Topography and Substrate Lithology Control the Position of Fluvial Channels on a Drained Lake Floor, the Case of the Postglacial Ain Valley (Eastern France)
Abstract
:1. Introduction
2. Geological and Geomorphologic Setting
3. Methods
4. Results
4.1. Lithological Description and Interpretation of the Ain Valley Fill Sediments
4.1.1. Morainic Deposits
4.1.2. Delta Deposits
4.1.3. Glacio-Lacustrine Deposits
4.1.4. Lake-Drainage Gravel Sheet, Terrace and Floodplain Deposits
4.2. Fluvial Channel Location and Sub-Surface Lithology
4.2.1. Ain
4.2.2. Dudon
4.2.3. Sirène
4.2.4. Bourbouillon
4.2.5. Bief Martin
4.2.6. Daillon
5. Interpretation and Discussion
5.1. Channel Development Related to Topography
5.2. Channel Development Related to Lithology
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van den Berg, M.W. Fluvial Sequences of the Maas: A 10 ma Record of Neotectonics and Climate Change at Various Time-Scales. Ph.D. Dissertation, Landbouw Universiteit Wageningen, Wageningen, The Netherlands, 1996; pp. 37–62. [Google Scholar]
- Westerhoff, W.E.; Kemna, H.A.; Boenigk, W. The confluence area of Rhine, Meuse, and Belgian rivers: Late Pliocene and Early Pleistocene fluvial history of the northern Lower Rhine Embayment. Neth. J. Geosci.-Geol. Mijnb. 2008, 87, 107–125. [Google Scholar] [CrossRef]
- Woolderink, H.A.G.; Cohen, K.M.; Kasse, C.; Kleinhans, M.G.; Van Balen, R.T. Patterns in river channel sinuosity of the Meuse, Roer and Rhine rivers in the Lower Rhine Embayment rift-system, are they tectonically forced? Geomorphology 2021, 375, 107550. [Google Scholar] [CrossRef]
- Seybold, H.; Berghuijs, W.R.; Prancevic, J.P.; Kirchner, J.W. Global dominance of tectonics over climate in shaping river longitudinal profiles. Nat. Geosci. 2021, 14, 503–507. [Google Scholar] [CrossRef]
- Busschers, F.S.; Kasse, C.; Van Balen, R.T.; Vandenberghe, J.; Cohen, K.M.; Weerts, H.J.T.; Wallinga, J.; Johns, C.; Cleveringa, P.; Bunnik, F.P.M. Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin: Imprints of climate change, sea-level oscillation and glacio-isostasy. Quat. Sci. Rev. 2007, 26, 3216–3248. [Google Scholar] [CrossRef]
- Nádor, A.; Thamó-Bozsó, E.; Magyari, Á.; Babinszki, E. Fluvial responses to tectonics and climate change during the Late Weichselian in the eastern part of the Pannonian Basin (Hungary). Sediment. Geol. 2007, 202, 174–192. [Google Scholar] [CrossRef]
- Gibbard, P.L.; Lewin, J. River incision and terrace formation in the Late Cenozoic of Europe. Tectonophysics 2009, 474, 41–55. [Google Scholar] [CrossRef]
- Van Huissteden, J.; Vandenberghe, J.; Gibbard, P.; Lewin, J. Periglacial rivers. In The Encyclopedia of Quaternary Science, 2nd ed.; Elias, S.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 490–499. [Google Scholar]
- Kasse, C.; Van Balen, R.T.; Bohncke, S.J.P.; Wallinga, J.; Vreugdenhil, M. Climate and base-level controlled fluvial system change and incision during the last glacial–interglacial transition, Roer river, the Netherlands—Western Germany. Neth. J. Geosci.—Geol. Mijnb. 2017, 96, 71–92. [Google Scholar] [CrossRef]
