Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (688)

Search Parameters:
Keywords = food and medical applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1192 KiB  
Review
The Use of Non-Degradable Polymer (Polyetheretherketone) in Personalized Orthopedics—Review Article
by Gabriela Wielgus, Wojciech Kajzer and Anita Kajzer
Polymers 2025, 17(15), 2158; https://doi.org/10.3390/polym17152158 (registering DOI) - 7 Aug 2025
Abstract
Polyetheretherketone (PEEK) is a semi-crystalline thermoplastic polymer which, due to its very high mechanical properties and high chemical resistance, has found application in the automotive, aerospace, chemical, food and medical (biomedical engineering) industries. Owing to the use of additive technologies, particularly the Fused [...] Read more.
Polyetheretherketone (PEEK) is a semi-crystalline thermoplastic polymer which, due to its very high mechanical properties and high chemical resistance, has found application in the automotive, aerospace, chemical, food and medical (biomedical engineering) industries. Owing to the use of additive technologies, particularly the Fused Filament Fabrication (FFF) method, this material is the most widely used plastic to produce skull reconstruction implants, parts of dental implants and orthopedic implants, including spinal, knee and hip implants. PEEK enables the creation of personalized implants, which not only have greater elasticity compared to implants made of metal alloys but also resemble the physical properties of the cortical layer of human bone in terms of their mechanical properties. Therefore, the aim of this article is to characterize polyether ether ketone as an alternative material used in the manufacturing of implants in orthopedics and dentistry. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 - 3 Aug 2025
Viewed by 234
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

16 pages, 2858 KiB  
Article
Reactive Aerosol Jet Printing of Ag Nanoparticles: A New Tool for SERS Substrate Preparation
by Eugenio Gibertini, Lydia Federica Gervasini, Jody Albertazzi, Lorenzo Maria Facchetti, Matteo Tommasini, Valentina Busini and Luca Magagnin
Coatings 2025, 15(8), 900; https://doi.org/10.3390/coatings15080900 (registering DOI) - 1 Aug 2025
Viewed by 146
Abstract
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman [...] Read more.
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool, offering improved sensitivity through the enhancement of Raman scattering by plasmonic nanostructures. While noble metals such as Ag and Au are currently the reference choices for SERS substrates, fabrication methods should balance enhancement efficiency, reproducibility and scalability. In this study, we propose a novel approach for SERS substrate fabrication using reactive Aerosol Jet Printing (r-AJP) as an innovative additive manufacturing technique. The r-AJP process enables in-flight Ag seed reduction and nucleation of Ag nanoparticles (NPs) by mixing silver nitrate and ascorbic acid aerosols before deposition, as suggested by computational fluid dynamics (CFD) simulations. The resulting coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, revealing the formation of nanoporous crystalline Ag agglomerates partially covered by residual matter. The as-prepared SERS substrates exhibited remarkable SERS activity, demonstrating a high enhancement factor (106) for rhodamine (R6G) detection. Our findings highlight the potential of r-AJP as a scalable and cost-effective fabrication strategy for next-generation SERS sensors, paving the way for the development of a new additive manufacturing tool for noble metal material deposition. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

34 pages, 8425 KiB  
Review
Recent Advances in Non-Enzymatic Glucose Sensors Based on Nanomaterials
by Dongfang Yang, Yongjin Chen, Songtao Che and Kai Wang
Coatings 2025, 15(8), 892; https://doi.org/10.3390/coatings15080892 (registering DOI) - 1 Aug 2025
Viewed by 318
Abstract
The detection of glucose concentration has a wide range of applications and plays a significant role in the fields of the food industry, medical health, and illness diagnostics. The utilization of sensor technology for glucose concentration detection is an effective approach. Glucose sensors [...] Read more.
The detection of glucose concentration has a wide range of applications and plays a significant role in the fields of the food industry, medical health, and illness diagnostics. The utilization of sensor technology for glucose concentration detection is an effective approach. Glucose sensors utilizing nanomaterials, with high sensitivity, strong resistance to interference, and compact size, exhibit tremendous potential in glucose concentration detection. Traditional enzyme-based sensors exhibit superior selectivity and high sensitivity; however, they are deficient in terms of interference resistance capabilities. With the development of nanotechnology, the performance of glucose sensors has been significantly improved. This review discusses the research progress in non-enzymatic electrochemical glucose nanosensors, including noble metal-based glucose sensors and non-noble transition metal compound-based glucose sensors, as well as the applications of multimetallic materials in nanosensors. Additionally, the application of nanosensors based on fluorescence and colorimetric principles in the detection of glucose concentration is introduced in this review. Finally, a perspective on the challenges and prospects of nanosensors in the field of glucose detection is presented. Full article
Show Figures

