Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (375)

Search Parameters:
Keywords = fly ash recycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2332 KiB  
Article
Evaluation of Spent Catalyst from Fluid Catalytic Cracking in Fly Ash and Blast Furnace Slag Based Alkali Activated Materials
by Yolanda Luna-Galiano, Domigo Cabrera-Gallardo, Mónica Rodríguez-Galán, Rui M. Novais, João A. Labrincha and Carlos Leiva Fernández
Recycling 2025, 10(4), 149; https://doi.org/10.3390/recycling10040149 - 1 Aug 2025
Viewed by 208
Abstract
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a [...] Read more.
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a AAM matrix offers several advantages: valorization of the material, reducing its disposal in landfills and the landfill cost, and minimizing the environmental impact. Mineralogical, physical and mechanical characterization were carried out. The durability of the specimens was studied by performing acid attack and thermal stability tests. Mass variation, compressive strength and porosity parameters were determined to assess the durability. BFS- and FA-based AAMs have a different chemical composition, which contribute to variations in microstructure and physical and mechanical properties. Acid neutralization capacity was also determined to analyse the acid attack results. Porosity, including the pore size distribution, and the acid neutralization capacity are crucial in explaining the resistance of the AAMs to sulfuric acid attack and thermal degradation. Herein, a novel route was explored, the use of SCFCC to enhance the durability of AAMs under harsh operating conditions since results show that the compositions containing SCFCC showed lower strength decay due to the lower macroporosity proportions in these compositions. Full article
Show Figures

Figure 1

19 pages, 7130 KiB  
Article
Modification Effects and Mechanism of Cement Paste Wrapping on Sulfate-Containing Recycled Aggregate
by Xiancui Yan, Wen Chen, Zimo He, Hui Liu, Shengbang Xu, Shulin Lu, Minqi Hua and Xinjie Wang
Materials 2025, 18(15), 3617; https://doi.org/10.3390/ma18153617 - 31 Jul 2025
Viewed by 181
Abstract
The utilization of recycled concrete aggregate presents an effective solution for construction waste mitigation. However, concrete service in sulfate environments leads to sulfate ion retention in recycled aggregates, substantially impairing their quality and requiring modification approaches. A critical question remains whether traditional recycled [...] Read more.
The utilization of recycled concrete aggregate presents an effective solution for construction waste mitigation. However, concrete service in sulfate environments leads to sulfate ion retention in recycled aggregates, substantially impairing their quality and requiring modification approaches. A critical question remains whether traditional recycled aggregate modification techniques can effectively enhance the performance of these sulfate-containing recycled aggregates (SRA). Cement paste wrapping in various proportions was used in this investigation to enhance SRA. The performance of both SRA and modified aggregates was systematically assessed through measurements of apparent density, water absorption, crushing value, and microhardness. Microstructural analysis of the cement wrapping modification mechanism was conducted by scanning electron microscopy coupled with mercury intrusion porosimetry. Results revealed that internal sulfate addition decreased the crushing value and increased the water absorption of recycled aggregates, primarily due to micro-cracks formed by expansion. Additionally, the pores were occupied by erosion products, leading to a slight increase in the apparent density of aggregates. The performance of SRA was effectively enhanced by cement paste wrapping at a 0.6 water–binder ratio, whereas it was negatively impacted by a ratio of 1.0. The modifying effect became even more effective when 15% fly ash was added to the wrapping paste. Scanning electron microscopy observations revealed that the interface of SRA was predominantly composed of gypsum crystals. Cement paste wrapping greatly enhanced the original interface structure, despite a new dense interface formed in the modified aggregates. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials (Second Edition))
Show Figures