- Hoek, W.Z.; Lammertsma, E.I.; Bohncke, S.J.P.; Bos, J.A.A.; Bunnik, F.; Kasse, C.; Schokker, J.; Westerhoff, W. Lateglacial and early Holocene vegetation development and fluvial system changes in the northern Meuse valley, the Netherlands: A review of palynological data. Neth. J. Geosci.—Geol. Mijnb. 2017, 96, 93–114. [Google Scholar] [CrossRef]
- Bridgland, D.R.; D’Olier, B. The Pleistocene evolution of the Thames and Rhine drainage systems in the southern North Sea Basin. In Island Britain: A Quaternary Perspective; Preece, R.C., Ed.; Geological Society Special Publication: Bath, UK, 1995; No. 96; pp. 27–45. [Google Scholar]
- Mangerud, J.; Jakobsson, M.; Alexanderson, H.; Astakhov, V.; Clarke, G.K.C.; Henriksen, M.; Hjort, C.; Krinner, G.; Lunkka, J.-P.; Möller, P.; et al. Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quat. Sci. Rev. 2004, 23, 1313–1332. [Google Scholar] [CrossRef]
- Busschers, F.S.; Van Balen, R.T.; Cohen, K.M.; Kasse, C.; Weerts, H.J.T.; Wallinga, J.; Bunnik, F.P.M. Response of the Rhine-Meuse fluvial system to Saalian ice-sheet dynamics. Boreas 2008, 37, 377–398. [Google Scholar] [CrossRef]
- Peeters, J.; Busschers, F.S.; Stouthamer, E.; Bosch, J.H.A.; Van den Berg, M.W.; Wallinga, J.; Versendaal, A.J.; Bunnik, F.P.M.; Middelkoop, H. Sedimentary architecture and chronostratigraphy of a late Quaternary incised-valley fill: A case study of the late Middle and Late Pleistocene Rhine system in the Netherlands. Quat. Sci. Rev. 2016, 131, 211–236. [Google Scholar] [CrossRef]
- Cordier, S.; Frechen, M.; Harmand, D.; Beiner, M. Middle and Upper Pleistocene fluvial evolution of the Meurthe and Moselle valleys in the Paris Basin and the Rhenish Massif. Quaternaire 2005, 16, 201–215. [Google Scholar] [CrossRef]
- Schumm, S.A. Geomorphic thresholds and complex response of drainage systems. Fluv. Geomorphol. 1973, 6, 69–85. [Google Scholar]
- Dunne, T. Formation and controls of channel networks. Prog. Phys. Geogr. 1980, 4, 211–239. [Google Scholar] [CrossRef]
- Gomez, B.; Mullen, V.T. An experimental study of sapped drainage network development. Earth Surf. Process. Landf. 1992, 17, 465–476. [Google Scholar] [CrossRef]
- Pelletier, J.D. Drainage basin evolution in the Rainfall Erosion Facility: Dependence on initial conditions. Geomorphology 2003, 53, 183–196. [Google Scholar] [CrossRef]
- Kleinhans, M.G.; Schuurman, F.; Bakx, W.; Markies, H. Meandering channel dynamics in highly cohesive sediment on an intertidal mud flat in the Westerschelde estuary, the Netherlands. Geomorphology 2009, 105, 261–276. [Google Scholar] [CrossRef]
- Sockness, B.G.; Gran, K.B. An experimental study of drainage network development by surface and subsurface flow in low-gradient landscapes. Earth Surf. Dyn. 2022, 10, 581–603. [Google Scholar] [CrossRef]
- Morisawa, M. Development of drainage systems on an upraised lake floor. Am. J. Sci. 1964, 262, 340–354. [Google Scholar] [CrossRef]
- MacPherson, J. Raised shorelines and drainage evolution in the Montréal Lowland. Cah. Géographie Québec 1967, 11, 343–360. [Google Scholar] [CrossRef]
- Winsemann, J.; Alho, P.; Laamanen, L.; Goseberg, N.; Lang, J.; Klostermann, J. Flow dynamics, sedimentation and erosion of glacial lake outburst floods along the Middle Pleistocene Scandinavian Ice Sheet (northern central Europe). Boreas 2016, 45, 260–283. [Google Scholar] [CrossRef]
