Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = fluvial lake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 30685 KB  
Article
Orbital-Scale Climate Control on Facies Architecture and Reservoir Heterogeneity: Evidence from the Eocene Fourth Member of the Shahejie Formation, Bonan Depression, China
by Shahab Aman e Room, Liqiang Zhang, Yiming Yan, Waqar Ahmad, Paulo Joaquim Nota and Aamir Khan
Minerals 2026, 16(1), 48; https://doi.org/10.3390/min16010048 - 31 Dec 2025
Viewed by 322
Abstract
The Eocene fourth member of the Shahejie formation (Es4x) in the Bonan Depression, Bohai Bay Basin, records syn-rift sedimentation under alternating arid and humid climates. It provides insight into how orbital-scale climatic fluctuations influenced tectonics, facies patterns, and reservoir distribution. This study integrates [...] Read more.
The Eocene fourth member of the Shahejie formation (Es4x) in the Bonan Depression, Bohai Bay Basin, records syn-rift sedimentation under alternating arid and humid climates. It provides insight into how orbital-scale climatic fluctuations influenced tectonics, facies patterns, and reservoir distribution. This study integrates 406 m of core data, 92 thin sections, 450 km2 of 3D seismic data, and multiple geochemical proxies, leading to the recognition of five facies associations (LFA): (1) alluvial fans, (2) braided rivers, (3) floodplain mudstones, (4) fan deltas, and (5) saline lacustrine evaporites. Three major depositional cycles are defined within the Es4x. Seismic reflections, well-log patterns, and thickness trends suggest that these cycles represent fourth-order lake-level fluctuations (0.8–1.1 Myr) rather than short 21-kyr precession rhythms. This implies long-term climate and tectonic modulation, likely linked to eccentricity-scale monsoon variability. Hyperarid phases are marked by Sr/Ba > 4, δ18O > +4‰, and thick evaporite accumulations. In contrast, Sr/Ba < 1 and δ18O < −8‰ reflect humid conditions with larger lakes and enhanced fluvial input. During wet periods, rivers produced sand bodies nearly 40 times thicker than in dry intervals. Reservoir quality is highest in braided-river sandstones (LFA 2) with 12%–19% porosity, preserved by chlorite coatings that limit quartz cement. Fan-delta sands (LFA 4) have <8% porosity due to calcite cementation, though fractures (10–50 mm) improve permeability. Floodplain mudstones (LFA 3) and evaporites (LFA 5) act as seals. This work presents a predictive depositional and reservoir model for arid–humid rift systems and highlights braided-river targets as promising exploration zones in climate-sensitive basins worldwide. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

15 pages, 8296 KB  
Article
Grain Shape Variation of Different Sand-Sized Particles and Its Implication for Discriminating Sedimentary Environment
by Fangen Hu and Xia Xiao
Geosciences 2025, 15(11), 412; https://doi.org/10.3390/geosciences15110412 - 29 Oct 2025
Viewed by 870
Abstract
Particle shape analysis is essential in sedimentological research, as it offers vital insights into the sedimentary environment and transport history. However, little is known about the particle shape variation across different sand fractions, as well as the differences between particle shape data based [...] Read more.
Particle shape analysis is essential in sedimentological research, as it offers vital insights into the sedimentary environment and transport history. However, little is known about the particle shape variation across different sand fractions, as well as the differences between particle shape data based on volume and number weighting. In this study, we investigate the grain shape variation of different sand-sized particles (fine, medium, and coarse sand fractions) in aeolian dune (11 samples) and lake beach (12 samples) environments around Poyang Lake, China, using dynamic image analysis (DIA). The shape data results based on both volume-weighted and number-weighted methods reveal significant differences in shape parameters (circularity, symmetry, aspect ratio, and convexity) among different sand fractions, especially between coarse and fine sand. This highlights the critical need for size-fractionated analysis when employing particle shape as an environmental discriminant. By integrating 86 sets of published particle shape data from different depositional environments, we found that volume-weighted shape data has limited ability to differentiate beach and dune sands, although it distinguished the fluvial, desert dune, and coastal beach sand well. In contrast, number-weighted shape data effectively distinguished the beach and dune sands, as fine sand particles are typically transported in suspension during fluvial processes and in saltation during aeolian processes. This demonstrates the role of integrating both volume-weighted and number-weighted shape data in future studies to accurately distinguish sedimentary environments. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

