Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (751)

Search Parameters:
Keywords = fly ash (FA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5951 KiB  
Article
Study on the Application Potential and Environmental Impact of Fly Ash and Calcined Coal Gangue in Cementitious Materials
by Zhaochang Zhang, Yudong Luo, Yonghong Miao, Enquan Zhou, Zhiwei Yan and Guiyu Zhang
Constr. Mater. 2025, 5(3), 54; https://doi.org/10.3390/constrmater5030054 - 14 Aug 2025
Viewed by 168
Abstract
Coal is still China’s primary energy source, and the production process of coal produces industrial byproduct coal gangue. This study explores the possibility of using industrial byproducts of thermal power generation, fly ash (FA) and calcined coal gangue (CCG), as a partial (10% [...] Read more.
Coal is still China’s primary energy source, and the production process of coal produces industrial byproduct coal gangue. This study explores the possibility of using industrial byproducts of thermal power generation, fly ash (FA) and calcined coal gangue (CCG), as a partial (10% and 20%) substitute for cement in construction materials. Methodical research was conducted to determine how these two substances affect the microstructure and macroscopic characteristics of cement-based materials. Macroscopic performance test findings indicate that replacing 20% of cement with CCG had no discernible effect on the specimens’ performance. At the same time, adding FA required 28 days to be comparable to the control group. Mercury intrusion porosimetry (MIP) test results show that using CCG can refine microscopic pores. Additional hydration products could be produced by these materials, according to analyses using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The production of hydration products by CCG to fill the microscopic pores was further demonstrated by scanning electron microscopy (SEM) pictures. After 28 days of hydration, a layer of hydration products developed on the surface of FA. When supplementary cementitious materials (SCMs) were added, calcium hydroxide (CH) was consumed by interacting with FA and CCG to form additional hydration products, according to thermogravimetric analysis (TG) data after 28 days. Furthermore, an evaluation of FA and CCG’s effects on the environment revealed that their use performed well in terms of sustainable development. Full article
Show Figures

