Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = fluidization aid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 650 KB  
Article
Optimization of Biomass Delivery Through Artificial Intelligence Techniques
by Marta Wesolowska, Dorota Żelazna-Jochim, Krystian Wisniewski, Jaroslaw Krzywanski, Marcin Sosnowski and Wojciech Nowak
Energies 2025, 18(18), 5028; https://doi.org/10.3390/en18185028 - 22 Sep 2025
Viewed by 187
Abstract
Efficient and cost-effective biomass logistics remain a significant challenge due to the dynamic and nonlinear nature of supply chains, as well as the scarcity of comprehensive data on this topic. As biomass plays an increasingly important role in sustainable energy systems, managing its [...] Read more.
Efficient and cost-effective biomass logistics remain a significant challenge due to the dynamic and nonlinear nature of supply chains, as well as the scarcity of comprehensive data on this topic. As biomass plays an increasingly important role in sustainable energy systems, managing its complex supply chains efficiently is crucial. Traditional logistics methods often struggle with the dynamic, nonlinear, and data-scarce nature of biomass supply, especially when integrating local and international sources. To address these challenges, this study aims to develop an innovative modular artificial neural network (ANN)-based Biomass Delivery Management (BDM) model to optimize biomass procurement and supply for a fluidized bed combined heat and power (CHP) plant. The comprehensive model integrates technical, economic, and geographic parameters to enable supplier selection, optimize transport routes, and inform fuel blending strategies, representing a novel approach in biomass logistics. A case study based on operational data confirmed the model’s ability to identify cost-effective and quality-compliant biomass sources. Evaluated using empirical operational data from a Polish CHP plant, the ANN-based model demonstrated high predictive accuracy (MAE = 0.16, MSE = 0.02, R2 = 0.99) within the studied scope. The model effectively handled incomplete datasets typical of biomass markets, aiding in supplier selection decisions and representing a proof-of-concept for optimizing Central European biomass logistics. The model was capable of generalizing supplier recommendations based on input variables, including biomass type, unit price, and annual demand. The proposed framework supports both strategic and real-time logistics decisions, providing a robust tool for enhancing supply chain transparency, cost efficiency, and resilience in the renewable energy sector. Future research will focus on extending the dataset and developing hybrid models to strengthen supply chain stability and adaptability under varying market and regulatory conditions. Full article
Show Figures

Figure 1

13 pages, 2345 KB  
Article
Effect of Al2O3 Particle Addition on Fluidized Bed Thermochemical Heat Storage Performance of Limestone: From Instability Mitigation to Efficiency Enhancement
by Hongmei Yin, Yang Liu, Liguo Yang, Yingjie Li, Xiaoyi Zhu, Lei Zhang, Yu Ruan, Ming Ma and Xiaoxu Fan
Energies 2025, 18(7), 1791; https://doi.org/10.3390/en18071791 - 2 Apr 2025
Viewed by 396
Abstract
This study elucidates the mechanism of fluidization instability during limestone carbonation under a 100% CO2 atmosphere and determines the influence of Al2O3 fluidization aids (dosage and particle size) on exothermic performance. The experiments demonstrate that rapid CO2 absorption [...] Read more.
This study elucidates the mechanism of fluidization instability during limestone carbonation under a 100% CO2 atmosphere and determines the influence of Al2O3 fluidization aids (dosage and particle size) on exothermic performance. The experiments demonstrate that rapid CO2 absorption in the emulsion phase, coupled with insufficient gas replenishment from the bubble phase, disrupts the balance between drag force and buoyancy, leading to localized defluidization. This instability impedes gas exchange between the bubble and emulsion phases, resulting in bubble coalescence and channeling across the bed. The fluidization instability reduces the maximum exothermic temperature and causes significant temperature heterogeneity in the bed. With repeated thermal cycles (20 cycles), the CO2 absorption capacity of limestone diminishes (the effective conversion rate drops to 0.25), and the instability disappears. The addition of 5wt.% Al2O3 (particle size: 0.05–0.075 mm) stabilizes the fluidization state during carbonation, significantly homogenizing the bed temperature distribution, with maximum and average temperature differentials reduced by 63% and 89%, respectively, compared to pure limestone systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