Figure 1

27 pages, 565 KiB  
Review
Review of the Use of Waste Materials in Rigid Airport Pavements: Opportunities, Benefits and Implementation
by Loretta Newton-Hoare, Sean Jamieson and Greg White
Sustainability 2025, 17(15), 6959; https://doi.org/10.3390/su17156959 - 31 Jul 2025
Viewed by 160
Abstract
The aviation industry is under increasing pressure to reduce its environmental impact while maintaining safety and performance standards. One promising area for improvement lies in the use of sustainable materials in airport infrastructure. One of the issues preventing uptake of emerging sustainable technologies [...] Read more.
The aviation industry is under increasing pressure to reduce its environmental impact while maintaining safety and performance standards. One promising area for improvement lies in the use of sustainable materials in airport infrastructure. One of the issues preventing uptake of emerging sustainable technologies is the lack of guidance relating to the opportunities, potential benefits, associated risks and an implementation plan specific to airport pavements. This research reviewed opportunities to incorporate waste materials into rigid airport pavements, focusing on concrete base slabs. Commonly used supplementary cementitious materials (SCMs), such as fly ash and ground granulated blast furnace slag (GGBFS) were considered, as well as recycled aggregates, including recycled concrete aggregate (RCA), recycled crushed glass (RCG), and blast furnace slag (BFS). Environmental Product Declarations (EPDs) were also used to quantify the potential for environmental benefit associated with various concrete mixtures, with findings showing 23% to 50% reductions in embodied carbon are possible for selected theoretical concrete mixtures that incorporate waste materials. With considered evaluation and structured implementation, the integration of waste materials into rigid airport pavements offers a practical and effective route to improve environmental outcomes in aviation infrastructure. It was concluded that a Triple Bottom Line (TBL) framework—assessing financial, environmental, and social factors—guides material selection and can support sustainable decision-making, as does performance-based specifications that enable sustainable technologies to be incorporated into airport pavement. The study also proposed a consequence-based implementation hierarchy to facilitate responsible adoption of waste materials in airside pavements. The outcomes of this review will assist airport managers and pavement designers to implement practical changes to achieve more sustainable rigid airport pavements in the future. Full article
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Viewed by 208
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

14 pages, 1014 KiB  
Article
Bioenergy Production from Solid Fuel Conversion of Cattle Manure and Resource Utilization of the Combustion Residues
by Eunsung Lee, Junsoo Ha and Seongwook Oa
Processes 2025, 13(8), 2417; https://doi.org/10.3390/pr13082417 - 30 Jul 2025
Viewed by 257
Abstract
Cattle manure accounts for approximately one-third of the total livestock manure produced in the Republic of Korea and is typically composted. To elucidate its feasibility as a renewable resource, this study evaluated the conversion of cattle manure into a solid biofuel and the [...] Read more.
Cattle manure accounts for approximately one-third of the total livestock manure produced in the Republic of Korea and is typically composted. To elucidate its feasibility as a renewable resource, this study evaluated the conversion of cattle manure into a solid biofuel and the nutrient recovery potential of its combustion residues. Solid fuel was prepared from cattle manure collected in Gyeongsangbuk-do, Korea, and its fuel characteristics and ash composition were analyzed after combustion. Combustion tests conducted using a dedicated solid fuel boiler showed that an average lower heating value of 13.27 MJ/kg was achieved, meeting legal standards. Under optimized combustion, CO and NOx emissions (129.9 and 41.5 ppm) were below regulatory limits (200 and 90 ppm); PM was also within the 25 mg/Sm3 standard. The bottom ash contained high concentrations of P2O5 and K, and its heavy metal content was below the regulatory threshold, suggesting its potential reuse as a fertilizer material. Although the Zn concentration in the fly ash exceeded the standard, its quantity was negligible. Therefore, the solid fuel conversion of cattle manure can become a viable and environmentally sustainable solution for both bioenergy production and nutrient recycling, contributing to improved waste management in livestock operations. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