Figure 1

16 pages, 700 KiB  
Article
Mechanical Properties of Basalt Fiber-Reinforced Coal Gangue Coarse Aggregate-Fly Ash Geopolymer Concrete
by Zheng Yang and Xianzhang Ling
Buildings 2025, 15(16), 2860; https://doi.org/10.3390/buildings15162860 - 13 Aug 2025
Viewed by 158
Abstract
Excellent mechanical properties are a prerequisite for the widespread application of different types of concrete in practical engineering. However, when coal gangue (CG) is used as coarse aggregate (CA) and geopolymer cement is used as auxiliary cementitious material, while reducing the demand for [...] Read more.
Excellent mechanical properties are a prerequisite for the widespread application of different types of concrete in practical engineering. However, when coal gangue (CG) is used as coarse aggregate (CA) and geopolymer cement is used as auxiliary cementitious material, while reducing the demand for ordinary cement and industrial waste emissions, it has a negative impact on mechanical performance. Therefore, in response to the data gap in the study of mechanical properties of coal gangue coarse aggregate-fly ash geopolymer concrete (CG-FA-GPC), inspired by a large number of research results on fiber-reinforced concrete, this study uses basalt fiber (BF) as a reinforcing material to investigate the enhancing effect of BF on the mechanical properties of CG-FA-GPC. We selected compressive strength, flexural strength, splitting tensile strength, and stress–strain curve as evaluation indicators to compare and analyze the mechanical properties of ordinary concrete, CG-FA-GPC, and basalt fiber-reinforced coal gangue coarse aggregate-fly ash geopolymer concrete (BF-CG-FA-GPC), and to explore the reinforcement effect of BF. The results showed that with the increase in CG substitution rate, the compressive strength, flexural strength, and splitting tensile strength of CG-FA-GPC significantly decreased. A 100% CG substitution reduced the compressive strength, flexural strength, and splitting tensile strength of CG-FA-GPC by 34.5%, 43.4%, and 31.8%, respectively. The stress–strain curve reveals the dual effects of BF on the strength enhancement and deformation modification of CG-FA-GPC. With the increase in BF content, the three mechanical strengths of CG-FA-GPC show a pattern of first increasing and then decreasing, and the optimal BF content is 0.4% (volume fraction). This experiment lays the foundation for promoting research on the mechanical properties and durability of different fiber-reinforced CG-FA-GPC, advancing the feasibility of its large-scale engineering applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 5729 KiB  
Article
Prediction of Elastic Modulus of Leached Fly Ash Concrete Based on Non-Uniform ITZ Model
by Xiaoping Zhao, Misha Zhan, Zhiwei Chen, Jian Zhang, Qiang Li and Wenbing Song
Materials 2025, 18(16), 3779; https://doi.org/10.3390/ma18163779 - 12 Aug 2025
Viewed by 211
Abstract
The incorporation of fly ash into concrete reduces cement consumption by 10–30%, lowers CO2 emissions by 30–50%, cuts costs by 15–25%, and enhances durability, thus reducing maintenance expenses. However, the predictive model for the elastic modulus of fly ash concrete subjected to [...] Read more.
The incorporation of fly ash into concrete reduces cement consumption by 10–30%, lowers CO2 emissions by 30–50%, cuts costs by 15–25%, and enhances durability, thus reducing maintenance expenses. However, the predictive model for the elastic modulus of fly ash concrete subjected to calcium leaching is still lacking. Regarding the theoretical method, the content of calcium hydroxide and calcium silicate hydrate in fly ash–cement systems is quantitatively calculated according to the hydration reaction relationship between cement, fly ash, and water, and then the porosity of the fly ash–cement matrix and interface transition zone (ITZ) after calcium leaching can be obtained. Based on the theory of two-phase composite spheres and the non-uniform ITZ model, the prediction method for the elastic modulus of leached fly ash concrete can be constructed, which comprehensively considers key parameters such as fly ash content, non-uniform characteristics of the ITZ, and the water–binder ratio (w/b). Additionally, the corresponding experimental investigation is also designed to study the variation regulation of the leaching depth, leaching extent, and elastic modulus of fly ash concrete with leaching time. The prediction method for the elastic modulus of leached fly ash concrete is validated via self-designed experimental methods and third-party experiments. This study further delves into the specific effects of w/b, aggregate volume fraction (fa), fly ash content, and ITZ thickness (hITZ) on the elastic modulus of leached concrete (E). The research findings indicate that an appropriate amount of fly ash can effectively enhance the leaching resistance of concrete. For a leaching degree of 10.0%, 30.0%, and 50.0%, E at w/b = 0.40 exceeds that of w/b = 0.60 by 26.71%, 28.43%, and 30.28%, respectively; E at hITZ = 10 μm exceeds that of hITZ = 50 μm by 16.96%, 15.80%, and 15.11%, respectively; and E at fa = 65% is 39.82%, 43.15%, and 46.12% higher, respectively, than that of concrete with fa = 45%. Furthermore, a linear correlation exists between the elastic modulus and the degree of leaching. The prediction method for the elastic modulus offers a theoretical foundation for in-depth exploration of the durability of leached mineral admixture concrete and its scientific application in practical engineering. Full article
Show Figures

Figure 1

22 pages, 7908 KiB  
Article
Synergistic Thresholds Governing Performance Evolution in Red Mud-Fly Ash-Coal Gangue Ternary Solid Waste Concrete (RFCTSWC)
by Jin Qu, Yujie Tian, Jiale Liu, Runfang Zhou and Haitao Mao
Materials 2025, 18(16), 3754; https://doi.org/10.3390/ma18163754 - 11 Aug 2025
Viewed by 247
Abstract
To address the environmental risks associated with large-scale stockpiling of red mud (RM) and coal gangue (CG) and the demand for their high-value utilization, this study proposes a ternary concrete system incorporating RM, fly ash (FA), and CG aggregate. The effects of RM [...] Read more.
To address the environmental risks associated with large-scale stockpiling of red mud (RM) and coal gangue (CG) and the demand for their high-value utilization, this study proposes a ternary concrete system incorporating RM, fly ash (FA), and CG aggregate. The effects of RM content, FA content, CG aggregate replacement rate, and water-to-binder ratio on workability, mechanical properties, and frost resistance durability were systematically investigated through orthogonal experiments, with the underlying micro-mechanisms revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results indicate that workability is predominantly governed by the water-to-binder ratio, while the micro-aggregate effect of FA significantly enhances fluidity. Mechanical properties are most significantly influenced by RM content; under a 20% CG aggregate replacement rate and a 0.45 water-to-binder ratio, an optimal compressive strength was achieved with a low content combination of RM and FA. Frost resistance deteriorated markedly with increasing RM and FA content, with the high-content group approaching the failure threshold after only 25 freeze–thaw cycles, occurring 50 and 125 cycles earlier than the medium- and low-content groups, respectively. Macro-micro results indicate a synergistic threshold at 20% red mud and 45% fly ash, yielding a compressive strength of 24.96 MPa. This value exceeds the 24.87 MPa of the 10% red mud + 45% fly ash group and the 21.90 MPa of the 10% red mud + 55% fly ash group. Microstructurally, this group also exhibits superior C-S-H gel uniformity and narrower crack widths compared to the others. Excessive incorporation of red mud and fly ash leads to agglomeration of unhydrated particles and increased porosity, aligning with the observed macroscopic strength degradation. This research identifies and quantifies the synergistic threshold governing RFCTSWC performance evolution, providing theoretical support for engineering applications of solid waste concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