15 pages, 6308 KB  
Article
Silicon Kerf Recovery via Acid Leaching Followed by Melting at Elevated Temperatures
by Tinotenda Mubaiwa, Askh Garshol, Alexander Azarov and Jafar Safarian
Recycling 2024, 9(4), 66; https://doi.org/10.3390/recycling9040066 - 8 Aug 2024
Cited by 2 | Viewed by 2430
Abstract
The aim of this work was to study the purification of silicon kerf loss waste (KLW) by a combination of single-acid leaching followed by inductive melting at high temperatures with an addition of fluidized bed reactor (FBR) silicon granules. The KLW indicated an [...] Read more.
The aim of this work was to study the purification of silicon kerf loss waste (KLW) by a combination of single-acid leaching followed by inductive melting at high temperatures with an addition of fluidized bed reactor (FBR) silicon granules. The KLW indicated an average particle size (D50) of approximately 1.6 µm, and a BET surface area of 30.4 m2/g. Acid leaching by 1 M HCl indicated significant removal of impurities such as Ni (77%), Fe (91%) and P (75%). The combined two-stage treatment resulted in significant removal of the major impurities: Al (78%), Ni (79%), Ca (85%), P (92%) and Fe (99%). The general material loss during melting decreased with an increasing amount of FBR silicon granules which aided in the melting process and indicated better melting. It was observed that the melting behavior of the samples improved as the temperature increased, with complete melting being observed throughout the crucibles at the highest temperature (1800 °C) used, even without any additives. At lower temperatures (1600 °C–1700 °C) and lower FBR-Si (<30 wt.%) additions, the melting was incomplete, with patches of molten silicon and a lot of surface oxidation as confirmed by both visual observation and electron microscopy. In addition, it was indicated that more reactive and volatile elements (Ga, Mg and P) compared to silicon are partially removed in the melting process (51–87%), while the less reactive elements end up in the final silicon melt. It was concluded that if optimized, the combined treatment of single-acid leaching and inductive melting with the addition of granular FBR silicon has great potential for the recycling of KLW to solar cells and similar applications. Moreover, the application of higher melting temperatures is accompanied by a higher silicon yield of the process, and the involved mechanisms are presented. Full article
Show Figures

Figure 1

21 pages, 9487 KB  
Article
The Effect of Formulation Variables on the Manufacturability of Clopidogrel Tablets via Fluidized Hot-Melt Granulation—From the Lab Scale to the Pilot Scale
by Béla Kovács, Erzsébet-Orsolya Tőkés, Éva Katalin Kelemen, Katalin Zöldi, Francisc Boda, Edit Suba, Boglárka Kovács-Deák and Tibor Casian
Pharmaceutics 2024, 16(3), 391; https://doi.org/10.3390/pharmaceutics16030391 - 13 Mar 2024
Cited by 2 | Viewed by 2516
Abstract
Solid pharmaceutical formulations with class II active pharmaceutical ingredients (APIs) face dissolution challenges due to limited solubility, affecting in vivo behavior. Robust computational tools, via data mining, offer valuable insights into product performance, complementing traditional methods and aiding in scale-up decisions. This study [...] Read more.
Solid pharmaceutical formulations with class II active pharmaceutical ingredients (APIs) face dissolution challenges due to limited solubility, affecting in vivo behavior. Robust computational tools, via data mining, offer valuable insights into product performance, complementing traditional methods and aiding in scale-up decisions. This study utilizes the design of experiments (DoE) to understand fluidized hot-melt granulation manufacturing technology. Exploratory data analysis (MVDA) highlights similarities and differences in tablet manufacturability and dissolution profiles at both the lab and pilot scales. The study sought to gain insights into the application of multivariate data analysis by identifying variations among batches produced at different manufacturing scales for this technology. DoE and MVDA findings show that the granulation temperature, time, and Macrogol type significantly impact product performance. These factors, by influencing particle size distribution, become key predictors of product quality attributes such as resistance to crushing, disintegration time, and early-stage API dissolution in the profile. Software-aided data mining, with its multivariate and versatile nature, complements the empirical approach, which is reliant on trial and error during product scale-up. Full article
(This article belongs to the Special Issue Pharmaceutical Solids: Advanced Manufacturing and Characterization)
Show Figures