Graphical abstract

25 pages, 1399 KiB  
Review
Critical Review on Molecular Mechanisms for Genistein’s Beneficial Effects on Health Through Oxidative Stress Reduction
by Ke Zhang, Jingwen Wang and Baojun Xu
Antioxidants 2025, 14(8), 904; https://doi.org/10.3390/antiox14080904 - 24 Jul 2025
Viewed by 489
Abstract
Oxidative stress directly or indirectly contributes to the development and progression of various diseases; therefore, regulating oxidative stress is a promising strategy for preventing or treating these conditions. The unique substances in soybeans, soy isoflavones, notably genistein, which have a strong antioxidant capacity, [...] Read more.
Oxidative stress directly or indirectly contributes to the development and progression of various diseases; therefore, regulating oxidative stress is a promising strategy for preventing or treating these conditions. The unique substances in soybeans, soy isoflavones, notably genistein, which have a strong antioxidant capacity, are considered to regulate various signaling pathways, alleviate oxidative stress, and improve gut microbiota imbalance as well as mitochondrial dysfunction. In this literature review, we summarize the latest research on genistein, providing evidence of its development and application as a potential drug for preventing and treating five selected diseases (Parkinson’s disease, Alzheimer’s disease, diabetes mellitus, cardiovascular disease, and cancers). The literature was searched using keywords that include tripartite combinations of genistein and oxidative stress, along with each of the five selected diseases, from PubMed, Science Direct, and Google Scholar between 2014 and 2024. According to current in vitro, in vivo, and clinical trials, we comprehensively discuss the therapeutic dose used to target various disease entities to achieve optimal efficacy and meet safety requirements. Moreover, considering the poor water solubility and limited bioavailability of genistein, strategies for improving its therapeutic efficacy, such as combining it with exercise, existing medications, and advanced technologies, as well as applying nanotechnology, were assessed. Therefore, this review aims to provide robust evidence for the development and application of genistein as a potential therapeutic agent or functional food for preventing and treating these diseases. Full article
(This article belongs to the Special Issue Effect of Dietary Antioxidants in Chronic Disease Prevention)
Show Figures

Figure 1

28 pages, 525 KiB  
Review
Ozone for Industrial Wastewater Treatment: Recent Advances and Sector Applications
by Daniel A. Leontieff, Keisuke Ikehata, Yasutaka Inanaga and Seiji Furukawa
Processes 2025, 13(8), 2331; https://doi.org/10.3390/pr13082331 - 23 Jul 2025
Viewed by 620
Abstract
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented [...] Read more.
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented ozone at full scale, others have yet to fully embrace these technologies’ effectiveness. This review article examines recent publications from the past two decades, exploring novel applications of ozone-based technologies in treating wastewater from diverse sectors, including food and beverage, agriculture, aquaculture, textile, pulp and paper, oil and gas, medical and pharmaceutical manufacturing, pesticides, cosmetics, cigarettes, latex, cork manufacturing, semiconductors, and electroplating industries. The review underscores ozone’s broad applicability in degrading recalcitrant synthetic and natural organics, thereby reducing toxicity and enhancing biodegradability in industrial effluents. Additionally, ozone-based treatments prove highly effective in disinfecting pathogenic microorganisms present in these effluents. Continued research and application of these ozonation and ozone-based advanced oxidation processes hold promise for addressing environmental challenges and advancing sustainable wastewater management practices globally. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