28 pages, 5794 KiB  
Article
Polymers in Sustainable Construction Composites: Rheology, Mechanical Performance, and Durability
by Yahya Kaya, Veysel Kobya, Murteda Ünverdi, Naz Mardani and Ali Mardani
Polymers 2025, 17(16), 2186; https://doi.org/10.3390/polym17162186 - 9 Aug 2025
Viewed by 359
Abstract
Today, various strategies are being adopted to produce more environmentally friendly cementitious systems. A commonly adopted strategy is the enhancement of energy efficiency in the clinker grinding process through the use of grinding aids (GAs). Another approach is to reduce cement consumption by [...] Read more.
Today, various strategies are being adopted to produce more environmentally friendly cementitious systems. A commonly adopted strategy is the enhancement of energy efficiency in the clinker grinding process through the use of grinding aids (GAs). Another approach is to reduce cement consumption by partially replacing cement with mineral additives such as fly ash. The literature has highlighted that the use of GAs during clinker grinding can narrow the particle size distribution, thereby promoting higher rates of mineral additive replacement. Nevertheless, the literature still lacks comprehensive insight into how the combined application of commonly used GAs influences the substitution levels of mineral additives. In this regard, this study thoroughly examined the influence of varying proportions and dosages of Triethanolamine (TEA) and Triisopropanolamine (TIPA)—two commonly employed grinding aids—on the hydration kinetics, compressive strength development, and life cycle performance of fly ash (FA)-blended cementitious systems. The mixtures prepared with the cements produced were analyzed through XRD, TGA, and SEM techniques, and the compressive strength results were evaluated using the Taguchi method. The results demonstrated that, irrespective of the type of additive used, the use of GAs enhanced pozzolanic activity and compressive strength. In particular, the GA combination containing 75% TIPA and 25% TEA proved the most superior results in terms of hydration kinetics, mechanical strength, and environmental performance. It was demonstrated that the combined use of TEA and TIPA in specific proportions creates a synergistic effect, enabling the development of more efficient binder systems. Full article
(This article belongs to the Special Issue Application of Polymers in Cementitious Materials)
Show Figures

