3D Modelling and Measuring Dam System of a Pellucid Tufa Lake Using UAV Digital Photogrammetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Data
2.1.1. Study Site
2.1.2. UAV Image Acquisition
2.2. Methods
2.2.1. Pre-Processing
2.2.2. Refraction Correction
2.2.3. Ground Interpolation
2.2.4. Derivation and Measurement of Elevation Profile
3. Results
3.1. Complete DEM of Tufa Dam System
3.2. Dimension Data of Tufa Dams
3.3. Morphological Characteristics of Tufa Dams
4. Discussion
4.1. Reliabilities of Resulting Complete DEM
4.2. Exploration of Tufa Dam Formation and Development
4.3. Issues and Possible Solutions
5. Conclusions
- UAV-DP was a cost-effective technology to quickly acquire the images of the tufa lake and its neighborhood, and produce the DOM and initial DSM. These products were the data bases for retrieving an accurate DEM of study site.
- The simple refraction correction was effective to obtain the underwater DEM of the submerged dam or dam part, and the ground interpolation was feasible to eliminate vegetation obstruction to achieve the DEM of the dam part above-water.
- Based on the three elevation profiles derived from the complete DEM, the dimension data of the upstream dam, downstream dam, and submerged tufa dam in the middle were accurately measured, and their morphological characteristics were conveniently identified.
- For partially exposed above-water tufa dams, the heights of TDW could more accurately reflect the morphological characteristics of the dam bodies than those of EDW. They were conducive to a more accurate exploration of the formation and development of tufa dams and lakes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, T.D.; Pedley, H.M. A review of tufa and travertine deposits of the world. Earth-Sci. Rev. 1996, 41, 117–175. [Google Scholar] [CrossRef]
- Liu, L.X. Factors Affecting Tufa Degradation in Jiuzhaigou National Nature Reserve, Sichuan, China. Water 2017, 9, 702. [Google Scholar] [CrossRef]
- Pentecost, A. Travertine; Springer Science & Business Media: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Merz-Preiß, M.; Riding, R. Cyanobacterial tufa calcification in two freshwater streams: Ambient environment, chemical thresholds and biological processes. Sediment. Geol. 1999, 126, 103–124. [Google Scholar] [CrossRef]
- Pentecost, A.; Zhang, Z. A review of Chinese travertines. Cave Karst Sci. 2001, 28, 15–28. [Google Scholar]
- Fuller, B.M.; Sklar, L.S.; Compson, Z.G.; Adams, K.J.; Marks, J.C.; Wilcox, A.C. Ecogeomorphic feedbacks in regrowth of travertine step-pool morphology after dam decommissioning, Fossil Creek, Arizona. Geomorphology 2011, 126, 314–332. [Google Scholar] [CrossRef]
- Profe, J.; Höfle, B.; Hämmerle, M.; Steinbacher, F.; Yang, M.S.; Schröder-Ritzrau, A.; Frank, N. Characterizing tufa barrages in relation to channel bed morphology in a small karstic river by airborne LiDAR topo-bathymetry. P. Geologist. Assoc. 2016, 127, 664–675. [Google Scholar] [CrossRef]
- Florsheim, J.L.; Ustin, S.L.; Tang, Y.; Di, B.; Huang, C.; Qiao, X.; Peng, H.; Zhang, M.; Cai, Y. Basin-scale and travertine dam-scale controls on fluvial travertine, Jiuzhaigou, southwestern China. Geomorphology 2013, 180–181, 267–280. [Google Scholar] [CrossRef]
- Pedley, M.; Martín, J.A.G.; Delgado, S.O.; García Del Cura, M.Á. Sedimentology of Quaternary perched springline and paludal tufas: Criteria for recognition, with examples from Guadalajara Province, Spain. Sedimentology 2003, 50, 23–44. [Google Scholar] [CrossRef]