61 pages, 28723 KB  
Article
Evolution of a Late Carboniferous Fluvio-Lacustrine System in an Endorheic Basin: Multiproxy Insights from the Ludwikowice Formation, Intra-Sudetic Basin (SW Poland, NE Bohemian Massif)
by Aleksander Kowalski, Jolanta Dąbek-Głowacka, Grzegorz J. Nowak, Anna Górecka-Nowak, Urszula Wyrwalska, Magdalena Furca and Patrycja Wójcik-Tabol
Minerals 2025, 15(10), 1077; https://doi.org/10.3390/min15101077 - 15 Oct 2025
Cited by 1 | Viewed by 1010
Abstract
Fluvio-lacustrine systems are highly dynamic continental environments, often developing in tectonically controlled, endorheic basins where sedimentation reflects the interplay of fluvial processes, lake-level fluctuations, climate, and subsidence. The main aim of this paper is to reconstruct the depositional architecture and paleogeographic evolution of [...] Read more.
Fluvio-lacustrine systems are highly dynamic continental environments, often developing in tectonically controlled, endorheic basins where sedimentation reflects the interplay of fluvial processes, lake-level fluctuations, climate, and subsidence. The main aim of this paper is to reconstruct the depositional architecture and paleogeographic evolution of the Ludwikowice Formation (Intra-Sudetic Basin, NE Bohemian Massif), which preserves a high-resolution record of a late Carboniferous (late Gzhelian) fluvio-lacustrine system. The formation developed as a fining-upward megacyclothem documenting the transition from proximal alluvial and fluvial fan deposits to distal, organic-rich lacustrine facies referred to as the Lower Anthracosia Shale (LAS). This study integrates lithological data from 92 archival boreholes with high-resolution sedimentological, geochemical, petrological, palynological, and magnetic susceptibility analyses from two fully cored reference sections (Ścinawka Średnia PIG-1 and Rybnica Leśna PIG-1) and selected exposures. Nine facies associations (FA1–FA9) have been identified within the formation, including fluvial, sandy to muddy floodplain, aeolian, playa lake margin/coastal mudflat, nearshore, delta plain, subaqueous delta front and subaqueous fan, prodelta, and open lake. The succession shows progressive thickening into narrow, NW–SE-trending depocenters associated with possible strike-slip faulting. Geochemical and isotopic data indicate alternating hydrologically open and closed lake conditions, while magnetic susceptibility reflects climatically driven variations in detrital influx and microbial activity. Organic petrography and palynofacies analyses reveal redox-controlled maceral associations. The Ludwikowice Formation constitutes a detailed archive of Late Paleozoic environmental change and provides new insights into sedimentation and organic matter preservation in intramontane endorheic basins. Our results highlight the response of fluvio-lacustrine systems to climatic and tectonic factors and provide a framework for interpreting analogous successions throughout the stratigraphic record. Full article
(This article belongs to the Special Issue Deep-Time Source-to-Sink in Continental Basins)
Show Figures

Figure 1

40 pages, 7229 KB  
Article
Influence of Habitat on the Impact of Non-Native Fishes on Native Ichthyofauna in a Group of Lakes of the Lower Doce River, Espírito Santo, Southeastern Brazil
by Eduardo Hoffmam de Barros, Nuno Caiola, Renan Luxinger Betzel, Ronaldo Fernando Martins-Pinheiro and Luisa Maria Sarmento-Soares
Diversity 2025, 17(9), 650; https://doi.org/10.3390/d17090650 - 16 Sep 2025
Viewed by 1169
Abstract
The Doce River basin is the largest river system in southeastern Brazil. Over the last century, the Doce River has been undergoing a serious process of degradation, culminating in a huge environmental disaster due to Fundão tailing dam bursting in Mariana (Minas Gerais) [...] Read more.
The Doce River basin is the largest river system in southeastern Brazil. Over the last century, the Doce River has been undergoing a serious process of degradation, culminating in a huge environmental disaster due to Fundão tailing dam bursting in Mariana (Minas Gerais) and causing severe damage to biodiversity and local human communities. Near its mouth, the Doce River harbors an extensive lake area, with over ninety lakes on coastal lowlands. These lakes are of fluvial origin and connected to each other and to the main Doce River by small tributary streams. In this area, one of the main sources of impact on the fish fauna is the presence of non-native fish species. We compared richness, taxonomic diversity, beta diversity, species composition and proportion of non-native species in lakes and streams, and related these variables to each other and to environmental variables. We used the indicator species index (IndVal) to identify species associated with each type of environment. We used multivariate analyses to test the influence of stream habitat on the fish fauna in streams and Generalized Linear Models (GLMs) to test the influence of distance to lakes on the proportion of non-native species in streams, and the influence of this proportion on total and native fish richness and diversity. The results showed that some non-native species originating from lentic environments have adapted to the lakes and are spread throughout the internal lake system. In streams, there are proportionally fewer non-native fish and their distribution is more fragmented, as some stretches do not provide the conditions for the establishment of some of these species, making them potential refuges for native ichthyofauna. As the streams move away from the lakes, the proportion of non-native species tends to decrease. In streams, the richness and diversity of native species are affected by the proportion of non-native species, but not in lakes. The native vegetation in the landscape showed no potential for reducing the invasion of non-native species. The depth and width of the streams are directly related to the proportion of non-native species within the streams and are structural characteristics that should be considered in strategies for the conservation of the fish fauna. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