Figure 1

16 pages, 3763 KiB  
Article
Performance Study on Preparation of Mine Backfill Materials Using Industrial Solid Waste in Combination with Construction Waste
by Yang Cai, Qiumei Liu, Fufei Wu, Shuangkuai Dong, Qiuyue Zhang, Jing Wang, Pengfei Luo and Xin Yang
Materials 2025, 18(15), 3716; https://doi.org/10.3390/ma18153716 - 7 Aug 2025
Viewed by 301
Abstract
The resource utilization of construction waste and industrial solid waste is a crucial aspect in promoting global urbanization and sustainable development. This study focuses on the preparation of mine backfill materials using construction waste in combination with various industrial solid wastes—ground granulated blast [...] Read more.
The resource utilization of construction waste and industrial solid waste is a crucial aspect in promoting global urbanization and sustainable development. This study focuses on the preparation of mine backfill materials using construction waste in combination with various industrial solid wastes—ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF), phosphorus slag (PS), fly ash–phosphorus slag–phosphogypsum composite (FA-PS-PG), and fly ash–phosphorus slag–β-phosphogypsum composite (FA-PS-βPG)—under different substitution rates (50%, 55%, 60%) as control parameters. A total of 19 mix proportions were investigated, evaluating their slump, dry density, compressive strength, uniaxial compressive stress–strain relationship, micromorphology, and phase composition. The results indicate that, compared to backfill materials prepared with pure cement, the incorporation of industrial solid wastes improves the fluidity of the backfill materials. At 56 days, the constitutive model parameter a increased to varying degrees, while parameter b decreased, indicating enhanced ductility. The compressive strength was consistently higher with PS at all substitution rates. The FA-PS-PG mixture with a 50% substitution rate achieved the highest 56-day compressive strength of 8.02 MPa. These findings can facilitate the application of construction waste and industrial solid waste in mine backfilling projects, delivering economic, environmental, and resource-related benefits. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 2332 KiB  
Article
Evaluation of Spent Catalyst from Fluid Catalytic Cracking in Fly Ash and Blast Furnace Slag Based Alkali Activated Materials
by Yolanda Luna-Galiano, Domigo Cabrera-Gallardo, Mónica Rodríguez-Galán, Rui M. Novais, João A. Labrincha and Carlos Leiva Fernández
Recycling 2025, 10(4), 149; https://doi.org/10.3390/recycling10040149 - 1 Aug 2025
Viewed by 290
Abstract
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a [...] Read more.
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a AAM matrix offers several advantages: valorization of the material, reducing its disposal in landfills and the landfill cost, and minimizing the environmental impact. Mineralogical, physical and mechanical characterization were carried out. The durability of the specimens was studied by performing acid attack and thermal stability tests. Mass variation, compressive strength and porosity parameters were determined to assess the durability. BFS- and FA-based AAMs have a different chemical composition, which contribute to variations in microstructure and physical and mechanical properties. Acid neutralization capacity was also determined to analyse the acid attack results. Porosity, including the pore size distribution, and the acid neutralization capacity are crucial in explaining the resistance of the AAMs to sulfuric acid attack and thermal degradation. Herein, a novel route was explored, the use of SCFCC to enhance the durability of AAMs under harsh operating conditions since results show that the compositions containing SCFCC showed lower strength decay due to the lower macroporosity proportions in these compositions. Full article
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Cited by 1 | Viewed by 327
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

22 pages, 3056 KiB  
Article
Recycled Glass and Plastic Waste in Sustainable Geopolymer Systems for Affordable Housing Solutions
by Zhao Qing Tang, Yat Choy Wong, Yali Li and Eryadi Kordi Masli
Recycling 2025, 10(4), 147; https://doi.org/10.3390/recycling10040147 - 27 Jul 2025
Viewed by 437
Abstract
The increasing demand for sustainable construction materials has driven research into low-carbon geopolymers that mitigate both cement-related emissions and plastic and glass waste accumulation. This study explores the development of geopolymer concrete incorporating fly ash (FA), slag (S), and FA + S blends, [...] Read more.
The increasing demand for sustainable construction materials has driven research into low-carbon geopolymers that mitigate both cement-related emissions and plastic and glass waste accumulation. This study explores the development of geopolymer concrete incorporating fly ash (FA), slag (S), and FA + S blends, with 10% recycled crushed glass (RCG) and recycled plastic waste (RPW) as partial coarse aggregate replacements. Compressive strength testing revealed that FA + S-based geopolymers (25FA + S) with 100% ordinary Portland cement (OPC) replacement achieved a 7-day strength of 24.6 MPa, representing a 98% improvement over control specimens. Slag-based geopolymers demonstrated water absorption properties comparable to OPC, indicating enhanced durability. Microstructural analyses using SEM, XRD, and EDS confirmed the formation of a dense aluminosilicate matrix, with slag promoting FA reactivity and reinforcing interfacial transition zone (ITZ). These effects contributed to superior mechanical performance and water resistance. Despite minor shrinkage-induced cracking, full OPC replacement with S or FA + S geopolymers outperformed control specimens, consistently exceeding the target strength of 15 MPa required for low-impact, single-story housing applications within seven days. These findings underscore the potential of geopolymer systems for rapid and sustainable construction, offering an effective solution for reducing carbon footprints and repurposing industrial waste. Full article
Show Figures