22 pages, 3640 KiB  
Review
Progress in Research on Animal Collagen Peptides: Preparation, Bioactivity, and Application
by Xuanxuan Ma, Po-Hsiang Chuang, Yu-Hui Tseng, Xiao Wang, Ziteng Ma, Haofei Chen, Wenye Zhai, Wenwen Yang, Zhaoqing Meng and Jing Xu
Molecules 2025, 30(15), 3061; https://doi.org/10.3390/molecules30153061 - 22 Jul 2025
Viewed by 568
Abstract
Type I collagen is a major protein in animals, and its hydrolyzed products, collagen peptides, have wide-ranging applications. This article reviews collagen peptides’ preparation methods, biological activities, and application progress in the fields of food, cosmetics, and medicine. By employing various extraction and [...] Read more.
Type I collagen is a major protein in animals, and its hydrolyzed products, collagen peptides, have wide-ranging applications. This article reviews collagen peptides’ preparation methods, biological activities, and application progress in the fields of food, cosmetics, and medicine. By employing various extraction and hydrolysis methods, collagen peptides with different molecular weights can be obtained, and their biological activities are closely related to their molecular weight and amino acid sequence. Studies have revealed that collagen peptides possess a variety of biological activities, including antioxidant, hematopoietic promotion, osteogenic differentiation promotion, antihypertensive, and anti-diabetic effects. In the food industry, their antioxidant and hypoglycemic properties have opened new avenues for the development of healthy foods; in the cosmetics field, the moisturizing, anti-aging, and repair functions of collagen peptides are favored by consumers; in the medical field, collagen peptides are used in wound dressings, drug carriers, and tissue engineering scaffolds. Looking to the future, the development of green and efficient preparation technologies for collagen peptides and in-depth research into the relationship between their structure and function will be important research directions. The multifunctional properties of collagen peptides provide a broad prospect for their further application in the health industry. Full article
(This article belongs to the Special Issue New Achievements and Challenges in Food Chemistry)
Show Figures

Figure 1

13 pages, 2175 KiB  
Article
Light and Temperature Effects on the Accumulation of Carotenoids in Rhodotorula spp. Yeasts
by Regina Losinska-Sičiūnienė, Živilė Strazdaitė-Žielienė, Saulė Pranckevičiūtė and Elena Servienė
Fermentation 2025, 11(7), 412; https://doi.org/10.3390/fermentation11070412 - 17 Jul 2025
Viewed by 405
Abstract
Carotenoids are widely recognized for their antioxidant and health-beneficial properties, making them attractive for applications in the food, pharmaceutical, medical, and agricultural sectors. Rhodotorula yeasts are considered one of the most suitable alternatives for carotenoid synthesis due to their rapid biomass growth and [...] Read more.
Carotenoids are widely recognized for their antioxidant and health-beneficial properties, making them attractive for applications in the food, pharmaceutical, medical, and agricultural sectors. Rhodotorula yeasts are considered one of the most suitable alternatives for carotenoid synthesis due to their rapid biomass growth and high pigment yield. During this study, based on the sequences of the ITS region between 18S and 28S rRNA genes, the yeast strains were identified as belonging to Rhodotorula babjevae, R. dairenensis, R. diobovata, R. glutinis, R. graminis, R. ingeniosa, R. kratochvilovae, and R. mucilaginosa. The production of carotenoids by different Rhodotorula yeast strains was analyzed under the combined effects of lighting and temperature. Among all tested strains, the isolate identified as R. ingeniosa exhibited the lowest carotenoid content, ranging from 0.18 to 0.23 mg/g biomass. The highest levels of pigment were accumulated in dark conditions by R. babjevae (0.86 mg/g biomass) and R. graminis (0.76 mg/g biomass) cultivated for 14 days at a constant temperature of 26 °C, and by R. glutinis (0.89 mg/g biomass) after incubation at 4 °C. The majority of yeasts tested produced more carotenoids at a higher temperature. It was observed that in R. babjevae, R. glutinis, and R. graminis, lighting negatively affected the pigment content regardless of incubation temperature. In these strains, the pigment content decreased by 1.2- to 1.4-fold after one week of cultivation under light conditions at 26 °C, compared to cultures grown in the dark. The results suggest that the isolated Rhodotorula strains could be attractive candidates for the efficient synthesis of carotenoids. Full article
(This article belongs to the Special Issue Pigment Production in Submerged Fermentation: Second Edition)
Show Figures