35 pages, 10915 KB  
Review
Geochemistry of Mars with Laser-Induced Breakdown Spectroscopy (LIBS): ChemCam, SuperCam, and MarSCoDe
by Roger C. Wiens, Agnes Cousin, Samuel M. Clegg, Olivier Gasnault, Zhaopeng Chen, Sylvestre Maurice and Rong Shu
Minerals 2025, 15(8), 882; https://doi.org/10.3390/min15080882 - 21 Aug 2025
Cited by 2 | Viewed by 2204
Abstract
Laser-induced breakdown spectroscopy (LIBS) has been used to explore the chemistry of three regions of Mars on respective missions by NASA and CNSA, with CNES contributions. All three LIBS instruments use ~100 mm diameter telescopes projecting pulsed infrared laser beams of 10–14 mJ [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) has been used to explore the chemistry of three regions of Mars on respective missions by NASA and CNSA, with CNES contributions. All three LIBS instruments use ~100 mm diameter telescopes projecting pulsed infrared laser beams of 10–14 mJ to enable LIBS at 2–10 m distances, eliminating the need to position the rover and instrument directly onto targets. Over 1.3 million LIBS spectra have been used to provide routine compositions for eight major elements and several minor and trace elements on >3000 targets on Mars. Onboard calibration targets common to all three instruments allow careful intercomparison of results. Operating over thirteen years, ChemCam on Curiosity has explored lacustrine sediments and diagenetic features in Gale crater, which was a long-lasting (>1 My) lake during Mars’ Hesperian period. SuperCam on Perseverance is exploring the ultramafic igneous floor, fluvial–deltaic features, and the rim of Jezero crater. MarSCoDe on the Zhurong rover investigated for one year the local blocks, soils, and transverse aeolian ridges of Utopia Planitia. The pioneering work of these three stand-off LIBS instruments paves the way for future space exploration with LIBS, where advantages of light-element (H, C, N, O) quantification can be used on icy regions. Full article
Show Figures