Figure 1

27 pages, 19505 KiB  
Article
Analysis on the Ductility of One-Part Geopolymer-Stabilized Soil with PET Fibers: A Deep Learning Neural Network Approach
by Guo Hu, Junyi Zhang, Ying Tang and Jun Wu
Buildings 2025, 15(15), 2645; https://doi.org/10.3390/buildings15152645 - 27 Jul 2025
Viewed by 324
Abstract
Geopolymers, as an eco-friendly alternative construction material to ordinary Portland cement (OPC), exhibit superior performance in soil stabilization. However, their inherent brittleness limits engineering applications. To address this, polyethylene terephthalate (PET) fibers can be incorporated into a one-part geopolymer (OPG) binder to enhance [...] Read more.
Geopolymers, as an eco-friendly alternative construction material to ordinary Portland cement (OPC), exhibit superior performance in soil stabilization. However, their inherent brittleness limits engineering applications. To address this, polyethylene terephthalate (PET) fibers can be incorporated into a one-part geopolymer (OPG) binder to enhance ductility while promoting plastic waste recycling. However, the evaluation of ductile behavior of OPG-stabilized soil with PET fiber normally demands extensive laboratory and field experiments. Leveraging artificial intelligence, a predictive model can be developed for this purpose. In this study, data were collected from compressive and tensile tests performed on the OPG-stabilized soil with PET fiber. Four deep learning neural network models, namely ANN, BPNN, CNN, and LSTM, were then used to construct prediction models. The input parameters in the model included the fly ash (FA) dosage, dosage and length of the PET fiber, and the Curing Time. Results revealed that the LSTM model had the best performance in predicting the three ductile properties (i.e., the compressive strength index [UCS], strain energy index [CSE], and tensile strength index [TES]). The SHAP and 2D-PDP methods were further used to verify the rationality of the LSTM model. It is found that the Curing Time was the most important factor for the strength and ductile behavior. The appropriate addition of PET fiber of a certain length had a positive impact on the ductility index. Thus, for the OPG-stabilized soil, the optimal dosage and length of PET fiber were found to be 1.5% and 9 mm, respectively. Additionally, there was a synergistic effect between FA and PET on the ductility metric. This research provides theoretical support for the application of geopolymer and PET fiber in enhancing the ductility of the stabilized soil. Full article
Show Figures

Figure 1

13 pages, 3360 KiB  
Article
Effect of Edge-Oxidized Graphene Oxide (EOGO) on Fly Ash Geopolymer
by Hoyoung Lee, Junwoo Shin, Byoung Hooi Cho and Boo Hyun Nam
Materials 2025, 18(15), 3457; https://doi.org/10.3390/ma18153457 - 23 Jul 2025
Viewed by 276
Abstract
In this study, edge-oxidized graphene oxide (EOGO) was used as an additive in fly ash (FA) geopolymer paste. The effect of EOGO on the properties of the fly ash geopolymer was investigated. EOGO was added to the FA geopolymer at four different percentages [...] Read more.
In this study, edge-oxidized graphene oxide (EOGO) was used as an additive in fly ash (FA) geopolymer paste. The effect of EOGO on the properties of the fly ash geopolymer was investigated. EOGO was added to the FA geopolymer at four different percentages (0%, 0.1%, 0.5% and 1%), and the mixture was cured under two different conditions: room curing (~20 °C) and heat curing (~60 °C). To characterize the FA-EOGO geopolymer, multiple laboratory tests were employed, including compressive strength, Free-Free Resonance Column (FFRC), density, water absorption, and setting tests. The FFRC test was used to evaluate the stiffness at small strain (Young’s modulus) via the resonance of the specimen. The mechanical test results showed that the strength and elastic modulus were high during heat curing, and the highest compressive strength and elastic modulus were achieved at 0.1% EOGO. In the physical test, 0.1% EOGO had the highest density and the lowest porosity and water absorption. As a result of the setting time test, as the EOGO content increased, the setting time was shortened. It is concluded that the optimum proportion of EOGO is 0.1% in FA geopolymer paste. Full article
Show Figures