Figure 1

26 pages, 5856 KiB  
Review
MXene-Based Gas Sensors for NH3 Detection: Recent Developments and Applications
by Yiyang Xu, Yinglin Wang, Zhaohui Lei, Chen Wang, Xiangli Meng and Pengfei Cheng
Micromachines 2025, 16(7), 820; https://doi.org/10.3390/mi16070820 - 17 Jul 2025
Viewed by 339
Abstract
Ammonia, as a toxic and corrosive gas, is widely present in industrial emissions, agricultural activities, and disease biomarkers. Detecting ammonia is of vital importance to environmental safety and human health. Sensors based on MXene have become an effective means for detecting ammonia gas [...] Read more.
Ammonia, as a toxic and corrosive gas, is widely present in industrial emissions, agricultural activities, and disease biomarkers. Detecting ammonia is of vital importance to environmental safety and human health. Sensors based on MXene have become an effective means for detecting ammonia gas due to their unique hierarchical structure, adjustable surface chemical properties, and excellent electrical conductivity. This study reviews the latest progress in the use of MXene and its composites for the low-temperature detection of ammonia gas. The strategies for designing MXene composites, including heterojunction engineering, surface functionalization, and active sites, are introduced, and their roles in improving sensing performance are clarified. These methods have significantly improved the ability to detect ammonia, offering high selectivity, rapid responses, and ultra-low detection limits within the low-temperature range. Successful applications in fields such as industrial safety, food quality monitoring, medical diagnosis, and agricultural management have demonstrated the multi-functionality of this technology in complex scenarios. The challenges related to the material’s oxidation resistance, humidity interference, and cross-sensitivity are also discussed. This study aims to briefly describe the reasonable design based on MXene sensors, aiming to achieve real-time and energy-saving environmental and health monitoring networks in the future. Full article
Show Figures

Figure 1

13 pages, 1563 KiB  
Article
A Sensitive and Accurate Electrochemical Sensor Based on Biomass-Derived Porous Carbon for the Detection of Ascorbic Acid
by Yashuang Hei, Lisi Ba, Xingwei Shi, Huanhuan Guo, Sisi Wen, Bingxiao Zheng, Wenjie Gu and Zhiju Zhao
Molecules 2025, 30(14), 2980; https://doi.org/10.3390/molecules30142980 - 15 Jul 2025
Viewed by 316
Abstract
Ascorbic acid (AA) is a vital biomarker for human metabolic processes, and many diseases are strongly linked to aberrant variations in its content. It is crucial to detect the levels of AA with sensitivity, speed, and accuracy. In this work, three-dimensional honeycomb-like porous [...] Read more.
Ascorbic acid (AA) is a vital biomarker for human metabolic processes, and many diseases are strongly linked to aberrant variations in its content. It is crucial to detect the levels of AA with sensitivity, speed, and accuracy. In this work, three-dimensional honeycomb-like porous carbons derived from discarded walnut (green) husks (DWGH-HCPCs) were synthesized using a process involving hydrothermal treatment, freeze-drying, and carbonization. The DWGH-HCPCs, with a high specific surface area of 419.72 m2 g−1, large pore volume of 0.35 cm3 g−1 and high density of defective sites, are used to fabricate the electrochemical sensor for the detection of AA. The electrochemical performance of the DWGH-HCPC-modified glassy carbon electrode (GCE) (DWGH-HCPC/GCE) was investigated through chronoamperometry, differential pulse voltammetry, and cyclic voltammetry. Compared with the GCE, the DWGH-HCPC/GCE exhibits higher sensitivities (34.7 μA mM−1 and 22.7 μA mM−1), a wider linear range (10–1040 μM and 1040–3380 μM), and a lower detection limit (0.26 μM) for AA detection. Specifically, the real sample concentrations of AA in beverages and artificial urine were successfully identified by DWGH-HCPC/GCE. Additionally, the DWGH-HCPC/GCE demonstrated great feasibility in the simultaneous detection of AA, dopamine (DA), and uric acid (UA). Therefore, as a green, eco-friendly, and low-cost electrode modifier, DWGH-HCPCs have broad prospects in the development of electrochemical sensing platforms for food and medical applications. Full article
Show Figures