Graphical abstract

30 pages, 5374 KB  
Article
Provenance and Tectonic Controls in Eastern Junggar: Insights from Petrography and REE Geochemistry
by Shengzhu Wang, Hongzhou Yu, Baosheng Li, Jinqi Han, Can Zhao, Yaoyun Guo, Jiaye Liu, Chang Su, Xu Chang, Tong Wu and Haoqing Huang
Molecules 2025, 30(16), 3399; https://doi.org/10.3390/molecules30163399 - 18 Aug 2025
Cited by 1 | Viewed by 1178
Abstract
Rare earth elements (REEs) and trace elements, due to their relative stability during sedimentary processes, are effective geochemical proxies for sediment provenance. In the Dongdaohaizi Depression of the eastern Junggar Basin, the provenance of the Middle Jurassic Sangonghe Formation remains contentious. In this [...] Read more.
Rare earth elements (REEs) and trace elements, due to their relative stability during sedimentary processes, are effective geochemical proxies for sediment provenance. In the Dongdaohaizi Depression of the eastern Junggar Basin, the provenance of the Middle Jurassic Sangonghe Formation remains contentious. In this study, representative sandstone samples were systematically collected from all three members of the Sangonghe Formation in both the Dongdaohaizi Depression and its western margin. Through comprehensive petrographic and geochemical analyses, we obtained the following results. The Sangonghe Formation is primarily composed of feldspathic lithic sandstones, lithic sandstones, and minor lithic–feldspathic sandstones. The heavy mineral assemblage includes zircon, garnet, chromite, and rutile, suggesting source rocks of intermediate to acidic igneous, metamorphic, and mafic lithologies. The total REE contents range from 101.84 to 192.68 μg/g, with an average of 161.80 μg/g. The ∑LREE/∑HREE ratios vary from 6.59 to 13.25 (average 10.96), and the average δEu values are close to 1. The δCe value ranges from 1.09 to 1.13 (average 1.11). Trace element discrimination diagrams, including La-Th-Sc, Th-Co-Zr/10, Th-Sc-Zr/10, and La/Y-Sc/Cr ternary plots, indicate that most samples fall within the continental island arc domain, with a few plotting in the passive continental margin field. Comparison with potential surrounding source regions reveals dual provenances: an eastern source from the Kalamaili Mountains and a western source from the Zhayier Mountains. During the Early Jurassic, these two orogenic belts acted as distinct sediment sources. The Zhayier Mountains provided stronger input, with fluvial and tidal processes transporting sediments into the basin, establishing the primary subsidence center in the west of the depression. By the Middle Jurassic, continued thrusting of surrounding fold belts caused a migration of the lake center and the main depocenter to the western edge of the Dongdaohaizi Depression, while the former depocenter gradually diminished. Furthermore, sustained erosion and denudation of the Mosowan Uplift during the Early–Middle Jurassic reduced its function as a structural barrier, thereby promoting increased mixing between eastern and western sediment sources. The study not only refines existing paleogeographic models of the Junggar Basin, but also demonstrates the utility of REE–trace geochemistry in deciphering complex provenance systems in tectonically active basins. Full article
(This article belongs to the Special Issue Innovative Chemical Technologies for Rare Earth Element Processing)
Show Figures

Figure 1

18 pages, 40844 KB  
Article
The Stabilization Mechanism of a Stable Landslide Dam on the Eastern Margin of the Tibetan Plateau, China: Insights from Field Investigation and Numerical Simulation
by Liang Song, Yanjun Shang, Yunsheng Wang, Tong Li, Zhuolin Xiao, Yuchao Zhao, Tao Tang and Shicheng Liu
Appl. Sci. 2025, 15(15), 8745; https://doi.org/10.3390/app15158745 - 7 Aug 2025
Viewed by 704
Abstract
As a globally renowned alpine gorge region and seismically active zone, the eastern margin of the Qinghai–Tibet Plateau (QTP) is highly prone to landslide dam formation. Considering unstable landslide dams often pose catastrophic risks to downstream areas, current research on landslide dams along [...] Read more.
As a globally renowned alpine gorge region and seismically active zone, the eastern margin of the Qinghai–Tibet Plateau (QTP) is highly prone to landslide dam formation. Considering unstable landslide dams often pose catastrophic risks to downstream areas, current research on landslide dams along QTP primarily focuses on the breach mechanisms of unstable dams, while studies on the formation mechanisms of stable landslide dams—which can provide multiple benefits to downstream regions—remain limited. This paper selected the Conaxue Co landslide dam on the eastern margin of the QTP as one case example. Field investigation, sampling, numerical simulation, and comprehensive analysis were carried out to disclose its formation mechanisms. Field investigation shows that the Conaxue Co landslide dam was formed by a high-speed long-runout landslide blocking the river, with its structure exhibiting a typical inverse grading pattern characterized by coarse-grained rock overlying fine-grained layers. The inverse grading structure plays a critical role in the stability of the Conaxue Co landslide dam. On one hand, the coarse, hard rock boulders in the upper dam mitigate fluvial erosion of the lower fine-grained sediments. On the other hand, the fine-grained layer in the lower dam acts as a relatively impermeable aquitard, preventing seepage of dammed lake water. Additionally, the step-pool system formed in the spillway of the Conaxue Co landslide dam contributes to the protection of the dam structure by dissipating 68% of the river’s energy (energy dissipation rate η = 0.68). Understanding the formation mechanisms of the Conaxue Co landslide dam can provide critical insights into managing future landslide dams that may form in the QTP, both in emergency response and long-term strategies. Full article
Show Figures