Graphical abstract

20 pages, 10110 KB  
Article
Assessment of Irregular Biomass Particles Fluidization in Bubbling Fluidized Beds
by David Bannon, Mirka Deza, Masoud Masoumi and Bahareh Estejab
Energies 2023, 16(4), 2051; https://doi.org/10.3390/en16042051 - 19 Feb 2023
Cited by 5 | Viewed by 2493
Abstract
Biomass as a clean and renewable source of energy has immense potential to aid in solving the energy crisis in the world. In order to accurately predict the fluidization behavior of biomass particles using the Eulerian–Eulerian approach and the kinetic theory for granular [...] Read more.
Biomass as a clean and renewable source of energy has immense potential to aid in solving the energy crisis in the world. In order to accurately predict the fluidization behavior of biomass particles using the Eulerian–Eulerian approach and the kinetic theory for granular flows (KTGF), employing appropriate models that adapt to irregularly shaped particles and can precisely predict the interaction between particles is crucial. In this study, the effects of varying radial distribution functions (RDF), frictional viscosity models (FVM), angles of internal friction (ϕ), and stress blending functions (SBF) on the performance of two-fluid models (TFM) were investigated. Simulation predictions were compared and validated with the previous experiments in the literature on Geldart B biomass particles of walnut shells. When applying sphericity to account for size irregularities of biomass particles, the results of this study demonstrated that predictions of both the Ma–Ahmadi and the Carnahan–Starling RDFs along with the Schaeffer FVM agree with experimental data. More specifically, the bubbling behavior prediction slightly favored the use of the Ma–Ahmadi RDF for biomass particles. The results also revealed the importance of using FVM regardless of the initial void fraction. The use of the Schaeffer FVM became more important as time proceeded and particle bulk density decreased. With the change of ϕ and the application of SBF, no significant differences in the time-averaged results were observed. However, when ϕ ranges were between 30 and 40, the predictions of bubbling behavior became more greatly aligned with experimental results. Full article
(This article belongs to the Collection Bioenergy and Biofuel)
Show Figures

Figure 1

21 pages, 4098 KB  
Article
Effect of Natural Ilmenite on the Solid Biomass Conversion of Inhomogeneous Fuels in Small-Scale Bubbling Fluidized Beds
by Tanja Schneider, Dominik Müller and Jürgen Karl
Energies 2022, 15(8), 2747; https://doi.org/10.3390/en15082747 - 8 Apr 2022
Cited by 5 | Viewed by 1977
Abstract
The application of oxygen carriers as alternative bed material in fluidized bed combustion originates from chemical lopping processes. They serve as oxygen transport agents undergoing consecutive redox cycles. Thereby, oxygen carriers can provide surplus oxygen in oxygen-lean areas of fluidized bed combustion processes. [...] Read more.
The application of oxygen carriers as alternative bed material in fluidized bed combustion originates from chemical lopping processes. They serve as oxygen transport agents undergoing consecutive redox cycles. Thereby, oxygen carriers can provide surplus oxygen in oxygen-lean areas of fluidized bed combustion processes. In turn, re-oxidation takes place in oxygen-rich reactor parts. A more homogeneous combustion and reduced CO emissions follow during steady-state operation. However, especially regarding solid biomass conversion, inhomogeneous fuel qualities result in transient combustion conditions. Therefore, this research deals with the influence of the oxygen carrier ilmenite on solid biomass conversion. Separated batch experiments with methane (volatile), char and wood pellets took place in a laboratory bubbling fluidized bed reactor. They reveal that ilmenite enhances the in-bed CO2 yield by up to 63% during methane combustion. Batch char experiments confirm that solid–solid reactions with ilmenite are negligible. However, heterogeneous gas–solid reactions reduce the O2 partial pressure and limit the char conversion rate. The batch wood pellet experiments show that the ilmenite oxygen buffering effect is mitigated due to high local oxygen demand around the pellets and limited pellet distribution in the bed. Finally, the continuous operation in a 100 kWth BFB with inhomogeneous fuel input indicates a higher in-bed fuel conversion and confirms lower CO emissions and less fluctuation in the flue gas during inhomogeneous fuel supply. Full article
Show Figures