22 pages, 3056 KiB  
Article
Recycled Glass and Plastic Waste in Sustainable Geopolymer Systems for Affordable Housing Solutions
by Zhao Qing Tang, Yat Choy Wong, Yali Li and Eryadi Kordi Masli
Recycling 2025, 10(4), 147; https://doi.org/10.3390/recycling10040147 - 27 Jul 2025
Viewed by 356
Abstract
The increasing demand for sustainable construction materials has driven research into low-carbon geopolymers that mitigate both cement-related emissions and plastic and glass waste accumulation. This study explores the development of geopolymer concrete incorporating fly ash (FA), slag (S), and FA + S blends, [...] Read more.
The increasing demand for sustainable construction materials has driven research into low-carbon geopolymers that mitigate both cement-related emissions and plastic and glass waste accumulation. This study explores the development of geopolymer concrete incorporating fly ash (FA), slag (S), and FA + S blends, with 10% recycled crushed glass (RCG) and recycled plastic waste (RPW) as partial coarse aggregate replacements. Compressive strength testing revealed that FA + S-based geopolymers (25FA + S) with 100% ordinary Portland cement (OPC) replacement achieved a 7-day strength of 24.6 MPa, representing a 98% improvement over control specimens. Slag-based geopolymers demonstrated water absorption properties comparable to OPC, indicating enhanced durability. Microstructural analyses using SEM, XRD, and EDS confirmed the formation of a dense aluminosilicate matrix, with slag promoting FA reactivity and reinforcing interfacial transition zone (ITZ). These effects contributed to superior mechanical performance and water resistance. Despite minor shrinkage-induced cracking, full OPC replacement with S or FA + S geopolymers outperformed control specimens, consistently exceeding the target strength of 15 MPa required for low-impact, single-story housing applications within seven days. These findings underscore the potential of geopolymer systems for rapid and sustainable construction, offering an effective solution for reducing carbon footprints and repurposing industrial waste. Full article
Show Figures

Figure 1

27 pages, 19505 KiB  
Article
Analysis on the Ductility of One-Part Geopolymer-Stabilized Soil with PET Fibers: A Deep Learning Neural Network Approach
by Guo Hu, Junyi Zhang, Ying Tang and Jun Wu
Buildings 2025, 15(15), 2645; https://doi.org/10.3390/buildings15152645 - 27 Jul 2025
Viewed by 269
Abstract
Geopolymers, as an eco-friendly alternative construction material to ordinary Portland cement (OPC), exhibit superior performance in soil stabilization. However, their inherent brittleness limits engineering applications. To address this, polyethylene terephthalate (PET) fibers can be incorporated into a one-part geopolymer (OPG) binder to enhance [...] Read more.
Geopolymers, as an eco-friendly alternative construction material to ordinary Portland cement (OPC), exhibit superior performance in soil stabilization. However, their inherent brittleness limits engineering applications. To address this, polyethylene terephthalate (PET) fibers can be incorporated into a one-part geopolymer (OPG) binder to enhance ductility while promoting plastic waste recycling. However, the evaluation of ductile behavior of OPG-stabilized soil with PET fiber normally demands extensive laboratory and field experiments. Leveraging artificial intelligence, a predictive model can be developed for this purpose. In this study, data were collected from compressive and tensile tests performed on the OPG-stabilized soil with PET fiber. Four deep learning neural network models, namely ANN, BPNN, CNN, and LSTM, were then used to construct prediction models. The input parameters in the model included the fly ash (FA) dosage, dosage and length of the PET fiber, and the Curing Time. Results revealed that the LSTM model had the best performance in predicting the three ductile properties (i.e., the compressive strength index [UCS], strain energy index [CSE], and tensile strength index [TES]). The SHAP and 2D-PDP methods were further used to verify the rationality of the LSTM model. It is found that the Curing Time was the most important factor for the strength and ductile behavior. The appropriate addition of PET fiber of a certain length had a positive impact on the ductility index. Thus, for the OPG-stabilized soil, the optimal dosage and length of PET fiber were found to be 1.5% and 9 mm, respectively. Additionally, there was a synergistic effect between FA and PET on the ductility metric. This research provides theoretical support for the application of geopolymer and PET fiber in enhancing the ductility of the stabilized soil. Full article
Show Figures