Figure 1

27 pages, 53601 KB  
Article
Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China
by Ming Ma, Changsong Lin, Yongfu Liu, Hao Li, Wenfang Yuan, Jingyan Liu, Chaoqun Shi, Manli Zhang and Fan Xu
Appl. Sci. 2025, 15(14), 7783; https://doi.org/10.3390/app15147783 - 11 Jul 2025
Viewed by 1249
Abstract
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence [...] Read more.
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence stratigraphy, depositional systems, and the controlling factors of the basin filling in the depression are systematically documented. Four primary depositional systems, including braided river delta, meandering river delta, lacustrine, and swamp deposits, are identified within the Ahe, Yangxia, and Kezilenuer Formations of the Lower–Middle Jurassic. The basin fills can be classified into two second-order and nine third-order sequences (SQ1–SQ9) confined by regional or local unconformities and their correlative conformities. This study shows that the sedimentary evolution has undergone the following three stages: Stage I (SQ1–SQ2) primarily developed braided river, braided river delta, and shallow lacustrine deposits; Stage II (SQ3–SQ5) primarily developed meandering river, meandering river delta, and extensive deep and semi-deep lacustrine deposits; Stage III (SQ6–SQ9) primarily developed swamp (SQ6–SQ7), meandering river delta, and shore–shallow lacustrine deposits (SQ8–SQ9). The uplift of the Tianshan Orogenic Belt in the Early Jurassic (Stage I) may have facilitated the development of braided fluvial–deltaic deposits. The subsequential expansion of the sedimentary area and the weakened sediment supply can be attributed to the planation of the source area and widespread basin subsidence, with the transition of the depositional environments from braided river delta deposits to meandering river delta and swamp deposits. The regional expansion or rise of the lake during Stage II was likely triggered by the hot and humid climate conditions, possibly associated with the Early Jurassic Toarcian Oceanic Anoxic Event. The thick swamp deposits formed during Stage III may be controlled by the interplay of rational accommodation, warm and humid climatic conditions, and limited sediment supply. Milankovitch cycles identified in Stage III further reveal that coal accumulation was primarily modulated by long-period eccentricity forcing. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 863 KB  
Review
Microplastic Pollution in China’s Aquatic Systems: Spatial Distribution, Transport Pathways, and Controlling Strategies
by Zhancheng Wu, Juzhuang Wang, Shengwang Yu, Qian Sun and Yulai Han
Microplastics 2025, 4(3), 41; https://doi.org/10.3390/microplastics4030041 - 3 Jul 2025
Cited by 2 | Viewed by 5167
Abstract
Microplastics (MPs) have emerged as a critical environmental challenge in China’s aquatic ecosystems, driven by rapid industrialization and population growth. This review synthesizes recent findings on the abundance, morphology, and polymer types of MPs in China’s freshwater systems (rivers, lakes, reservoirs) and coastal [...] Read more.
Microplastics (MPs) have emerged as a critical environmental challenge in China’s aquatic ecosystems, driven by rapid industrialization and population growth. This review synthesizes recent findings on the abundance, morphology, and polymer types of MPs in China’s freshwater systems (rivers, lakes, reservoirs) and coastal marine environments. Spatial analysis reveals significant variability in MP abundance, ranging from 0.1 items/L in Tibet’s Lalu Wetland to 30.8 items/L in Beijing’s Qinghe River, with polypropylene (PP) and polyethylene (PE) dominating polymer profiles. Coastal regions exhibit distinct contamination patterns, with the Yellow Sea (5.3 ± 2.0 items/L) and the South China Sea (180 ± 80 items/m3) showing the highest MP loads, primarily as fibers and fragments. Fluvial transport, atmospheric deposition, and coastal anthropogenic activities (e.g., fisheries, tourism) are identified as major pathways for marine MP influx. Secondary MPs from degraded plastics and primary MPs from industrial/domestic effluents pose synergistic risks through the adsorption of heavy metals and organic pollutants. Human exposure routes—ingestion, inhalation, and dermal contact—are linked to inflammatory, metabolic, and carcinogenic health outcomes. Policy interventions, including bans on microbeads and non-degradable plastics, demonstrate progress in pollution mitigation. This work underscores the urgency of integrated source control, advanced wastewater treatment, and transboundary monitoring to address MP contamination in aquatic ecosystems. Full article
Show Figures