Figure 1

14 pages, 4525 KB  
Article
Effect of Adding Surfactants to a Solution of Fertilizer on the Granulation Process
by Bernard Michałek, Marek Ochowiak, Katarzyna Bizon, Sylwia Włodarczak, Andżelika Krupińska, Magdalena Matuszak, Dominika Boroń, Błażej Gierczyk and Radosław Olszewski
Energies 2021, 14(22), 7557; https://doi.org/10.3390/en14227557 - 12 Nov 2021
Cited by 3 | Viewed by 3166
Abstract
Granulated chelates are innovative fertilizers that are highly effective and versatile, and they ensure the best start-up effect for plants. The final properties of granules are influenced by the method of their preparation and the used substances. The diameters of the obtained granules, [...] Read more.
Granulated chelates are innovative fertilizers that are highly effective and versatile, and they ensure the best start-up effect for plants. The final properties of granules are influenced by the method of their preparation and the used substances. The diameters of the obtained granules, their size range, and the final costs of the produced fertilizer are of great importance. The paper describes granules that were produced using an agglomeration of ZnIDHA in a fluidized bed with the aid of an aqueous solution of this substance with a high dry matter content. The aim of the study was to evaluate the effect of surfactant addition to the solution on the evolution of granule size distribution during the process carried out in a batch mode and to access the possibility of describing the process dynamics using population balance approach. A sieve analysis was performed in order to determine the size of the granulate, and numerical calculations were performed to determine the value of the constant aggregation rate. Based on experimental studies, it can be seen that the increase in the diameters of granules is mainly caused by the agglomeration process, and to a lesser extent by the coating process. The addition of surfactant increased the median size of the granules in the initial granulation stage, and also lowered the surface tension. This in turn enables a lower spraying pressure to be used. A comparison of different aggregation kernels constituting an integral part of the population balance model proved that the physically motivated equipartition kinetic energy kernel performs best in this case. Moreover, the computational results show an increase in the aggregation rate when the surfactant additive is used and confirm that population balance allows the extraction of physical information about the granulation. Full article
Show Figures

Figure 1

21 pages, 4806 KB  
Article
Drying Characteristics and Quality Attributes Affected by a Fluidized-Bed Drying Assisted with Swirling Compressed-Air for Preparing Instant Red Jasmine Rice
by Prarin Chupawa, Tiwanat Gaewsondee and Wasan Duangkhamchan
Processes 2021, 9(10), 1738; https://doi.org/10.3390/pr9101738 - 28 Sep 2021
Cited by 9 | Viewed by 3093
Abstract
A new process for the production of instant red jasmine rice was investigated using fluidized bed drying with the aid of swirling compressed air. Drying characteristics were evaluated using the operating parameters of fluidizing air temperature (90–120 °C) and pressure of swirling compressed [...] Read more.
A new process for the production of instant red jasmine rice was investigated using fluidized bed drying with the aid of swirling compressed air. Drying characteristics were evaluated using the operating parameters of fluidizing air temperature (90–120 °C) and pressure of swirling compressed air (4–6 bar). Appropriate air pressure was determined based on the highest value of model parameters from the semi-empirical Page equation and effective diffusivity. Influences of supply time of swirling compressed air (2–10 min) and drying temperature of 90–120 °C were investigated and optimized based on the quality attributes using response surface methodology. Drying at 120 °C and compressed air pressure of 6 bar gave the highest rate constant and effective diffusion coefficient. Drying at 120 °C combined with injecting swirling air for 2 min was the most suitable approach, while drying at 90 °C and supplying compressed air for 10 min was the best choice to preserve antioxidant properties. Air temperature of 98.5 °C with 2 min supply of swirling compressed air suitably provided high physical and rehydration properties and retained high health benefits of antioxidant compounds. Finally, after rehydration in warm water at 70 °C for 10 min, the textural properties of the rehydrated rice sample were comparable to conventionally cooked rice. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