- Andrews, J.E. Palaeoclimatic records from stable isotopes in riverine tufas: Synthesis and review. Earth-Sci. Rev. 2006, 75, 85–104. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Ge, Y.G.; Cui, P.; Chen, X.Q.; Mao, P.N.; Liu, T.; Zhou, L. Early and mid-Holocene hydroclimate change recorded in tufa deposits in the Jiuzhaigou gully, eastern Tibetan Plateau. CATENA 2021, 196, 104834. [Google Scholar] [CrossRef]
- Dong, F. China’s travertine-the most natural asset in karst landscape worthy of world research and protection. Carsol. Sin. 2021, 40, 1–3. [Google Scholar]
- Dabkowski, J. The late-Holocene tufa decline in Europe: Myth or reality? Quaternary Sci. Rev. 2020, 230, 106141. [Google Scholar] [CrossRef]
- Megerle, H.E. Calcerous Tufa as Invaluable Geotopes Endangered by (Over-)Tourism: A Case Study in the UNESCO Global Geopark Swabian Alb, Germany. Geosciences 2021, 11, 198. [Google Scholar] [CrossRef]
- Dong, F.Q.; Dai, Q.W.; Jiang, Z.C.; Chen, X.Q.; Xu, R.L.; Zhang, Q.; An, D.J.; Li, Q.F.; Zhang, T.; Andelka, P.M.; et al. Travertine/tufa resource conservation and sustainable development call for a world-wide initiative. Appl. Geochem. 2023, 148, 105505. [Google Scholar] [CrossRef]
- He, J.; Lin, J.; Ma, M.; Liao, X. Mapping topo-bathymetry of transparent tufa lakes using UAV-based photogrammetry and RGB imagery. Geomorphology 2021, 389, 107832. [Google Scholar] [CrossRef]
- Bangen, S.G.; Wheaton, J.M.; Bouwes, N.; Bouwes, B.; Jordan, C. A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers. Geomorphology 2014, 206, 343–361. [Google Scholar] [CrossRef]
- Mandlburger, G.; Pfennigbauer, M.; Schwarz, R.; Flöry, S.; Nussbaumer, L. Concept and performance evaluation of a novel UAV-borne topo-bathymetric LiDAR sensor. Remote Sens. 2020, 12, 986. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Tavani, S.; Granado, P.; Riccardi, U.; Seers, T.; Corradetti, A. Terrestrial SfM-MVS photogrammetry from smartphone sensors. Geomorphology 2020, 367, 107318. [Google Scholar] [CrossRef]
- Rusnák, M.; Sládek, J.; Kidová, A.; Lehotský, M. Template for high-resolution river landscape mapping using UAV technology. Measurement 2018, 115, 139–151. [Google Scholar] [CrossRef]
- Akturk, E.; Altunel, A.O. Accuracy assessment of a low-cost UAV derived digital elevation model (DEM) in a highly broken and vegetated terrain. Measurement 2019, 136, 382–386. [Google Scholar] [CrossRef]
- Devoto, S.; Macovaz, V.; Mantovani, M.; Soldati, M.; Furlani, S. Advantages of Using UAV Digital Photogrammetry in the Study of Slow-Moving Coastal Landslides. Remote Sens. 2020, 12, 3566. [Google Scholar] [CrossRef]
- Tang, L.; Qiao, G.; Li, B.; Yuan, X.; Ge, H.; Popov, S. GNSS-supported direct georeferencing for UAV photogrammetry without GCP in Antarctica: A case study in Larsemann Hills. Mar. Geod. 2024, 47, 324–351. [Google Scholar] [CrossRef]
- Liu, J.; Xu, W.; Guo, B.; Zhou, G.; Zhu, H. Accurate Mapping Method for UAV Photogrammetry Without Ground Control Points in the Map Projection Frame. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9673–9681. [Google Scholar] [CrossRef]
- Cao, L.; Liu, H.; Fu, X.Y.; Zhang, Z.N.; Shen, X.; Ruan, H.H. Comparison of UAV LiDAR and Digital Aerial Photogrammetry Point Clouds for Estimating Forest Structural Attributes in Subtropical Planted Forests. Forests 2019, 10, 145. [Google Scholar] [CrossRef]
- Nesbit, P.R.; Hugenholtz, C.H. Enhancing UAV-SfM 3D Model Accuracy in High-Relief Landscapes by Incorporating Oblique Images. Remote Sens. 2019, 11, 239. [Google Scholar] [CrossRef]