Figure 1

22 pages, 5761 KB  
Article
Topography and Substrate Lithology Control the Position of Fluvial Channels on a Drained Lake Floor, the Case of the Postglacial Ain Valley (Eastern France)
by Cornelis Kasse and Oeki Verhage
Quaternary 2025, 8(2), 29; https://doi.org/10.3390/quat8020029 - 6 Jun 2025
Viewed by 1532
Abstract
The development of fluvial systems over long time scales is a complex interplay of tectonic, climatic, and lithological factors. The initiation and location of fluvial channels in the landscape is less well understood. Recently exposed surfaces provide opportunities to determine factors controlling fluvial [...] Read more.
The development of fluvial systems over long time scales is a complex interplay of tectonic, climatic, and lithological factors. The initiation and location of fluvial channels in the landscape is less well understood. Recently exposed surfaces provide opportunities to determine factors controlling fluvial channel initiation. During the Würm Last Glacial Maximum (c. 20 ka), the Ain valley in eastern France transformed into a large proglacial lake. Following deglaciation, new drainage channels initiated on the drained lake floor. Extensive morphological and sedimentological mapping and lithogenetic interpretation of the valley fill enable to determine the forcing factors of fluvial channel initiation. The location of the postglacial channels is determined by the initial topography of the lake floor and lithological variability of the sediments. Tributary channels of the Ain preferentially initiated in depressions of gently sloping former delta bottomsets, which prograded from different directions. In addition, the location of channels is determined by the presence of low-permeability, glacio-lacustrine deposits, that favored overland flow and erosion, compared to the highly permeable terrace deposits on the former lake floor. The differences in erodibility of the fine-grained and coarse-grained deposits resulted in relief inversion. Full article
Show Figures

Figure 1

21 pages, 2551 KB  
Article
The Diversity of Geochemical and Ecotoxicological Indices of Alluvial Deposits Reflects the Pattern of Landforms: The Case of the Vistula River Valley in the Małopolski Gorge (Poland)
by Agnieszka Kałmykow-Piwińska and Ewa Falkowska
Water 2025, 17(1), 64; https://doi.org/10.3390/w17010064 - 30 Dec 2024
Cited by 1 | Viewed by 1454
Abstract
This study aimed to (1) determine the environmental risk resulting from the contamination of river valley sediments with trace elements of anthropogenic origin, (2) assess the relationship between this environmental risk and the geomorphology of the valley, and (3) identify areas that may [...] Read more.
This study aimed to (1) determine the environmental risk resulting from the contamination of river valley sediments with trace elements of anthropogenic origin, (2) assess the relationship between this environmental risk and the geomorphology of the valley, and (3) identify areas that may become a source of contamination. This research was conducted in the Vistula River Valley between Sulejów and Kazimierz Dolny (Poland). Geochemical and ecotoxicological indices (for fraction < 1 mm) were analyzed (EF, Igeo, PI, CF, Cd, PISum, PIAvg, PINemerow, PLI, ER, RI). Geomorphological mapping, supported by DEM and remote sensing analysis, was performed. High concentrations of trace elements in sediments, as determined by the ICP-OES and ICP-MS methods throughout the study area, indicate generally high environmental degradation and a moderate-to-considerable ecological risk. Contamination differs in the sediments of individual landforms: the highest levels are found in the sediments of the contemporary floodplain and oxbow lakes, while the lowest are observed in the Pleistocene terrace sediments. Only high concentrations of As, Pb, Zn, and Cd are of anthropogenic origin. Their source is probably the mining area of Upper Silesia (As, Pb, Zn) and agricultural activity (Cd). The differences in the values of geochemical indices in individual landforms confirm the influence of fluvial processes on the distribution of trace elements. Full article
Show Figures

Figure 1

13 pages, 3455 KB  
Technical Note
Global Semantic Classification of Fluvial Landscapes with Attention-Based Deep Learning
by Patrice E. Carbonneau
Remote Sens. 2024, 16(24), 4747; https://doi.org/10.3390/rs16244747 - 19 Dec 2024
Cited by 3 | Viewed by 1304
Abstract
Rivers occupy less than 1% of the earth’s surface and yet they perform ecosystem service functions that are crucial to civilisation. Global monitoring of this asset is within reach thanks to the development of big data portals such as Google Earth Engine (GEE) [...] Read more.
Rivers occupy less than 1% of the earth’s surface and yet they perform ecosystem service functions that are crucial to civilisation. Global monitoring of this asset is within reach thanks to the development of big data portals such as Google Earth Engine (GEE) but several challenges relating to output quality and processing efficiency remain. In this technical note, we present a new deep learning pipeline that uses attention-based deep learning to perform state-of-the-art semantic classification of fluvial landscapes with Sentinel-2 imagery accessed via GEE. We train, validate and test the network on a multi-seasonal and multi-annual dataset drawn from a study site that covers 89% of the Earth’s surface. F1-scores for independent test data not used in model training reach 92% for rivers and 96% for lakes. This is achieved without post-processing and significantly reduced computation times, thus making automated global monitoring of rivers achievable. Full article
Show Figures