14 pages, 1151 KB  
Review
Progress in Catalytic Decomposition and Removal of N2O in Fluidized Bed
by Miao Miao, Man Zhang, Hao Kong, Tuo Zhou, Xinhua Yang and Hairui Yang
Energies 2021, 14(19), 6148; https://doi.org/10.3390/en14196148 - 27 Sep 2021
Cited by 10 | Viewed by 2985
Abstract
As a clean fuel combustion technology, the circulating fluidized bed (CFB) has been developed rapidly in recent years, but one of its disadvantages is high N2O emissions. With the implementation of increasingly strict pollution control standards, N2O decomposition and [...] Read more.
As a clean fuel combustion technology, the circulating fluidized bed (CFB) has been developed rapidly in recent years, but one of its disadvantages is high N2O emissions. With the implementation of increasingly strict pollution control standards, N2O decomposition and removal technologies have become the main focus of current research. This paper reviews the latest research on noble metals, metal oxides, the molecular sieve and other new catalysts and decomposition methods for N2O removal. The research methods and functions of catalysts are compared and the existing problems are summarized. The future directions of development in N2O decomposition and removal are considered. Noble metals and the molecular sieve show satisfactory activity at relatively low temperatures, but their catalytic efficiency is obviously hindered by O2, NO and H2O. In addition, high costs and insufficient thermal stability limit their widespread industrial application. The metal oxide catalytic technology, especially oxygen carrier-aided combustion (OCAC), is expected to be the ideal method for N2O removal in CFB boilers due to its stability and economical feasibility. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

27 pages, 15421 KB  
Review
Oxygen Carrier Aided Combustion in Fluidized Bed Boilers in Sweden—Review and Future Outlook with Respect to Affordable Bed Materials
by Felicia Störner, Fredrik Lind and Magnus Rydén
Appl. Sci. 2021, 11(17), 7935; https://doi.org/10.3390/app11177935 - 27 Aug 2021
Cited by 31 | Viewed by 4447
Abstract
Oxygen carriers are metal oxide particles that could potentially enhance both fuel conversion and heat distribution in fluidized bed combustion, resulting in e.g., lowered emissions of unconverted species and better possibilities to utilize low-grade fuels. A related technology based on fluidized beds with [...] Read more.
Oxygen carriers are metal oxide particles that could potentially enhance both fuel conversion and heat distribution in fluidized bed combustion, resulting in e.g., lowered emissions of unconverted species and better possibilities to utilize low-grade fuels. A related technology based on fluidized beds with oxygen carriers can separate CO2 without large energy penalties. These technologies are called oxygen carrier aided combustion (OCAC) and chemical-looping combustion (CLC), respectively. In the past few years, a large number of oxygen carriers have been suggested and evaluated for these purposes, many of which require complex production processes making them costly. Affordable metal oxide particles are, however, produced in large quantities as products and by-products in the metallurgical industries. Some of these materials have properties making them potentially suitable to use as oxygen carriers. Uniquely for Sweden, the use of oxygen carriers in combustion have been subject to commercialization. This paper reviews results from utilizing low-cost materials emerging from metallurgical industries for conversion of biomass and waste in semi-commercial and commercial fluidized bed boilers in Sweden. The paper further goes on to discuss practical aspect of utilizing oxygen carriers, such as production and transport within the unique conditions in Sweden, where biomass and waste combustion as well as metallurgical industries are of large scale. This study concludes that utilizing metal oxides in this way could be technically feasible and beneficial to both the boiler owners and the metallurgical industries. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Graphical abstract