- Campy, M. Le Quaternaire Franc-Comtois: Essai Chronologique et Paléoclimatique. Ph.D. Thesis, University of Franche-Comté, Besançon, France, 1982; 575p. [Google Scholar]
- Kasse, C. Fluvial response to rapid high-amplitude lake-level changes during the Late Weichselian and early Holocene, Ain River valley, Jura, France. Boreas 2014, 43, 403–421. [Google Scholar] [CrossRef]
- Homberg, C.; Bergerat, F.; Philippe, Y.; Lacombe, O.; Angelier, J. Structural inheritance and Cenozoic stress fields in the Jura fold-and-thrust belt (France). Tectonophysics 2002, 357, 137–158. [Google Scholar] [CrossRef]
- Buoncristiani, J.F.; Campy, M. The palaeogeography of the last two glacial episodes in France: The Alps and Jura. In Quaternary Glaciations—Extent and Chronology; Ehlers, J., Gibbard, P.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 101–106. [Google Scholar]
- Aalbersberg, G.; Kasse, C. A Pleniglacial fluvial deposit from the Combe d’Ain (Jura, France). Quaternaire 2003, 14, 97–103. [Google Scholar] [CrossRef]
- Campy, M.; Arn, R. The Jura glaciers: Palaeogeography in the Würmian circum-Alpine zone. Boreas 1991, 20, 17–27. [Google Scholar] [CrossRef]
- Buoncristiani, J.F.; Campy, M. Late Pleistocene detrital sediment yield of the Jura glacier, France. Quat. Res. 2001, 56, 51–61. [Google Scholar] [CrossRef]
- Buoncristiani, J.F.; Campy, M. Expansion and retreat of the Jura ice sheet (France) during the last glacial maximum. Sediment. Geol. 2004, 165, 253–264. [Google Scholar] [CrossRef]
- Buoncristiani, J.F. Production Sedimentaire Détritique des Systèmes Glaciaires. Quantification des Produits Stockés dans un lac Proglaciaire Durant la Dernière Glaciation: Exemple du lac de la Combe d’Ain (Jura, France). Ph.D. Thesis, University of Bourgogne, Dijon, France, 1997; 232p. [Google Scholar]
- Winsemann, J.; Brandes, C.; Polom, U. Response of a proglacial delta to rapid high-amplitude lake-level change: An integration of outcrop data and high-resolution shear wave seismics. Basin Res. 2011, 23, 22–52. [Google Scholar] [CrossRef]
- Campy, M.; Buoncristiani, J.F.; Bichet, V. Sediment yield from glacio-lacustrine calcareous deposits during the postglacial period in the Combe d’Ain (Jura, France). Earth Surf. Process. Landf. 1998, 23, 429–444. [Google Scholar] [CrossRef]
- Magny, M.; Aalbersberg, G.; Bégeot, C.; Benoit-Ruffaldi, P.; Bossuet, G.; Disnar, J.-R.; Heiri, O.; Laggoun-Defarge, F.; Mazier, F.; Millet, L.; et al. Environmental and climatic changes in the Jura Mountains (eastern France) during the Lateglacial-Holocene transition; a multi-proxy record from Lake Lautrey. Quat. Sci. Rev. 2006, 25, 414–445. [Google Scholar] [CrossRef]
- Powers, M.C. A new roundness scale for sedimentary particles. J. Sediment. Petrol. 1953, 23, 117–119. [Google Scholar] [CrossRef]
- Miall, A.D. Principles of Sedimentary Basin Analysis; Springer: New York, NY, USA, 1990; 668p. [Google Scholar]
- Benn, D.I.; Evans, D.J.A. Glaciers and Glaciation; Arnold: London, UK, 1998; 734p. [Google Scholar]
- Van der Zee, R.M.; Weijers, J.W.H. Pleniglaciale Varven uit de Franse Jura; Genese en Cycliciteiten; Internal report Vrije Universiteit Amsterdam: Amsterdam, The Netherlands, 2002; 53p. [Google Scholar]