Figure 1

22 pages, 10249 KiB  
Review
Plants from Bulgarian Botanical Gardens: Some Selected Species with Potential for Health Food and Medical Applications
by Aleksandra Ivanova, Stefka Bogdanova, Veselin Petrov and Tsanko Gechev
Plants 2025, 14(14), 2176; https://doi.org/10.3390/plants14142176 - 14 Jul 2025
Viewed by 801
Abstract
Bulgarian botanical gardens harbor more than 3600 plant species from across the world. Some of them are well-known plants widely used by humans, others are underutilized crops or little-known exotic species. The latter group constitutes a rich reservoir of plant resources whose potential [...] Read more.
Bulgarian botanical gardens harbor more than 3600 plant species from across the world. Some of them are well-known plants widely used by humans, others are underutilized crops or little-known exotic species. The latter group constitutes a rich reservoir of plant resources whose potential to bring benefits to society is still untapped. The aim of this review is to describe the diversity of species and their potentially valuable secondary metabolites in three of the largest Bulgarian botanical gardens, with a focus on underutilized crops and medicinal plants that are typical of Bulgaria. With this, we aim to pave the way for future research on the most promising of these plants. The report includes currently available ethnobotanical data on the properties and composition of their bioactive components, known culinary or therapeutic uses, and nutritional profiles. We also outline the vast potential of these plants in providing healthy diets, as well as for performing future groundbreaking biomedical research. Finally, we present the approach that will be used to screen extracts from these plants for biological activity. Full article
Show Figures

Figure 1

16 pages, 6023 KiB  
Article
Innovative Multilayer Biodegradable Films of Chitosan and PCL Fibers for Food Packaging
by Justyna Jakubska, Andrzej Hudecki, Dominika Kluska, Paweł Grzybek, Klaudiusz Gołombek, Wojciech Pakieła, Hanna Spałek, Patryk Włodarczyk, Aleksandra Kolano-Burian and Gabriela Dudek
Foods 2025, 14(14), 2470; https://doi.org/10.3390/foods14142470 - 14 Jul 2025
Viewed by 416
Abstract
The growing accumulation of plastic packaging waste poses severe environmental and health challenges. To address these issues, significant research has been devoted to developing biodegradable films; however, their weak mechanical and barrier properties limit their practical utility. This study introduces an innovative multilayer [...] Read more.
The growing accumulation of plastic packaging waste poses severe environmental and health challenges. To address these issues, significant research has been devoted to developing biodegradable films; however, their weak mechanical and barrier properties limit their practical utility. This study introduces an innovative multilayer film production method, combining electrospun polycaprolactone (PCL) fibers with a chitosan matrix. Two configurations were investigated: (1) nonwoven PCL layers placed between chitosan sheets and (2) a chitosan sheet sandwiched between two nonwoven PCL layers. Both systems were evaluated using PCL fibers derived from medical-grade and technical-grade polymers. The chitosan/polycaprolactone/chitosan (CH/PCL/CH) configuration demonstrated superior performance, achieving enhanced interlayer cohesion and significantly improved mechanical strength, durability, and barrier properties. Notably, this configuration achieved tensile strength and elongation at break values of 57.1 MPa and 36.3%, respectively—more than double those of pure chitosan films. This breakthrough underscores the potential of multilayered biopolymer films as eco-friendly packaging solutions, offering exceptional promise for sustainable applications in the food packaging industry. Full article
Show Figures

Graphical abstract

31 pages, 1834 KiB  
Review
A Review of Polylactic Acid (PLA) and Poly(3-hydroxybutyrate) (PHB) as Bio-Sourced Polymers for Membrane Production Applications
by Lacrimioara Senila, Eniko Kovacs and Marin Senila
Membranes 2025, 15(7), 210; https://doi.org/10.3390/membranes15070210 - 14 Jul 2025
Viewed by 849
Abstract
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane [...] Read more.
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane composition. Among these materials, polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB) are two bio-sourced and biodegradable polymers that can be derived from lignocellulosic waste. These polymers also possess suitable characteristics, such as thermal resistance and mechanical strength, which make them potential candidates for replacing conventional plastics. This study provides an overview of recent advances in the production of PLA and PHB, with a focus on their extraction from lignocellulosic biomass, as well as the recent applications of these two biodegradable polymers as sustainable materials in membrane manufacturing. The advantages and limitations of membranes produced from these materials are also summarized. Lastly, an analysis of future trends is provided concerning new sources, production possibilities, and potential applications in water treatment (mainly for metal ions separation), gas separation, oil–water separation, medical applications, drug release control, and food packaging. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