12 pages, 9267 KB  
Article
Fluidized-Bed Granulation of Probiotics-Encapsulated Spray-Dried Skim Milk Powder: Effects of a Fluidizing Aid, Moisture-Activation and Dehydration
by Dong-Hyun Lim, Andres Letona, Minjeong Lee, Dayoung Lim, Nam-Soo Han and Donghwa Chung
Foods 2021, 10(7), 1600; https://doi.org/10.3390/foods10071600 - 9 Jul 2021
Cited by 16 | Viewed by 4387
Abstract
A probiotic powder of poor flowability with high dust content, prepared by spray drying reconstituted skim milk fermented with Lactobacillus rhamnosus GG (LGG), was granulated by fluidized-bed granulation (FBG). The effects of the addition of skim milk powder (SMP) as a fluidizing aid, [...] Read more.
A probiotic powder of poor flowability with high dust content, prepared by spray drying reconstituted skim milk fermented with Lactobacillus rhamnosus GG (LGG), was granulated by fluidized-bed granulation (FBG). The effects of the addition of skim milk powder (SMP) as a fluidizing aid, and of simple moisture-activation with or without dehydration, were investigated with respect to the performance of the FBG process. A fine, poorly fluidizable LGG powder (Geldart Group C) could be fluidized and granulated, with a 4- to 5-fold increase in particle size (d4,3 = 96–141 μm), by mixing with SMP (30–50%), which has larger, fluidizable particles belonging to Geldart Group A. Moisture-activation after the mixing, followed by fluidized-bed dehydration with hot air to remove excess moisture, further improved the FBG; the yield of the granules increased from 42% to 61% and the particle size distribution became much narrower, although the average particle size remained almost the same (d4,3 = 142 μm). These granules showed a popcorn-type structure in scanning electron microscopy images and encapsulated a sufficient level of viable LGG cells (1.6 × 108 CFU g−1). These granules also exhibited much better flowability and dispersibility than the spray-dried LGG powder. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

15 pages, 3273 KB  
Article
Saturation Carrying Capacity for Group A Particles in a Circulating Fluidized Bed
by Ronald W. Breault and Justin Weber
Energies 2021, 14(10), 2809; https://doi.org/10.3390/en14102809 - 13 May 2021
Cited by 3 | Viewed by 1889
Abstract
Empirical models continue to play a significant role in the design process of multiphase chemical reactors, particularly riser reactors in circulating fluidized bed (CFB) processes. It is imperative that accurate, industrial relevant correlations are developed to aid these design efforts. Using poor correlations [...] Read more.
Empirical models continue to play a significant role in the design process of multiphase chemical reactors, particularly riser reactors in circulating fluidized bed (CFB) processes. It is imperative that accurate, industrial relevant correlations are developed to aid these design efforts. Using poor correlations could result in startup issues and significant redesign work. In this work, a new correlation is proposed to predict the saturation carrying capacity of Geldart Group A particles. This new correlation improves upon the currently available correlations for these materials and covers a broad range of Geldart Group A particles (particle diameters from 52 to 70 µm, and Archimedes numbers ranging from 5 to 20), superficial gas velocities (1 to 4 m/s), and riser diameters (0.066 to 0.3048 m). The new correlation has an Absolute Average Percent Deviation of only 17.6%, making it the most accurate correlation for Geldart Group A particles in the current literature. Full article
(This article belongs to the Special Issue Progress and Novel Applications of Fluidized Bed Technology)
Show Figures

Figure 1

15 pages, 3707 KB  
Article
Continuum-Based Approach to Model Particulate Soil–Water Interaction: Model Validation and Insight into Internal Erosion
by Ahmed Ibrahim and Mohamed Meguid
Processes 2021, 9(5), 785; https://doi.org/10.3390/pr9050785 - 29 Apr 2021
Cited by 12 | Viewed by 3017
Abstract
Resolving the interaction between soil and water is critical to understanding a wide range of geotechnical applications. In cases when hydrodynamic forces are dominant and soil fluidization is expected, it is necessary to account for the microscale interactions between soil and water. Some [...] Read more.
Resolving the interaction between soil and water is critical to understanding a wide range of geotechnical applications. In cases when hydrodynamic forces are dominant and soil fluidization is expected, it is necessary to account for the microscale interactions between soil and water. Some of the existing models such as coupled Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) can capture microscale interactions quite accurately. However, it is often computationally expensive and cannot be easily applied at a scale that would aid the design process. Contrastingly, continuum-based models such as the Two-Fluid Model (TFM) can be a computationally feasible and scalable alternative. In this study, we explored the potential of the TFM to simulate granular soil–water interactions. The model was validated by simulating the internal fluidization of a sand bed due to an upward water jet. Analogous to leakage from a pressurized pipe, the simulation was compared with the available experimental data to evaluate the model performance. The numerical results showed decent agreement with the experimental data in terms of excess pore water pressure, fluidization patterns, and physical deformations in violent flow regimes. Moreover, detailed soil characteristics such as particle size distribution could be implemented, which was previously considered a shortcoming of the model. Overall, the model’s performance indicates that TFM is a viable tool for the simulation of particulate soil–water mixtures. Full article
(This article belongs to the Special Issue Computational Modelling of Multiphase Flow)
Show Figures