Figure 1

22 pages, 4859 KiB  
Article
Engineered Ceramic Composites from Electrolytic Manganese Residue and Fly Ash: Fabrication Optimization and Additive Modification Mechanisms
by Zhaohui He, Shuangna Li, Zhaorui Li, Di Zhang, Guangdong An, Xin Shi, Xin Sun and Kai Li
Sustainability 2025, 17(14), 6647; https://doi.org/10.3390/su17146647 - 21 Jul 2025
Viewed by 519
Abstract
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite [...] Read more.
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite with 85 g FA exhibits the highest mechanical strength, lowest porosity, and minimal water absorption, the formulation consisting of 45 wt% EMR, 40 wt% FA, and 15 wt% kaolin is identified as a balanced composition that achieves an effective compromise between mechanical performance and solid waste utilization efficiency. Sintering temperature studies revealed temperature-dependent property enhancement, with controlled sintering at 1150 °C preventing the over-firing phenomena observed at 1200 °C while promoting phase evolution. XRD-SEM analyses confirmed accelerated anorthite formation and the morphological transformations of FA spherical particles under thermal activation. Additive engineering demonstrated that 8 wt% CaO addition enhanced structural densification through hydrogrossular crystallization, whereas Na2SiO3 induced sodium-rich calcium silicate phases that suppressed anorthite development. Contrastingly, ZrO2 facilitated zircon nucleation, while TiO2 enabled progressive performance enhancement through amorphous phase modification. This work establishes fundamental phase–structure–property relationships and provides actionable engineering parameters for sustainable ceramic production from industrial solid wastes. Full article
Show Figures

Figure 1

26 pages, 6009 KiB  
Article
Integrated Mechanical and Eco-Economical Assessments of Fly Ash-Based Geopolymer Concrete
by Qasim Shaukat Khan, Raja Hilal Ahmad, Asad Ullah Qazi, Syed Minhaj Saleem Kazmi, Muhammad Junaid Munir and Muhammad Hassan Javed
Buildings 2025, 15(14), 2555; https://doi.org/10.3390/buildings15142555 - 20 Jul 2025
Viewed by 322
Abstract
This research evaluates the mechanical properties, environmental impacts, and cost-effectiveness of Hub Coal fly ash (FA)-based geopolymer concrete (FAGPC) as a sustainable alternative to ordinary Portland cement (OPC) concrete. This local FA has not been investigated previously. A total of 24 FAGPC mixes [...] Read more.
This research evaluates the mechanical properties, environmental impacts, and cost-effectiveness of Hub Coal fly ash (FA)-based geopolymer concrete (FAGPC) as a sustainable alternative to ordinary Portland cement (OPC) concrete. This local FA has not been investigated previously. A total of 24 FAGPC mixes were tested under both ambient and heat curing conditions, varying the molarities of sodium hydroxide (NaOH) solution (10-M, 12-M 14-M and 16-M), sodium silicate to sodium hydroxide (Na2SiO3/NaOH) ratios (1.5, 2.0, and 2.5), and alkaline activator solution to fly ash (AAS/FA) ratios (0.5 and 0.6). The test results demonstrated that increasing NaOH molarity enhances the compressive strength (CS.) by 145% under ambient curing, with a peak CS. of 32.8 MPa at 16-M NaOH, and similarly, flexural strength (FS.) increases by 90% with a maximum FS. of 6.5 MPa at 14-M NaOH. Conversely, increasing the Na2SiO3/NaOH ratio to 2.5 reduced the CS. and FS. of ambient-cured specimens by 12.5% and 10.5%, respectively. Microstructural analysis revealed that higher NaOH molarity produced a denser, more homogeneous matrix, supported by increased Si–O–Al bond formation observed through energy-dispersive X-ray spectrometry. Environmentally, FAGPC demonstrated a 35–40% reduction in embodied CO2 emissions compared to OPC, although the production costs of FAGPC were 30–35% higher, largely due to the expense of alkaline activators. These findings highlight the potential of FAGPC as a low-carbon alternative to OPC concrete, balancing enhanced mechanical performance with sustainability. New, green, and cheap activation solutions are sought for a new generation of more sustainable and affordable FAGPC. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 10911 KiB  
Article
Investigation into the Static Mechanical Properties of Ultra-High-Performance Geopolymer Concrete Incorporating Steel Slag, Ground Granulated Blast-Furnace Slag, and Fly Ash
by Yan-Hua Cai, Tao Huang, Bo-Yuan Huang, Chuan-Bin Hua, Qiang Huang, Jing-Wen Chen, Heng-Liang Liu, Zi-Jie He, Nai-Bi Rouzi, Zhi-Hong Xie and Gai Chen
Buildings 2025, 15(14), 2535; https://doi.org/10.3390/buildings15142535 - 18 Jul 2025
Viewed by 303
Abstract
The utilization of steel slag (SS) in construction materials represents an effective approach to improving its overall recycling efficiency. This study incorporates SS into a conventional ground granulated blast-furnace slag (GGBS)–fly ash (FA)-based binder system to develop a ternary system comprising SS, GGBS, [...] Read more.
The utilization of steel slag (SS) in construction materials represents an effective approach to improving its overall recycling efficiency. This study incorporates SS into a conventional ground granulated blast-furnace slag (GGBS)–fly ash (FA)-based binder system to develop a ternary system comprising SS, GGBS, and FA, and investigates how this system influences the static mechanical properties of ultra-high-performance geopolymer concrete (UHPGC). An axial point augmented simplex centroid design method was employed to systematically explore the influence and underlying mechanisms of different binder ratios on the workability, axial compressive strength, and flexural performance of UHPGC, and to determine the optimal compositional range. The results indicate that steel slag has a certain negative effect on the flowability of UHPGC paste; however, with an appropriate proportion of composite binder materials, the mixture can still exhibit satisfactory flowability. The compressive performance of UHPGC is primarily governed by the proportion of GGBS in the ternary binder system; an appropriate GGBS content can provide enhanced compressive strength and elastic modulus. UHPGC exhibits ductile behavior under flexural loading; however, replacing GGBS with SS significantly reduces its flexural strength and energy absorption capacity. The optimal static mechanical performance is achieved when the mass proportions of SS, GGBS, and FA are within the ranges of 9.3–13.8%, 66.2–70.7%, and 20.0–22.9%, respectively. This study provides a scientific approach for the valorization of SS through construction material applications and offers a theoretical and data-driven basis for the mix design of ultra-high-performance building materials derived from industrial solid wastes. Full article
(This article belongs to the Special Issue Next-Gen Cementitious Composites for Sustainable Construction)
Show Figures