- He, J.; Lin, J.; Liao, X. Fully-covered bathymetry of clear tufa lakes using UAV-acquired overlapping images and neural networks. J. Hydrol. 2022, 615, 128666. [Google Scholar] [CrossRef]
- Westaway, R.M.; Lane, S.N.; Hicks, D.M. Remote sensing of clear-water, shallow, gravel-bed rivers using digital photogrammetry. Photogram. Eng. Remote Sens. 2001, 67, 1271–1282. [Google Scholar]
- Kasvi, E.; Salmela, J.; Lotsari, E.; Kumpula, T.; Lane, S.N. Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers. Geomorphology 2019, 333, 180197. [Google Scholar] [CrossRef]
- Gwon, Y.; Kwon, S.; Kim, D.; Seo, I.W.; You, H. Estimation of shallow stream bathymetry under varying suspended sediment concentrations and compositions using hyperspectral imagery. Geomorphology 2023, 433, 108722. [Google Scholar] [CrossRef]
- Brodie, K.L.; Bruder, B.L.; Slocum, R.K.; Spore, N.J. Simultaneous Mapping of Coastal Topography and Bathymetry From a Lightweight Multicamera UAS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6844–6864. [Google Scholar] [CrossRef]
- Tsukada, F.; Shimozono, T.; Matsuba, Y. UAV-based mapping of nearshore bathymetry over broad areas. Coast. Eng. J. 2020, 62, 285–298. [Google Scholar] [CrossRef]
- Wang, M.; Lin, J. Retrieving individual tree heights from a point cloud generated with optical imagery from an unmanned aerial vehicle (UAV). Can. J. Forest Res. 2020, 50, 1012–1024. [Google Scholar] [CrossRef]
- McNicol, I.M.; Mitchard, E.T.A.; Aquino, C.; Burt, A.; Carstairs, H.; Dassi, C.; Dikongo, A.M.; Disney, M.I. To what extent can UAV photogrammetry replicate UAV LiDAR to determine forest structure? A test in two contrasting tropical forests. J. Geophys. Res.-Biogeo. 2021, 126, e2021JG006586. [Google Scholar] [CrossRef]
- Laffitte, B. A Dendrochronological Study on Carbon Dioxide Fertilization Effect in Jiuzhaigou World Natural Heritage Site. Ph.D. Thesis, Sichuan University, Chengdu, China, 2021. [Google Scholar]
- Mandlburger, G. Through-Water Dense Image Matching for Shallow Water Bathymetry. Photogramm. Eng. Remote Sens. 2019, 85, 445–455. [Google Scholar] [CrossRef]
- Bandini, F.; Sunding, T.P.; Linde, J.; Smith, O.; Jensen, I.K.; Köppl, C.J.; Butts, M.; Bauer-Gottwein, P. Unmanned Aerial System (UAS) observations of water surface elevation in a small stream: Comparison of radar altimetry, LIDAR and photogrammetry techniques. Remote Sens. Environ. 2020, 237, 111487. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Current Forestry Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef]
- Hutchinson, M.F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J. Hydrol. 1989, 106, 211–232. [Google Scholar] [CrossRef]
- Zheng, X.; Hanjiang, X.; Yue, L.; Gong, J. An improved ANUDEM method combining topographic correction and DEM interpolation. Geocarto Int. 2015, 31, 492–505. [Google Scholar] [CrossRef]
- Arun, P.V. A comparative analysis of different DEM interpolation methods. Egypt. J. Remote Sens. 2013, 16, 133–139. [Google Scholar]
- Carthew, K.D.; Taylor, M.P.; Drysdale, R.N. Are current models of tufa sedimentary environments applicable to tropical systems? A case study from the Gregory River. Sediment. Geol. 2003, 162, 199–218. [Google Scholar] [CrossRef]
- Pedley, M.; Andrews, J.; Ordonez, S.; del Cura, M.A.G.; Martin, J.A.G.; Taylor, D. Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain. Palaeogeogr. Palaeocl. 1996, 121, 239–257. [Google Scholar] [CrossRef]
- Tomaštík, J.; Mokroš, M.; Surový, P.; Grznárová, A.; Merganič, J. UAV RTK/PPK Method—An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sens. 2019, 11, 721. [Google Scholar] [CrossRef]
