and extraction. This chemical degradation compromises product quality and poses potential risks to food safety. To address this challenge, the food industry is developing antioxidant strategies, including optimizing pretreatment conditions to improve flavor and storage stability. Green extraction technologies such as microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) have been introduced to enhance extraction efficiency and promote environmental sustainability. Light-proof packaging, reduced oxygen environments, and temperature control have also been employed to significantly extend the shelf life of PNO. Furthermore, to maintain the nutritional integrity and safety of PNO while expanding its functional applications in the food industry, several innovative approaches have been employed. These include the incorporation of natural antioxidants, the development of Pickering emulsions, the use of microencapsulation, and the formulation of oleogels. Full article
Show Figures

Figure 1

34 pages, 1036 KiB  
Review
Conventional and Innovative Methods for Reducing the Incidence of Listeria monocytogenes in Milk and Dairy Products
by Adriana Dabija, Cristina Ștefania Afloarei, Dadiana Dabija and Ancuța Chetrariu
Appl. Sci. 2025, 15(12), 6580; https://doi.org/10.3390/app15126580 - 11 Jun 2025
Viewed by 857
Abstract
Listeriosis, the disease caused by the bacterium L. monocytogenes, can take invasive forms, with severe complications such as septicemia or meningitis, mainly affecting vulnerable people, such as pregnant women, the elderly, and immunocompromised people. The main transmission is through the consumption of [...] Read more.
Listeriosis, the disease caused by the bacterium L. monocytogenes, can take invasive forms, with severe complications such as septicemia or meningitis, mainly affecting vulnerable people, such as pregnant women, the elderly, and immunocompromised people. The main transmission is through the consumption of contaminated food, and unpasteurized dairy products are common sources of infection. Due to the high mortality and the difficulty in eliminating the bacterium from the production environment, rigorous hygiene and control measures are essential to prevent the spread of Listeria in the food chain, and research on biofilm formation and bacterial resistance is vital to improve food safety. Dairy products, raw milk, and soft cheeses are among the most vulnerable to contamination with L. monocytogenes, especially due to pH values and low-temperature storage conditions. This paper presents a synthesis of the specialized literature on methods to reduce the incidence of L. monocytogenes in milk and dairy products. Conventional strategies, such as pasteurization and the use of chemical disinfectants, are effective but can affect food quality. Specialists have turned their attention to innovative and safer approaches, such as biocontrol and the use of nonthermal methods, such as pulsed electric fields, irradiation, and nanotechnology. Barrier technology, which combines several methods, has demonstrated superior efficiency in combating the bacterium without compromising product quality. Additionally, lactic acid bacteria (LAB) and bacteriocins are examples of biopreservation techniques that provide a future option while preserving food safety. Natural preservatives, especially those derived from plants and fruits, are promising alternatives to synthetic compounds. Future solutions should focus on developing commercial formulations that optimize these properties and meet consumer demands for healthy, environmentally friendly, and clean-label products. Full article
Show Figures

Figure 1

21 pages, 892 KiB  
Review
Fruit and Vegetable Juices as Functional Carriers for Probiotic Delivery: Microbiological, Nutritional, and Sensory Perspectives
by Renata Žvirdauskienė, Vesta Jonikė, Loreta Bašinskienė and Dalia Čižeikienė
Microorganisms 2025, 13(6), 1272; https://doi.org/10.3390/microorganisms13061272 - 30 May 2025
Viewed by 1219
Abstract
Fermenting fruit and vegetable juices with probiotic bacteria is becoming a popular way to create functional drinks, offering an alternative to traditional dairy-based probiotic products. These plant-based juices are naturally rich in nutrients that help support the growth and activity of various probiotic [...] Read more.
Fermenting fruit and vegetable juices with probiotic bacteria is becoming a popular way to create functional drinks, offering an alternative to traditional dairy-based probiotic products. These plant-based juices are naturally rich in nutrients that help support the growth and activity of various probiotic strains. They also meet the rising demand for lactose-free, vegan, and clean-label options. This review looks at the key microbiological, nutritional, and sensory aspects of probiotic fermentation in juice. Common probiotic groups like Lactobacillus, Bifidobacterium, Lactococcus, Bacillus, and Streptococcus show different abilities to adapt to juice environments, affecting properties such as antioxidant levels, shelf life, and taste. The review also explores how factors like pH, sugar levels, heating, and storage can influence fermentation results. New non-thermal processing methods that help maintain probiotic survival are also discussed. Since fermented juices can sometimes develop off-flavors, this paper looks at ways to improve their taste and overall consumer appeal. Finally, future directions are suggested, including personalized nutrition, synbiotic products, and advanced encapsulation technologies. Overall, probiotic fermentation of fruit and vegetable juices shows strong potential for developing a new generation of healthy and appealing functional foods. Full article
(This article belongs to the Special Issue Microorganisms in Functional Foods: 2nd Edition)
Show Figures

