molecules-logo

Journal Browser

Journal Browser

Innovative Chemical Technologies for Rare Earth Element Processing

A special issue of Molecules (ISSN 1420-3049).

Deadline for manuscript submissions: 28 February 2026 | Viewed by 819

Special Issue Editors


E-Mail Website
Guest Editor
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
Interests: separation; cluster; interaction; molecular dynamics; DFT (density functional theory)
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan, China
Interests: rare earth leaching; mineral processing; surface chemistry; separation technology; solid waste resourceization

Special Issue Information

Dear Colleagues,

Rare-earth elements play a crucial role in the production of advanced materials and are key resources for cutting-edge national defense technologies. Weathered crust elution-deposited rare-earth ores (WREOs) are the primary sources of medium and heavy rare-earth elements. In WREOs, rare-earth elements predominantly exist as hydrated or hydroxy-hydrated ions within weathered clay minerals, making conventional physical mineral processing methods ineffective for their enrichment and recovery.

Currently, leaching is the main method used for extracting rare-earth elements from these ores. During the leaching process, neutral salts with higher cationic activity than rare-earth ions are employed to dissolve rare-earth elements from the minerals. Ammonium sulfate is the leaching agent most commonly used in industrial applications. However, challenges such as high impurity content, water absorption, and the swelling of clay minerals during leaching can lead to issues like landslides. To address these concerns, researchers have been exploring the use of compound salts as alternative leaching agents.

This Special Issue aims to provide valuable theoretical insights and technical support for the advancement of green leaching technologies and process intensification for WREO extraction.

Dr. Yuefei Zhang
Dr. Fang Zhou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • rare-earth
  • weathered crust elution-deposited rare-earth ores
  • leaching
  • compound leaching agents
  • intermolecular interaction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

30 pages, 5374 KB  
Article
Provenance and Tectonic Controls in Eastern Junggar: Insights from Petrography and REE Geochemistry
by Shengzhu Wang, Hongzhou Yu, Baosheng Li, Jinqi Han, Can Zhao, Yaoyun Guo, Jiaye Liu, Chang Su, Xu Chang, Tong Wu and Haoqing Huang
Molecules 2025, 30(16), 3399; https://doi.org/10.3390/molecules30163399 - 18 Aug 2025
Viewed by 644
Abstract
Rare earth elements (REEs) and trace elements, due to their relative stability during sedimentary processes, are effective geochemical proxies for sediment provenance. In the Dongdaohaizi Depression of the eastern Junggar Basin, the provenance of the Middle Jurassic Sangonghe Formation remains contentious. In this [...] Read more.
Rare earth elements (REEs) and trace elements, due to their relative stability during sedimentary processes, are effective geochemical proxies for sediment provenance. In the Dongdaohaizi Depression of the eastern Junggar Basin, the provenance of the Middle Jurassic Sangonghe Formation remains contentious. In this study, representative sandstone samples were systematically collected from all three members of the Sangonghe Formation in both the Dongdaohaizi Depression and its western margin. Through comprehensive petrographic and geochemical analyses, we obtained the following results. The Sangonghe Formation is primarily composed of feldspathic lithic sandstones, lithic sandstones, and minor lithic–feldspathic sandstones. The heavy mineral assemblage includes zircon, garnet, chromite, and rutile, suggesting source rocks of intermediate to acidic igneous, metamorphic, and mafic lithologies. The total REE contents range from 101.84 to 192.68 μg/g, with an average of 161.80 μg/g. The ∑LREE/∑HREE ratios vary from 6.59 to 13.25 (average 10.96), and the average δEu values are close to 1. The δCe value ranges from 1.09 to 1.13 (average 1.11). Trace element discrimination diagrams, including La-Th-Sc, Th-Co-Zr/10, Th-Sc-Zr/10, and La/Y-Sc/Cr ternary plots, indicate that most samples fall within the continental island arc domain, with a few plotting in the passive continental margin field. Comparison with potential surrounding source regions reveals dual provenances: an eastern source from the Kalamaili Mountains and a western source from the Zhayier Mountains. During the Early Jurassic, these two orogenic belts acted as distinct sediment sources. The Zhayier Mountains provided stronger input, with fluvial and tidal processes transporting sediments into the basin, establishing the primary subsidence center in the west of the depression. By the Middle Jurassic, continued thrusting of surrounding fold belts caused a migration of the lake center and the main depocenter to the western edge of the Dongdaohaizi Depression, while the former depocenter gradually diminished. Furthermore, sustained erosion and denudation of the Mosowan Uplift during the Early–Middle Jurassic reduced its function as a structural barrier, thereby promoting increased mixing between eastern and western sediment sources. The study not only refines existing paleogeographic models of the Junggar Basin, but also demonstrates the utility of REE–trace geochemistry in deciphering complex provenance systems in tectonically active basins. Full article
(This article belongs to the Special Issue Innovative Chemical Technologies for Rare Earth Element Processing)
Show Figures

Figure 1

Back to TopTop