Graphical abstract

18 pages, 9156 KB  
Article
3D Modelling and Measuring Dam System of a Pellucid Tufa Lake Using UAV Digital Photogrammetry
by Xianwei Zhang, Guiyun Zhou, Jinchen He and Jiayuan Lin
Remote Sens. 2024, 16(20), 3839; https://doi.org/10.3390/rs16203839 - 16 Oct 2024
Viewed by 1796
Abstract
The acquisition of the three-dimensional (3D) morphology of the complete tufa dam system is of great significance for analyzing the formation and development of a pellucid tufa lake in a fluvial tufa valley. The dam system is usually composed of the dams partially [...] Read more.
The acquisition of the three-dimensional (3D) morphology of the complete tufa dam system is of great significance for analyzing the formation and development of a pellucid tufa lake in a fluvial tufa valley. The dam system is usually composed of the dams partially exposed above-water and the ones totally submerged underwater. This situation makes it difficult to directly obtain the real 3D scene of the dam system solely using an existing measurement technique. In recent years, unmanned aerial vehicle (UAV) digital photogrammetry has been increasingly used to acquire high-precision 3D models of various earth surface scenes. In this study, taking Wolong Lake and its neighborhood in Jiuzhaigou Valley, China as the study site, we employed a fixed-wing UAV equipped with a consumer-level digital camera to capture the overlapping images, and produced the initial Digital Surface Model (DSM) of the dam system. The refraction correction was applied to retrieving the underwater Digital Elevation Model (DEM) of the submerged dam or dam part, and the ground interpolation was adopted to eliminate vegetation obstruction to obtain the DEM of the dam parts above-water. Based on the complete 3D model of the dam system, the elevation profiles along the centerlines of Wolong Lake were derived, and the dimension data of those tufa dams on the section lines were accurately measured. In combination of local hydrodynamics, the implication of the morphological characteristics for analyzing the formation and development of the tufa dam system was also explored. Full article
Show Figures

Figure 1

23 pages, 16666 KB  
Review
Requirements for the Development and Operation of a Freeze-Up Ice-Jam Flood Forecasting System
by Karl-Erich Lindenschmidt, Robert Briggs, Amir Ali Khan and Thomas Puestow
Water 2024, 16(18), 2648; https://doi.org/10.3390/w16182648 - 18 Sep 2024
Cited by 2 | Viewed by 1693
Abstract
This article provides a comprehensive overview of ice-jam flood forecasting methodologies applicable to rivers during freezing. It emphasizes the importance of understanding river ice processes and fluvial geomorphology for developing a freeze-up ice-jam flood forecasting system. The article showcases a stochastic modelling approach, [...] Read more.
This article provides a comprehensive overview of ice-jam flood forecasting methodologies applicable to rivers during freezing. It emphasizes the importance of understanding river ice processes and fluvial geomorphology for developing a freeze-up ice-jam flood forecasting system. The article showcases a stochastic modelling approach, which involves simulating a deterministic river ice model multiple times with varying parameters and boundary conditions. This approach has been applied to the Exploits River at Badger in Newfoundland, Canada, a river that has experienced several freeze-up ice-jam floods. The forecasting involves two approaches: predicting the extent of the ice cover during river freezing and using an ensemble method to determine backwater flood level elevations. Other examples of current ice-jam flood forecasting systems for the Kokemäenjoki River (Pori, Finland), Saint John River (Edmundston, NB, Canada), and Churchill River (Mud Lake, NL, Canada) that are operational are also presented. The text provides a detailed explanation of the processes involved in river freeze-up and ice-jam formation, as well as the methodologies used for freeze-up ice-jam flood forecasting. Ice-jam flood forecasting systems used for freeze-up were compared to those employed for spring breakup. Spring breakup and freeze-up ice-jam flood forecasting systems differ in their driving factors and methodologies. Spring breakup, driven by snowmelt runoff, typically relies on deterministic and probabilistic approaches to predict peak flows. Freeze-up, driven by cold temperatures, focuses on the complex interactions between atmospheric conditions, river flow, and ice dynamics. Both systems require air temperature forecasts, but snowpack data are more crucial for spring breakup forecasting. To account for uncertainty, both approaches may employ ensemble forecasting techniques, generating multiple forecasts using slightly different initial conditions or model parameters. The objective of this review is to provide an overview of the current state-of-the-art in ice-jam flood forecasting systems and to identify gaps and areas for improvement in existing ice-jam flood forecasting approaches, with a focus on enhancing their accuracy, reliability, and decision-making potential. In conclusion, an effective freeze-up ice-jam flood forecasting system requires real-time data collection and analysis, historical data analysis, ice jam modeling, user interface design, alert systems, and integration with other relevant systems. This combination allows operators to better understand ice jam behavior and make informed decisions about potential risks or mitigation measures to protect people and property along rivers. The key findings of this review are as follows: (i) Ice-jam flood forecasting systems are often based on simple, empirical models that rely heavily on historical data and limited real-time monitoring information. (ii) There is a need for more sophisticated modeling techniques that can better capture the complex interactions between ice cover, water levels, and channel geometry. (iii) Combining data from multiple sources such as satellite imagery, ground-based sensors, numerical models, and machine learning algorithms can significantly improve the accuracy and reliability of ice-jam flood forecasts. (iv) Effective decision-support tools are crucial for integrating ice-jam flood forecasts into emergency response and mitigation strategies. Full article
Show Figures