Figure 1

23 pages, 2359 KiB  
Article
UV-Induced Aging in Thermochromic Pigment-Integrated Food-Grade Polymers: A Performance Assessment
by Colette Breheny, Declan Mary Colbert, Gilberto Bezerra, Joseph Geever and Luke M. Geever
Appl. Sci. 2025, 15(11), 6039; https://doi.org/10.3390/app15116039 - 27 May 2025
Viewed by 755
Abstract
Food contact polymers require thermochromic pigments to provide temperature-sensitive visual cues for consumer safety and product integrity. However, their susceptibility to ultraviolet (UV) degradation limits long-term application. This study investigates the UV resistance of food-grade thermochromic polypropylene blends under simulated indoor and outdoor [...] Read more.
Food contact polymers require thermochromic pigments to provide temperature-sensitive visual cues for consumer safety and product integrity. However, their susceptibility to ultraviolet (UV) degradation limits long-term application. This study investigates the UV resistance of food-grade thermochromic polypropylene blends under simulated indoor and outdoor UV exposure for 500 and 1000 h. Visual properties, colorimetric (CIE L*a*b*) measurements, mechanical testing (tensile and impact), and mass variation analysis were performed to assess photostability and material integrity. Exposure to UV led to progressive discoloration (ΔE*ab up to 34.07) and significant mechanical deterioration. Tensile strain at break decreased by 48.67%, and notched impact strength dropped by 44.15% after 1000 h of UV exposure. No measurable mass loss occurred, indicating degradation was confined to surface-level oxidation rather than bulk material erosion or leaching. These findings highlight the need for optimal pigment loading and UV stabilization to extend the shelf life of thermochromic food packaging materials in light-exposed storage and retail environments. The study offers a framework for improving the long-term reliability of smart packaging in the food industry. This work uniquely integrates optical, mechanical, and mass loss analyses to evaluate thermochromic packaging degradation under extended UVA exposure. Full article
(This article belongs to the Special Issue Latest Developments in Food Safety and Food Contamination)
Show Figures

Figure 1

13 pages, 1627 KiB  
Article
Surveillance of Antimicrobial Resistance in the Asian Seabass (Lates calcarifer) Supply Chain Using Nanopore Sequencing
by Matsapume Detcharoen, Panatda Khrueakaew, Soottawat Benjakul, Chonticha Romyasamit, Watcharapol Suyapoh and Jirakrit Saetang
Foods 2025, 14(10), 1691; https://doi.org/10.3390/foods14101691 - 10 May 2025
Viewed by 656
Abstract
Intensive fish farming worldwide has increased reliance on antibiotics to control bacterial pathogens, raising concerns about antimicrobial resistance (AMR) in aquaculture. These resistant bacteria can persist and pass through the food supply chain, from farms to consumers. Despite this risk, antimicrobial resistance genes [...] Read more.
Intensive fish farming worldwide has increased reliance on antibiotics to control bacterial pathogens, raising concerns about antimicrobial resistance (AMR) in aquaculture. These resistant bacteria can persist and pass through the food supply chain, from farms to consumers. Despite this risk, antimicrobial resistance genes (ARGs) in aquaculture environments and fish products have not been elucidated. This study aimed to detect ARGs found in the Asian seabass (Lates calcarifer), an economically important fish in Thailand, collected from farms, fish container vehicles, and markets, using Nanopore metagenomic sequencing. We detected multiple ARGs in all sample types. Water samples harbored the rpsL gene conferring streptomycin resistance. Container samples exhibited the highest diversity of ARGs, including multiple beta-lactamases and the rsmA gene, conferring resistance to fluoroquinolones, diaminopyrimidines, and phenicol antibiotics. Fish samples generally lacked ARGs, except for one sample harboring rsmA. Non-metric multidimensional scaling revealed distinct microbial communities in water, compared with those found in container and fish samples, indicating potential cross-contamination during handling or storage. Our findings emphasize that containers could be critical control points for minimizing AMR spread. Overall, this study highlights the interconnection between environmental, fish, and human health, highlighting the importance of integrated AMR surveillance and management in aquaculture systems. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

21 pages, 1053 KiB  
Review
Benefits of Probiotics—Biodetoxification
by Barbara Sionek, Aleksandra Szydłowska, Danuta Jaworska and Danuta Kołożyn-Krajewska
Appl. Sci. 2025, 15(10), 5297; https://doi.org/10.3390/app15105297 - 9 May 2025
Viewed by 1066
Abstract
The rapid growth of the world’s population is generating escalating demands for food production. Global food demand is expected to increase by 35% to 56% between 2010 and 2050. Therefore, food mass production is becoming more challenging. The chemicalization of food production, processing, [...] Read more.
The rapid growth of the world’s population is generating escalating demands for food production. Global food demand is expected to increase by 35% to 56% between 2010 and 2050. Therefore, food mass production is becoming more challenging. The chemicalization of food production, processing, transport, packaging, and storage is almost impossible to avoid. These factors, along with environmental pollution, contribute to the increase in food product contamination. Xenobiotics appearing in food, including a variety of toxic substances (heavy metals, acrylamide, polycyclic aromatic hydrocarbons), and pathogens (pathogenic bacteria, fungi, molds, and yeast-producing mycotoxins) can threaten consumers’ safety and have negative economic implications. In this regard, the introduction of effective detoxification methods appears to be very important. It can be accomplished by physical, chemical, and biological means. Many reports have proved that probiotics are useful in food biodetoxification. Probiotics effectively reduce food contamination (at various stages of food production) and, moreover, annihilate toxins present in the human body. Many in vitro studies have confirmed the biodetoxification properties of probiotics, demonstrating that they diminish the toxic effects of the main types of food contaminants (heavy metals, polycyclic aromatic hydrocarbons, pesticides, mycotoxins, nitrates and nitrites, acrylamide, alkylphenols, biogenic amines, and dioxins). Probiotics produce various bioactive compounds, including antimutagenic, antioxidant, and anti-carcinogenic compounds. Their protective and beneficial influence on human microbiota can modulate host inflammatory processes, inhibit carcinogenesis, and modify immune resistance. Detoxification with probiotics is environment-friendly and, unlike physical and chemical methods, does not adversely affect the nutritional value and quality of food. In addition, probiotics in food are associated with well-known human health benefits; therefore, as a functional food, they have gained common consumer acceptance. The large-scale application of biodetoxification methods in both agriculture and the food industry is a challenge for the future. Based on contemporary research, this review provides the mechanism of probiotic biodetoxification, possible applications of various probiotics, and future trends. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

Back to TopTop