Figure 1

16 pages, 3177 KiB  
Article
Cadmium as the Critical Limiting Factor in the Co-Disposal of Municipal Solid Waste Incineration Fly Ash in Cement Kilns: Implications for Three-Stage Water Washing Efficiency and Safe Dosage Control
by Zhonggen Li, Qingfeng Wang, Li Tang, Liangliang Yang and Guangyi Sun
Toxics 2025, 13(7), 593; https://doi.org/10.3390/toxics13070593 - 15 Jul 2025
Viewed by 424
Abstract
The co-disposal of municipal solid waste incineration fly ash (MSWI-FA) in cement kilns is an effective method for managing incineration by-products in China. However, the presence of heavy metals in MSWI-FA raises environmental concerns. This study analyzed the Cu, Zn, Cd, Pb, Cr, [...] Read more.
The co-disposal of municipal solid waste incineration fly ash (MSWI-FA) in cement kilns is an effective method for managing incineration by-products in China. However, the presence of heavy metals in MSWI-FA raises environmental concerns. This study analyzed the Cu, Zn, Cd, Pb, Cr, and Ni concentrations in MSWI-FA from 11 representative facilities across China and assessed the efficacy of a three-stage water washing process for Cl and heavy metal removal. The results revealed significant regional variations in heavy metal content that were strongly correlated with surface soil levels, with Zn, Pb, and Cu exhibiting the highest concentrations. Elemental correlations, such as Cu-Pb and Zn-Cd synergies and Cd-Ni antagonism, suggest common waste sources and temperature-dependent volatilization during incineration. The washing process (solid–liquid ratio = 1:10) achieved 97.1 ± 2.0% Cl removal, reducing residual Cl to 0.45 ± 0.32%, but demonstrated limited heavy metal elimination (10.28–19.38% efficiency), resulting in elevated concentrations (32.5–60.8% increase) due to 43.4 ± 9.2% mass loss. Notably, the washing effluents exceeded municipal wastewater discharge limits by up to 52-fold for Pb and 38-fold for Cd, underscoring the need for advanced effluent treatment. To mitigate environmental risks, the addition of washed MSWI-FA in cement kilns should be restricted to ≤0.5%, with Cd content prioritized in pre-disposal assessments. This study provides actionable insights for optimizing MSWI-FA co-processing while ensuring compliance with ecological safety standards. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Graphical abstract

Back to TopTop