Figure 1

18 pages, 3231 KiB  
Article
Investigation into the Properties of Alkali-Activated Fiber-Reinforced Slabs, Produced with Marginal By-Products and Recycled Plastic Aggregates
by Fotini Kesikidou, Kyriakos Koktsidis and Eleftherios K. Anastasiou
Constr. Mater. 2025, 5(3), 48; https://doi.org/10.3390/constrmater5030048 - 24 Jul 2025
Viewed by 199
Abstract
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary [...] Read more.
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary widely. In this work, several alkali-activated mortars based on marginal by-products as binders, such as high calcium fly ash and ladle furnace slag, are investigated. Their mechanical (flexural and compressive strength, ultrasonic pulse velocity, and modulus of elasticity) and physical (porosity, absorption, specific gravity, and pH) properties were determined. After evaluating the mechanical performance of the mortars, the optimum mixture containing fly ash, which reached 15 MPa under compression at 90 days, was selected for the production of precast compressed slabs. Steel or glass fibers were also incorporated to improve their ductility. To reduce the density of the slabs, 60% of the siliceous sand aggregate was also replaced with recycled polyethylene terephthalate (PET) plastic aggregate. The homogeneity, density, porosity, and capillary absorption of the slabs were measured, as well as their flexural strength and fracture energy. The results showed that alkali activation can be used to improve the mechanical properties of weak secondary binders such as ladle furnace slag and hydrated fly ash. The incorporation of recycled PET aggregates produced slabs that could be classified as lightweight, with similar porosity and capillary absorption values, and over 65% achieved strength compared to the normal weight slabs. Full article
Show Figures

Figure 1

36 pages, 8968 KiB  
Article
Stabilization of High-Volume Circulating Fluidized Bed Fly Ash Composite Gravels via Gypsum-Enhanced Pressurized Flue Gas Heat Curing
by Nuo Xu, Rentuoya Sa, Yuqing He, Jun Guo, Yiheng Chen, Nana Wang, Yuchuan Feng and Suxia Ma
Materials 2025, 18(15), 3436; https://doi.org/10.3390/ma18153436 - 22 Jul 2025
Viewed by 197
Abstract
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional [...] Read more.
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional cementitious products. Here, we presents a pressurized flue gas heat curing (FHC) route to bridge this scientific deficit, converting up to 85 wt% CFBFA into structural lightweight gravel. The gypsum dosage was optimized, and a 1:16 (gypsum/CFBFA) ratio delivered the best compromise between early ettringite nucleation and CO2-uptake capacity, yielding the highest overall quality. The optimal mix reaches 9.13 MPa 28-day crushing strength, 4.27% in situ CO2 uptake, 1.75 g cm−3 bulk density, and 3.59% water absorption. Multi-technique analyses (SEM, XRD, FTIR, TG-DTG, and MIP) show that FHC rapidly consumes expansive phases, suppresses undesirable granular-ettringite formation, and produces a dense calcite/needle-AFt skeleton. The FHC-treated CFBFA composite gravel demonstrates 30.43% higher crushing strength than JTG/TF20-2015 standards, accompanied by a water absorption rate 28.2% lower than recent studies. Its superior strength and durability highlight its potential as a low-carbon lightweight aggregate for structural engineering. A life-cycle inventory gives a cradle-to-gate energy demand of 1128 MJ t−1 and a process GWP of 226 kg CO2-eq t−1. Consequently, higher point-source emissions paired with immediate mineral sequestration translate into a low overall climate footprint and eliminate the need for CFBFA landfilling. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