14 pages, 1811 KiB  
Review
Epigenetic Modifications and Gene Expression Alterations in Plants Exposed to Nanomaterials and Nanoplastics: The Role of MicroRNAs, lncRNAs and DNA Methylation
by Massimo Aloisi and Anna Maria Giuseppina Poma
Environments 2025, 12(7), 234; https://doi.org/10.3390/environments12070234 - 10 Jul 2025
Viewed by 524
Abstract
Nanomaterials (NMs) are currently widely used in a wide range of industrial production and scientific applications, starting from molecular and medical diagnostics to agriculture. In the agricultural and food systems, NMs are now used in various ways, to improve the nutritional value of [...] Read more.
Nanomaterials (NMs) are currently widely used in a wide range of industrial production and scientific applications, starting from molecular and medical diagnostics to agriculture. In the agricultural and food systems, NMs are now used in various ways, to improve the nutritional value of crops, detect microbial activity and inhibit biofilms, encapsulate and deliver pesticides, protect plants from chemical spoilage, as nanosensors and more. Despite these applications, NMs are described as “dual-face technologies”: they can also act as environmental contaminants. For instance, nanoplastics (NPs) dispersed in the environment can damage plants at different levels and undermine their viability. Epigenetic modifications induced by NMs have potentially wider and longer-term impacts on gene expression and plant functions. Therefore, it is important to verify whether plants are also affected by NMs on the molecular level, including epigenetic mechanisms and any induced variation on the epigenome. This review focusses on gene expression modulation and epigenetic alterations such as DNA methylation and the role of microRNAs and long non-coding RNAs (lncRNAs) induced in plants and crops by NMs and NPs. Full article
(This article belongs to the Special Issue Environmental Pollution Risk Assessment)
Show Figures

Figure 1

19 pages, 1839 KiB  
Article
South African Consumer Attitudes Towards Plant Breeding Innovation
by Mohammed Naweed Mohamed, Magdeleen Cilliers, Jhill Johns and Jan-Hendrik Groenewald
Sustainability 2025, 17(13), 6089; https://doi.org/10.3390/su17136089 - 3 Jul 2025
Viewed by 434
Abstract
South Africa’s bioeconomy strategy identifies bio-innovation as a key driver of economic growth and social development, with plant breeding playing a central role in improving food security through the development of high-yielding, resilient, and high-quality crops. However, consumer perceptions of recent advances, particularly [...] Read more.
South Africa’s bioeconomy strategy identifies bio-innovation as a key driver of economic growth and social development, with plant breeding playing a central role in improving food security through the development of high-yielding, resilient, and high-quality crops. However, consumer perceptions of recent advances, particularly new breeding techniques (NBTs), remain underexplored. This study examines South African consumer attitudes towards plant breeding innovations, using a mixed-methods approach. The initial focus group interviews informed the development of a structured quantitative survey examining familiarity, perceptions, and acceptance of plant breeding technologies. Consumer awareness of plant breeding principles was found to be limited, with 67–68% of respondents unfamiliar with both conventional and modern plant breeding procedures. Despite this information gap, consumers expressed conditional support for modern breeding techniques, especially when associated with actual benefits like increased nutritional value, environmental sustainability, and crop resilience. When favourable effects were outlined, support for general investment in modern breeding practices climbed from 45% to 74%. Consumer purchase decisions emphasised price, product quality, and convenience over manufacturing techniques, with sustainability ranked last among the assessed factors. Trust in the sources of food safety information varied greatly, with medical experts and scientists being ranked highly, while government sources were viewed more sceptically. The results further suggest that targeted education could improve customer confidence, as there is a significant positive association (R2 = 0.938) between familiarity and acceptance. These findings emphasise the significance of open communication strategies and focused consumer education in increasing the adoption of plant breeding breakthroughs. The study offers useful insights for policymakers, researchers, and industry stakeholders working on engagement strategies to facilitate the ethical growth and application of agricultural biotechnology in support of food security and quality in South Africa. This study contributes to a better understanding of South African consumers’ perceptions of plant breeding innovations and food safety. The research findings offer valuable insights for policymakers, researchers, and industry stakeholders in developing effective engagement and communication strategies that address consumer concerns and promote the adoption of products derived from diverse plant breeding technologies. Full article
Show Figures

Figure 1

Back to TopTop