Figure 1

24 pages, 5560 KB  
Article
Experimental Investigation of Oxygen Carrier Aided Combustion (OCAC) with Methane and PSA Off-Gas
by Viktor Stenberg, Magnus Rydén, Tobias Mattisson and Anders Lyngfelt
Appl. Sci. 2021, 11(1), 210; https://doi.org/10.3390/app11010210 - 28 Dec 2020
Cited by 11 | Viewed by 2537
Abstract
Oxygen carrier aided combustion (OCAC) is utilized to promote the combustion of relatively stable fuels already in the dense bed of bubbling fluidized beds by adding a new mechanism of fuel conversion, i.e., direct gas–solid reaction between the metal oxide and the fuel. [...] Read more.
Oxygen carrier aided combustion (OCAC) is utilized to promote the combustion of relatively stable fuels already in the dense bed of bubbling fluidized beds by adding a new mechanism of fuel conversion, i.e., direct gas–solid reaction between the metal oxide and the fuel. Methane and a fuel gas mixture (PSA off-gas) consisting of H2, CH4 and CO were used as fuel. Two oxygen carrier bed materials—ilmenite and synthetic particles of calcium manganate—were investigated and compared to silica sand, an in this context inert bed material. The results with methane show that the fuel conversion is significantly higher inside the bed when using oxygen carrier particles, where the calcium manganate material displayed the highest conversion. In total, 99.3–99.7% of the methane was converted at 900 °C with ilmenite and calcium manganate as a bed material at the measurement point 9 cm above the distribution plate, whereas the bed with sand resulted in a gas conversion of 86.7%. Operation with PSA off-gas as fuel showed an overall high gas conversion at moderate temperatures (600–750 °C) and only minor differences were observed for the different bed materials. NO emissions were generally low, apart from the cases where a significant part of the fuel conversion took place above the bed, essentially causing flame combustion. The NO concentration was low in the bed with both fuels and especially low with PSA off-gas as fuel. No more than 11 ppm was detected at any height in the reactor, with any of the bed materials, in the bed temperature range of 700–750 °C. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

15 pages, 7789 KB  
Article
Hydrodynamic and Heat Transfer Study of a Fluidized Bed by Discrete Particle Simulations
by Lijing Mu, Kay A. Buist, J. A. M. Kuipers and Niels G. Deen
Processes 2020, 8(4), 463; https://doi.org/10.3390/pr8040463 - 14 Apr 2020
Cited by 16 | Viewed by 5456
Abstract
A numerical simulation study was carried out to study the combined thermal behavior and hydrodynamics of a pseudo-2D fluidized bed using a computational fluid dynamics–discrete element method (CFD-DEM). To mimic the effect of heterogeneous exothermic reactions, a constant heat source was implemented in [...] Read more.
A numerical simulation study was carried out to study the combined thermal behavior and hydrodynamics of a pseudo-2D fluidized bed using a computational fluid dynamics–discrete element method (CFD-DEM). To mimic the effect of heterogeneous exothermic reactions, a constant heat source was implemented in the particle energy equation. The effects of superficial gas velocity, bed height and heat source distribution were analyzed with the aid of averaged volume fraction and temperature distributions and velocity profiles. It was found that both the gas superficial velocity and the bed aspect ratio have a profound influence on fluidization behavior and temperature distributions. Full article
Show Figures

Graphical abstract

Back to TopTop