21 pages, 10911 KiB  
Article
Investigation into the Static Mechanical Properties of Ultra-High-Performance Geopolymer Concrete Incorporating Steel Slag, Ground Granulated Blast-Furnace Slag, and Fly Ash
by Yan-Hua Cai, Tao Huang, Bo-Yuan Huang, Chuan-Bin Hua, Qiang Huang, Jing-Wen Chen, Heng-Liang Liu, Zi-Jie He, Nai-Bi Rouzi, Zhi-Hong Xie and Gai Chen
Buildings 2025, 15(14), 2535; https://doi.org/10.3390/buildings15142535 - 18 Jul 2025
Viewed by 232
Abstract
The utilization of steel slag (SS) in construction materials represents an effective approach to improving its overall recycling efficiency. This study incorporates SS into a conventional ground granulated blast-furnace slag (GGBS)–fly ash (FA)-based binder system to develop a ternary system comprising SS, GGBS, [...] Read more.
The utilization of steel slag (SS) in construction materials represents an effective approach to improving its overall recycling efficiency. This study incorporates SS into a conventional ground granulated blast-furnace slag (GGBS)–fly ash (FA)-based binder system to develop a ternary system comprising SS, GGBS, and FA, and investigates how this system influences the static mechanical properties of ultra-high-performance geopolymer concrete (UHPGC). An axial point augmented simplex centroid design method was employed to systematically explore the influence and underlying mechanisms of different binder ratios on the workability, axial compressive strength, and flexural performance of UHPGC, and to determine the optimal compositional range. The results indicate that steel slag has a certain negative effect on the flowability of UHPGC paste; however, with an appropriate proportion of composite binder materials, the mixture can still exhibit satisfactory flowability. The compressive performance of UHPGC is primarily governed by the proportion of GGBS in the ternary binder system; an appropriate GGBS content can provide enhanced compressive strength and elastic modulus. UHPGC exhibits ductile behavior under flexural loading; however, replacing GGBS with SS significantly reduces its flexural strength and energy absorption capacity. The optimal static mechanical performance is achieved when the mass proportions of SS, GGBS, and FA are within the ranges of 9.3–13.8%, 66.2–70.7%, and 20.0–22.9%, respectively. This study provides a scientific approach for the valorization of SS through construction material applications and offers a theoretical and data-driven basis for the mix design of ultra-high-performance building materials derived from industrial solid wastes. Full article
(This article belongs to the Special Issue Next-Gen Cementitious Composites for Sustainable Construction)
Show Figures

Figure 1

21 pages, 3174 KiB  
Article
Prospective LCA for 3D-Printed Foamed Geopolymer Composites Using Construction Waste as Additives
by Karina Balina, Rihards Gailitis, Maris Sinka, Pauls Pavils Argalis, Liga Radina and Andina Sprince
Sustainability 2025, 17(14), 6459; https://doi.org/10.3390/su17146459 - 15 Jul 2025
Viewed by 361
Abstract
Additive manufacturing has recently become popular and more cost-effective for building construction. This study presents a prospective life cycle assessment (LCA) of 3D-printed foamed geopolymer composites (3D-FOAM materials) incorporating construction and demolition waste. The materials were developed using fly ash, slag, sand, and [...] Read more.
Additive manufacturing has recently become popular and more cost-effective for building construction. This study presents a prospective life cycle assessment (LCA) of 3D-printed foamed geopolymer composites (3D-FOAM materials) incorporating construction and demolition waste. The materials were developed using fly ash, slag, sand, and a foaming agent, with recycled clay brick waste (CBW) and autoclaved aerated concrete waste (AACW) added as alternative raw materials. The material formulations were evaluated for their compressive strength and thermal conductivity to define two functional units that reflect structural and thermal performance. A prospective life cycle assessment (LCA) was conducted under laboratory-scale conditions using the ReCiPe 2016 method. Results show that adding CBW and AACW reduces environmental impacts across several categories, including global warming potential and ecotoxicity, without compromising material performance. Compared to conventional wall systems, the 3D-FOAM materials offer a viable low-impact alternative when assessed on a functional basis. These findings highlight the potential of integrating recycled materials into additive manufacturing to support circular economy goals in the construction sector. Full article
(This article belongs to the Special Issue Green Construction Materials and Sustainability)
Show Figures