Figure 1

28 pages, 8636 KB  
Article
Karst Hydrological Connections of Lakes and Neoproterozoic Hydrogeological System between the Years 1985–2020, Lagoa Santa—Minas Gerais, Brazil
by Wallace Pacheco Neto, Rodrigo de Paula and Paulo Galvão
Water 2024, 16(18), 2591; https://doi.org/10.3390/w16182591 - 12 Sep 2024
Cited by 2 | Viewed by 1781
Abstract
This study focuses on a complex Brazilian Neoproterozoic karst (hydro)geological and geomorphological area, consisting of metapelitic–carbonate sedimentary rocks of ~740–590 Ma, forming the largest carbonate sequence in the country. At the center of the area lies the Lagoa Santa Karst Environmental Protection Area [...] Read more.
This study focuses on a complex Brazilian Neoproterozoic karst (hydro)geological and geomorphological area, consisting of metapelitic–carbonate sedimentary rocks of ~740–590 Ma, forming the largest carbonate sequence in the country. At the center of the area lies the Lagoa Santa Karst Environmental Protection Area (LSKEPA), located near the Minas Gerais’ state capital, Belo Horizonte, and presents a series of lakes associated with the large fluvial system of the Velhas river under the influence, locally, of carbonate rocks. The hydrodynamics of carbonate lakes remain enigmatic, and various factors can influence the behavior of these water bodies. This work analyzed the hydrological behavior of 129 lakes within the LSKEPA to understand potential connections with the main karst aquifer, karst-fissure aquifer, and porous aquifer, as well as their evolution patterns in the physical environment. Pluviometric surveys and satellite image analysis were conducted from 1984 to 2020 to observe how the lakes’ shorelines behaved in response to meteorological variations. The temporal assessment for understanding landscape evolution proves to be an effective tool and provides important information about the interaction between groundwater and surface water. The 129 lakes were grouped into eight classes representing the hydrological connection patterns with the aquifers in the region, with classes defined for perennial lakes: (1) constantly connected, (2) seasonally disconnected, and (3) disconnected; for intermittent lakes: (4) disconnected during the analyzed time interval, (5) seasonally connected, (6) disconnected, (7) extremely disconnected, and (8) intermittent lakes that connected and stopped drying up. The patterns observed in the variation of lakes’ shorelines under the influence of different pluviometric moments showed a positive correlation, especially in dry periods, where these water bodies may be functioning as recharge or discharge zones of the karst aquifer. These inputs and outputs are conditioned to the well-developed karst tertiary porosity, where water flow in the epikarst moves according to the direction of enlarged karstified fractures, rock foliation planes, and lithological contacts. Other factors may condition the hydrological behavior of the lakes, such as rates of evapotranspiration, intensity of rainfall during rainy periods, and excessive exploitation of water. Full article
(This article belongs to the Special Issue Recent Advances in Karstic Hydrogeology, 2nd Edition)
Show Figures

Figure 1

Back to TopTop