- Allen, J.R.L. A review of the origin and characteristics of recent alluvial sediments. Sedimentology 1965, 5, 89–191. [Google Scholar] [CrossRef]
- Vannière, B.; Bossuet, G.; Walter-Simonnet, A.-V.; Gauthier, E.; Barral, P.; Petit, C.; Buatier, M.; Daubigney, A. Land use change, soil erosion and alluvial dynamic in the lower Doubs Valley over the 1st millenium AD (Neublans, Jura, France). J. Archeol. Sci. 2003, 30, 1283–1299. [Google Scholar] [CrossRef]
- Petrequin, A.-M.; Petrequin, P. Le Néolitique des lacs. In Préhistoire des lacs de Chalain et de Clairvaux (4000–2000 av. J.-C.); Editions Errance: Paris, France, 1988; 285p. [Google Scholar]
- De Ploey, J. Some experimental data on slopewash and wind action with reference to Quaternary morphogenesis in Belgium. Earth Surf. Process. 1977, 2, 101–115. [Google Scholar] [CrossRef]
- Kasse, C. Early-Pleistocene Tidal and Fluviatile Environments in the Southern Netherlands and Northern Belgium. Ph.D. Thesis, Free University Press, Amsterdam, The Netherlands, 1988; 190p. [Google Scholar]
- Kroonenberg, S.B.; Van den Berg van Saparoea, R.M.; Jonker, A.T.J. Late Glacial and Holocene development of semi-closed depressions (thaw lakes?) in the Limagne Rift Valley, French Central Massif. Geol. Mijnb. 1987, 66, 297–311. [Google Scholar]
- Veldkamp, A.; Kroonenberg, S.B. Late Quaternary chronology of the Allier terrace sediments (Massif Central, France). Geol. Mijnb. 1993, 72, 179–192. [Google Scholar]
- Ballut, C. Évolution géomorphologique et hydrologique dans les marais de Limagne au cours de la seconde moitié de l’Holocène (Massif central, France). Quaternaire 2001, 12, 43–51. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Desmedt, P. Palaeomorphology in the Eastern Scheldt Basin (Central Belgium)—The Dijle—Demer—Grote Nete—Confluence area. Catena 1979, 6, 73–106. [Google Scholar] [CrossRef]
- Beerten, K.; Verbeeck, K.; Laloy, E.; Vanacker, V.; Vandenberghe, D.; Christl, M.; De Grave, J.; Wouters, L. Electron spin resonance (ESR), optically stimulated luminescence (OSL) and terrestrial cosmogenic radionuclide (TCN) dating of quartz from a Plio-Pleistocene sandy formation in the Campine area, NE Belgium. Quat. Int. 2020, 556, 144–158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasse, C.; Verhage, O. Topography and Substrate Lithology Control the Position of Fluvial Channels on a Drained Lake Floor, the Case of the Postglacial Ain Valley (Eastern France). Quaternary 2025, 8, 29. https://doi.org/10.3390/quat8020029
Kasse C, Verhage O. Topography and Substrate Lithology Control the Position of Fluvial Channels on a Drained Lake Floor, the Case of the Postglacial Ain Valley (Eastern France). Quaternary. 2025; 8(2):29. https://doi.org/10.3390/quat8020029
Chicago/Turabian StyleKasse, Cornelis, and Oeki Verhage. 2025. "Topography and Substrate Lithology Control the Position of Fluvial Channels on a Drained Lake Floor, the Case of the Postglacial Ain Valley (Eastern France)" Quaternary 8, no. 2: 29. https://doi.org/10.3390/quat8020029
APA StyleKasse, C., & Verhage, O. (2025). Topography and Substrate Lithology Control the Position of Fluvial Channels on a Drained Lake Floor, the Case of the Postglacial Ain Valley (Eastern France). Quaternary, 8(2), 29. https://doi.org/10.3390/quat8020029