Graphical abstract

18 pages, 4996 KiB  
Article
Mechanical Properties and Microstructures of Solid Waste Composite-Modified Lateritic Clay via NaOH/Na2CO3 Activation: A Sustainable Recycling Solution of Steel Slag, Fly Ash, and Granulated Blast Furnace Slag
by Wei Qiao, Bing Yue, Zhihua Luo, Shengli Zhu, Lei Li, Heng Yang and Biao Luo
Materials 2025, 18(14), 3307; https://doi.org/10.3390/ma18143307 - 14 Jul 2025
Viewed by 307
Abstract
The utilization of steel slag (SS), fly ash (FA), and ground granulated blast furnace slag (GGBFS) as soil additives in construction represents a critical approach to achieving resource recycling of these industrial by-products. This study aims to activate the SS-FA-GGBFS composite with a [...] Read more.
The utilization of steel slag (SS), fly ash (FA), and ground granulated blast furnace slag (GGBFS) as soil additives in construction represents a critical approach to achieving resource recycling of these industrial by-products. This study aims to activate the SS-FA-GGBFS composite with a NaOH solution and Na2CO3 and employ the activated solid waste blend as an admixture for lateritic clay modification. By varying the concentration of the NaOH solution and the dosage of Na2CO3 relative to the SS-FA-GGBFS composite, the effects of these parameters on the activation efficiency of the composite as a lateritic clay additive were investigated. Results indicate that the NaOH solution activates the SS-FA-GGBFS composite more effectively than Na2CO3. The NaOH solution significantly promotes the depolymerization of aluminosilicates in the solid waste materials and the generation of Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate gels. In contrast, Na2CO3 relies on its carbonate ions to react with calcium ions in the materials, forming calcium carbonate precipitates. As a rigid cementing phase, calcium carbonate exhibits a weaker cementing effect on soil compared to Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate gels. However, excessive NaOH leads to inefficient dissolution of the solid waste and induces a transformation of hydration products in the modified lateritic clay from Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate to Sodium-Silicate-Hydrate and Sodium-Aluminate-Hydrate, which negatively impacts the strength and microstructural compactness of the alkali-activated solid waste composite-modified lateritic clay. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 2630 KiB  
Article
Mechanistic Insights into Full Solid-Waste Activators for Enhancing the Performance of Blast Furnace Slag–Fly Ash Cementitious Composites
by Huiying Zhang, Yongchun Li, Dingbang Wei, Xu Wu and Yapeng Wang
Materials 2025, 18(14), 3275; https://doi.org/10.3390/ma18143275 - 11 Jul 2025
Viewed by 343
Abstract
To address the practical limitations of conventional alkaline activators (e.g., handling hazards, cost) and promote the resource utilization of industrial solid wastes, this study developed a novel all-solid-waste activator system comprising soda residue (SR) and carbide slag (CS). The synergistic effects of SR-CS [...] Read more.
To address the practical limitations of conventional alkaline activators (e.g., handling hazards, cost) and promote the resource utilization of industrial solid wastes, this study developed a novel all-solid-waste activator system comprising soda residue (SR) and carbide slag (CS). The synergistic effects of SR-CS activators on the hydration behavior of blast furnace slag (GGBS)–fly ash (FA) cementitious composites were systematically investigated. Mechanical performance, phase evolution, and microstructural development were analyzed through compressive strength tests, XRD, FTIR, TG-DTG, and SEM-EDS. Results demonstrate that in the SR-CS activator system, which combines with desulfuriation gypsum as sulfate activator, increasing CS content elevates the normal consistency water demand due to the high-polarity, low-solubility Ca(OH)2 in CS. The SR-CS activator accelerates the early hydration process of cementitious materials, shortening the paste setting time while achieving compressive strengths of 17 MPa at 7 days and 32.4 MPa at 28 days, respectively. Higher fly ash content reduced strength owing to increased unreacted particles and prolonged setting. Conversely, desulfurization gypsum exhibited a sulfate activation effect, with compressive strength peaking at 34.2 MPa with 4 wt% gypsum. Chloride immobilization by C-S-H gel was confirmed, effectively mitigating environmental risks associated with SR. This work establishes a sustainable pathway for developing low-carbon cementitious materials using multi-source solid wastes. Full article
Show Figures