- Shiraishi, F.; Eno, Y.; Nakamura, Y.; Hanzawa, Y.; Asada, J.; Bahniuk, A.M. Relative influence of biotic and abiotic processes on travertine fabrics, Satonoyu hot spring, Japan. Sedimentology 2019, 66, 459–479. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, D.D.; Wang, S.; Xiao, T.; Huang, R. Factors controlling tufa deposition in natural waters at waterfall sites. Sediment. Geol. 2004, 166, 353–366. [Google Scholar] [CrossRef]
- Qiao, X.; Xiao, Y.; Du, J.; Tang, Y.; Xiao, W.; Xinlei, Z.; Meng, Z. Tufa Landscapes in the Key Scenic Areas of the Jiuzhaigou Natural World Heritage Site: A Critical Review and Future Research Needs. J. Earth Environ. 2022, 50, 202–218. [Google Scholar]
- Lugli, S.; Tang, Y.; Reghizzi, M.; Qiao, X.; Schreiber, B.C.; Deng, G. Seasonal pattern in the high-elevation fluvial travertine from the Jiuzhaigou National Nature Reserve, Sichuan, southwestern China. J. Sediment. Res. 2017, 87, 253–271. [Google Scholar] [CrossRef]
- Qiao, X.; Du, J.; Lugli, S.; Ren, J.H.; Xiao, W.Y.; Chen, P.; Tang, Y. Are climate warming and enhanced atmospheric deposition of sulfur and nitrogen threatening tufa landscapes in Jiuzhaigou National Nature Reserve, Sichuan, China? Sci. Total Environ. 2016, 562, 724–731. [Google Scholar] [CrossRef]
- Zheng, X.; Tang, Y.; Du, J.; Lugli, S.; Xiao, Y.; Yang, Q.; Song, H.; Qiao, X. Enhanced soil erosion threatens fluvial tufa landscapes after an Ms 7.0 earthquake in the Jiuzhaigou World Heritage Site, southwestern China. Sci. Total Environ. 2022, 848, 157632. [Google Scholar] [CrossRef]
- Guo, K.; Li, Q.; Wang, C.; Mao, Q.; Liu, Y.; Zhu, J.; Wu, A. Development of a single-wavelength airborne bathymetric LiDAR: System design and data processing. ISPRS J. Photogramm. Remote Sens. 2022, 185, 62–84. [Google Scholar] [CrossRef]
- Lin, J.; Chen, D.; Yang, S.; Liao, X. Precise aboveground biomass estimation of plantation forest trees using the novel allometric model and UAV-borne LiDAR. Front. For. Glob. Change 2023, 6, 1166349. [Google Scholar] [CrossRef]
Section of Submerged Tufa Dam | Dam Height (m) | Dam Width (m) | Distance from Crest to Water Surface (m) |
---|---|---|---|
Left-principal | 5.6 | 19.3 | 3.9 |
Left-secondary | 3.4 | 18.7 | 5.0 |
Middle | 10.4 | 36.8 | 3.0 |
Right | 12.2 | 25.0 | 3.6 |
Metrics for Tufa Dam | Upstream Dam | Downstream Dam | ||||
---|---|---|---|---|---|---|
Left | Middle | Right | Left | Middle | Right | |
Crest width (m) | 24.7 | 8.3 | 56.7 | 15.9 | 29.4 | 33.5 |
Height of EDW (m) | 5.6 | 4.3 | 3.9 | 3.5 | 6.7 | 14.7 |
Height of TDW (m) | 10.6 | 10.4 | 11.0 | 12.3 | 15.7 | 23.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhou, G.; He, J.; Lin, J. 3D Modelling and Measuring Dam System of a Pellucid Tufa Lake Using UAV Digital Photogrammetry. Remote Sens. 2024, 16, 3839. https://doi.org/10.3390/rs16203839
Zhang X, Zhou G, He J, Lin J. 3D Modelling and Measuring Dam System of a Pellucid Tufa Lake Using UAV Digital Photogrammetry. Remote Sensing. 2024; 16(20):3839. https://doi.org/10.3390/rs16203839
Chicago/Turabian StyleZhang, Xianwei, Guiyun Zhou, Jinchen He, and Jiayuan Lin. 2024. "3D Modelling and Measuring Dam System of a Pellucid Tufa Lake Using UAV Digital Photogrammetry" Remote Sensing 16, no. 20: 3839. https://doi.org/10.3390/rs16203839
APA StyleZhang, X., Zhou, G., He, J., & Lin, J. (2024). 3D Modelling and Measuring Dam System of a Pellucid Tufa Lake Using UAV Digital Photogrammetry. Remote Sensing, 16(20), 3839. https://doi.org/10.3390/rs16203839