Figure 1

24 pages, 5049 KiB  
Article
Sustainable Mortar with Waste Glass and Fly Ash: Impact of Glass Aggregate Size and Life-Cycle Assessment
by Vimukthi Fernando, Weena Lokuge, Hannah Seligmann, Hao Wang and Chamila Gunasekara
Recycling 2025, 10(4), 133; https://doi.org/10.3390/recycling10040133 - 4 Jul 2025
Viewed by 363
Abstract
This study investigates the use of Glass Fine Aggregate (GFA) and Fly Ash (FA) in mortar for Alkali–Silica Reaction (ASR) mitigation through a multidimensional evaluation. GFA was used to replace river sand in 20% increments up to 100%, while FA replaced cement at [...] Read more.
This study investigates the use of Glass Fine Aggregate (GFA) and Fly Ash (FA) in mortar for Alkali–Silica Reaction (ASR) mitigation through a multidimensional evaluation. GFA was used to replace river sand in 20% increments up to 100%, while FA replaced cement at 10%, 20%, and 30%. Three GFA size ranges were considered: <1.18 mm, 1.18–4.75 mm, and a combined fraction of <4.75 mm. At 100% replacement, <1.18 mm GFA reduced ASR expansion to 0.07%, compared to 0.2% for <4.75 mm and 0.46% for 1.18–4.75 mm GFA. It also improved long-term strength by 25% from 28 days to 6 months due to pozzolanic activity. However, refining GFA to below 1.18 mm increased environmental impacts and resulted in a 4.2% increase in energy demand due to the additional drying process. Incorporating 10% FA reduced ASR expansion to 0.044%, had no significant effect on strength, and decreased key environmental burdens such as toxicity by up to 18.2%. These findings indicate that FA utilisation offers greater benefits for ASR mitigation and environmental sustainability than further refining GFA size. Therefore, combining <4.75 mm GFA with 10% FA is identified as the optimal strategy for producing durable and sustainable mortar with recycled waste glass. Full article
Show Figures

Figure 1

23 pages, 5139 KiB  
Article
Geopolymer CLSM with Off-Specification Fly Ash and Bottom Ash: A Sustainable Approach to Hazardous Waste Utilization
by Alexis K. VanDomelen, Ahmed A. Gheni, Eslam Gomaa and Mohamed A. ElGawady
Materials 2025, 18(13), 3105; https://doi.org/10.3390/ma18133105 - 1 Jul 2025
Viewed by 729
Abstract
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with [...] Read more.
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with potential environmental hazards, to develop eco-friendly geopolymer CLSM as an alternative to conventional CLSM. Sodium hydroxide (NaOH) was used as an alkali activator to stabilize and solidify both two-part (liquid NaOH) and one-part (solid NaOH pellets) geopolymer CLSM mixtures. These mixtures were evaluated based on flowability (ASTM D6103-17) and compressive strength (<300 psi per ACI Committee 229 guidelines for excavatability). A cost analysis was also conducted. The results demonstrated that incorporating OSFA as a cement replacement increased water demand by 15% to meet flowability requirements, while BA substitution for sand led to segregation challenges requiring mixture adjustments. For two-part mixtures, higher carbon content in OSFA necessitated an increased water-to-fly ash ratio. All self-consolidating mixtures exhibited 1-day compressive strengths ranging from 5 psi (0.03 MPa) to 87 psi (0.6 MPa). One-part mixtures showed a 1% to 34% reduction in 7-day compressive strength compared to two-part mixtures, improving excavatability. Increasing the BA-to-OSFA ratio from 1:1 to 3:1 reduced water demand due to lower surface area but increased the NaOH/OSFA ratio. This study highlights the potential of geopolymer CLSM to reduce costs by up to 94% at current NaOH prices (USD 6 per cubic yard) while repurposing hazardous industrial by-products, offering a cost-efficient, sustainable, and environmentally responsible solution for CLSM production. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop