Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,525)

Search Parameters:
Keywords = flow properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4142 KB  
Article
Puerarin-Loaded Proniosomal Gel: Formulation, Characterization, In Vitro Antimelanoma Cytotoxic Potential, and In Ovo Irritation Assessment
by Sergio Liga, Andra Tămaș, Raluca Vodă, Gerlinde Rusu, Ioan Bîtcan, Vlad Socoliuc, Raluca Pop, Diana Haj Ali, Iasmina-Alexandra Predescu, Cristina Adriana Dehelean and Francisc Péter
Gels 2026, 12(1), 72; https://doi.org/10.3390/gels12010072 - 13 Jan 2026
Abstract
Puerarin is a naturally occurring isoflavone with reported anticancer activity, yet its topical translation is constrained by limited stability and suboptimal dermal delivery. A Puerarin-loaded proniosomal gel was developed as a potential dermal delivery platform, and we performed an initial assessment of its [...] Read more.
Puerarin is a naturally occurring isoflavone with reported anticancer activity, yet its topical translation is constrained by limited stability and suboptimal dermal delivery. A Puerarin-loaded proniosomal gel was developed as a potential dermal delivery platform, and we performed an initial assessment of its antimelanoma activity and safety. The gel was produced by coacervation–phase separation using Span 60, Tween 80, phosphatidylcholine, and cholesterol. Physicochemical characterization included pH, entrapment efficiency, rheology, FTIR, DSC, and vesicle properties (DLS, PDI, ζ-potential). In silico geometry optimization and docking were carried out for melanoma-associated targets (MITF and DNMT3B). Biological effects were investigated in vitro on A375 melanoma cells using MTT, morphological analysis, and nuclear/mitochondrial staining, while irritation potential was evaluated in ovo by HET-CAM. The optimized formulation exhibited a skin-compatible pH and an entrapment efficiency of 62 ± 0.26%. DLS indicated a multimodal population, with a major number-weighted vesicle population in the 100–200 nm range, and a ζ-potential of −34.9 ± 0.14 mV. FTIR and DSC supported component incorporation without evidence of chemical incompatibility. The gel showed non-Newtonian, pseudoplastic, thixotropic flow, which is advantageous for topical use. Docking predicted meaningful affinities of Puerarin toward MITF and DNMT3B. The formulation reduced A375 viability in a dose-dependent manner (to 44.66% at 200 µg/mL) and, at higher concentrations, produced nuclear condensation and disruption of the mitochondrial network. HET-CAM classified the gel as non-irritant. The Puerarin-loaded proniosomal gel represents a promising topical platform with preliminary in vitro antimelanoma cytotoxic potential, warranting additional studies to validate skin delivery, efficacy, and safety. Full article
(This article belongs to the Special Issue Natural Bioactive Compounds and Gels)
Show Figures

Figure 1

25 pages, 5970 KB  
Article
Synergistic Utilization of Recycled Asphalt Pavement and Fly Ash for High-Ductility Coal Mine Backfill: Performance Optimization and Mechanism Analysis
by Xiaoping Shao, Xing Du, Renlong Tang, Wei Wang, Zhengchun Wang, Yibo Zhang, Xing Gao and Shaofeng Hu
Materials 2026, 19(2), 320; https://doi.org/10.3390/ma19020320 - 13 Jan 2026
Abstract
To enhance the ductility of coal mine filling materials using recycled asphalt pavement (RAP) and address the limitations in RAP recycling and utilization, this study processed RAP into crushed materials (CMs) and ball-milled materials (BMs). Supplementary with fly ash (FA) and cement, RAP-fly [...] Read more.
To enhance the ductility of coal mine filling materials using recycled asphalt pavement (RAP) and address the limitations in RAP recycling and utilization, this study processed RAP into crushed materials (CMs) and ball-milled materials (BMs). Supplementary with fly ash (FA) and cement, RAP-fly ash cement paste backfill (RFCPB) was prepared. For 1000 g of RFCPB slurry, the composition was 365 g CM, 73 g cement, 270 g water, and a total of 292 g of FA and BM, with an F/B ratio ranging from 1:7 to 7:1. A systematic test program was carried out, including rheological property tests, unconfined compressive strength (UCS) tests combined with deformation monitoring, microstructure analysis, and leaching toxicity tests. Based on these tests, the influence of F/B ratio on the action mechanism, workability, mechanical properties, ductility and environmental compatibility of RFCPB was comprehensively explored. The results show that the rheological behavior of RFCPB slurry conforms to the Herschel–Bulkley (H-B) model; with the decrease in F/B ratio, the yield stress and apparent viscosity of the slurry increase significantly, while the slump and slump flow decrease correspondingly, which is closely related to the particle gradation optimization by BM. For mechanical properties and ductility, the 28-day UCS of RFCPB first increases and then decreases with the decrease in F/B ratio, all meeting the mine backfilling strength requirements; notably, the increase in BM proportion regulates the failure mode from brittle to ductile, which is the key to improving ductility. Microstructural analysis indicates that Dolomite and Albite in BM participate in hydration reactions to generate N-A-S-H and C-A-S-H gels, which fill internal pores, optimize pore structure, and thus synergistically improve UCS and ductility. Additionally, the leaching concentration of toxic ions in RFCPB complies with the environmental protection standards for solid waste. This study provides a theoretical basis for enhancing backfill ductility and advancing the coordinated disposal of RAP and fly ash solid wastes. Full article
(This article belongs to the Section Construction and Building Materials)
26 pages, 11478 KB  
Article
Controls on Microscopic Distribution and Flow Characteristics of Remaining Oil in Tight Sandstone Reservoirs: Chang 7 Reservoirs, Yanchang Formation, Ordos Basin
by Yawen He, Tao Yi, Linjun Yu, Yulongzhuo Chen, Jing Yang, Buhuan Zhang, Pengbo He, Zhiyu Wu and Wei Dang
Minerals 2026, 16(1), 72; https://doi.org/10.3390/min16010072 - 13 Jan 2026
Abstract
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory [...] Read more.
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory techniques—including nuclear magnetic resonance, mercury intrusion porosimetry, oil–water relative permeability, spontaneous imbibition experiments, scanning electron microscopy, and thin section analysis—this study systematically characterizes representative tight sandstone samples and examines the microscopic distribution of remaining oil, flow behavior, and their controlling factors. Results indicate that residual oil is mainly stored in nanoscale micropores, whereas movable fluids are predominantly concentrated in medium to large pores. The bimodal or trimodal T2 spectra reflect the presence of multiscale pore–fracture systems. Spontaneous imbibition and relative permeability experiments reveal low displacement efficiency (average 41.07%), with flow behavior controlled by capillary forces and imbibition rates exhibiting a three-stage pattern. The primary factors influencing movable fluid distribution include mineral composition (quartz, feldspar, lithic fragments), pore–throat structure (pore size, sorting, displacement pressure), physical properties (porosity, permeability), and heterogeneity (fractal dimension). High quartz and illite contents enhance effective flow pathways, whereas lithic fragments and swelling clay minerals significantly impede fluid migration. Overall, this study clarifies the coupled “lithology–pore–flow” control mechanism, providing a theoretical foundation and practical guidance for the fine characterization and efficient development of tight oil reservoirs. The findings can directly guide the optimization of hydraulic fracturing and enhanced oil recovery strategies by identifying high-mobility zones and key mineralogical constraints, enabling targeted stimulation and improved recovery in the Chang 7 and analogous tight reservoirs. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

23 pages, 6327 KB  
Article
Influence of Cross-Linking Agents on the Structure and Stability of Chitosan and Carboxymethyl Chitosan Thin Films
by Katarzyna Lewandowska
Molecules 2026, 31(2), 272; https://doi.org/10.3390/molecules31020272 - 13 Jan 2026
Abstract
Chitosan (CS) and carboxymethyl chitosan (CMCS) are polysaccharides valued for their biocompatibility, reactivity, and film-forming capabilities. This study compares the surface characteristics and stability of CS and CMCS thin films crosslinked with citric acid (CTA), polyethylene glycol diglycidyl ether (PEGDE), and glutaraldehyde (G). [...] Read more.
Chitosan (CS) and carboxymethyl chitosan (CMCS) are polysaccharides valued for their biocompatibility, reactivity, and film-forming capabilities. This study compares the surface characteristics and stability of CS and CMCS thin films crosslinked with citric acid (CTA), polyethylene glycol diglycidyl ether (PEGDE), and glutaraldehyde (G). Flow behavior was assessed using steady-shear measurements, while film structure, morphology, and physical properties were analyzed by infrared spectroscopy, SEM, AFM, mechanical testing, and swelling experiments. Crosslinking generated new chemical bonds in both CS and CMCS films; however, interactions in CMCS did not result in stable cross-links and were comparatively weaker. These structural modifications influenced swelling behavior and enhanced stability, particularly in CS-based systems. Before neutralization, CS/PEGDE films exhibited the lowest swelling (67% ± 19) relative to unmodified CS (118% ± 25) and crosslinked samples such as CS/G2 (185% ± 30), CS/G1 (475% ± 88), and CS/CTA (520% ± 90). After neutralization, CS/G1 and CS/CTA maintained the highest swelling capacity. In contrast, CMCS films crosslinked with CTA and G1 dissolved rapidly in aqueous media due to high water uptake, while PEGDE- and G2-modified CMCS films demonstrated stability comparable to CS. Overall, the results highlight the superior stability and tunable surface properties of CS-based films, underscoring their potential for biomedical and packaging applications. Full article
(This article belongs to the Special Issue Applications of Natural Polymers in Biomedicine)
Show Figures

Figure 1

16 pages, 1804 KB  
Article
Effect of Xanthan, Guar, and Carrageenan Gums on the Physicochemical Properties of Hypoallergenic Pea Protein-Based Dysphagia-Friendly Matrices
by Huaiwen Yang, Chi-Chung Hua and Po-Hsun Huang
Foods 2026, 15(2), 284; https://doi.org/10.3390/foods15020284 - 13 Jan 2026
Abstract
Due to the allergenicity of soy protein, this study aimed to develop a hypoallergenic, dysphagia-friendly matrix using pea protein isolate. We investigated the effects of three hydrocolloid thickeners—xanthan gum (XG), guar gum (G), and carrageenan (C)—at various concentrations on the matrices’ rheological properties, [...] Read more.
Due to the allergenicity of soy protein, this study aimed to develop a hypoallergenic, dysphagia-friendly matrix using pea protein isolate. We investigated the effects of three hydrocolloid thickeners—xanthan gum (XG), guar gum (G), and carrageenan (C)—at various concentrations on the matrices’ rheological properties, textural characteristics, and dysphagia diet classification. The unthickened pea protein base was unstable, exhibiting rapid phase separation and low viscosity, unsuitable for dysphagia diets. The addition of XG (0.4–0.6 g), G (0.5–1.0 g), and C (0.8–1.2 g) successfully produced food matrices meeting the slightly, mildly, and moderately thick levels of the Japanese Society of Dysphagia Rehabilitation (JSDR) framework. However, discrepancies were noted between instrumental viscosity and syringe flow test classifications. Rheological analysis revealed that XG samples were in elastic (G′ > G″) domain in the linear viscoelastic region (LVR) and exhibited shear-thinning behavior. In contrast, G and C samples were in viscous (G″ > G′) domain. Frequency sweeps characterize XG samples as weak gels, G samples as dilute polymer solutions, and C samples as gel-like structures. Texture profile analysis further showed that xanthan gum imparted the highest firmness and thickness, whereas guar gum provided the best flowability. Full article
(This article belongs to the Special Issue Quality Characteristics of Traditional and Innovative Foods)
Show Figures

Figure 1

15 pages, 1465 KB  
Article
Experimental Study of Hydrodynamics During Fluid Flow from a Nozzle in a Differential-Contact Centrifugal Extractor
by Sergey Ivanovich Ponikarov and Artem Sergeevich Ponikarov
ChemEngineering 2026, 10(1), 13; https://doi.org/10.3390/chemengineering10010013 - 12 Jan 2026
Viewed by 27
Abstract
Modern processes to produce rare-earth elements, strategic metals, and nuclear fuel reprocessing require highly efficient liquid–liquid extraction in systems characterized by high viscosity, elevated interfacial tension, and small density differences. Traditional gravity-driven extractors exhibit low performance under these conditions, whereas centrifugal extractors enable [...] Read more.
Modern processes to produce rare-earth elements, strategic metals, and nuclear fuel reprocessing require highly efficient liquid–liquid extraction in systems characterized by high viscosity, elevated interfacial tension, and small density differences. Traditional gravity-driven extractors exhibit low performance under these conditions, whereas centrifugal extractors enable rapid mass transfer and nearly complete phase separation. Differential-contact annular centrifugal contactors offer the highest flexibility and efficiency, but their optimization is limited by the lack of experimental data on the hydrodynamics of liquid flow through perforated nozzles in a rotating field. This limitation hinders the development of accurate computational fluid dynamics (CFD) models (e.g., ANSYS Fluent), reliable equipment scale-up, and the design of optimized contactor configurations. The present study addresses this gap by experimentally determining the flow velocity of liquids through nozzles of various geometries across a wide range of centrifugal accelerations. From these data, a universal power-law correlation was derived, linking the flow rate to rotor speed, nozzle geometry, and the physicochemical properties of the phases. The proposed correlation provides a robust experimental basis for numerical model validation, computational design, and optimization of next-generation differential-contact centrifugal extractors. Full article
Show Figures

Figure 1

20 pages, 7206 KB  
Article
Effect Investigation of Process Parameters on 3D Printed Composites Tensile Performance Boosted by Attention Mechanism-Enhanced Multi-Modal Convolutional Neural Networks
by Zeyuan Gao, Zhibin Han, Yaoming Fu, Huiyang Lv, Meng Li, Xin Zhao and Jianjian Zhu
Polymers 2026, 18(2), 203; https://doi.org/10.3390/polym18020203 - 12 Jan 2026
Viewed by 49
Abstract
Fused Deposition Modeling (FDM) is a widely used additive manufacturing technique that enables the fabrication of components using polymeric and composite materials; however, the mechanical performance of printed parts is jointly influenced by multiple printing parameters, which complicates the control and prediction of [...] Read more.
Fused Deposition Modeling (FDM) is a widely used additive manufacturing technique that enables the fabrication of components using polymeric and composite materials; however, the mechanical performance of printed parts is jointly influenced by multiple printing parameters, which complicates the control and prediction of their mechanical properties. In this study, an attention-enhanced multi-modal convolutional neural network (ATT-MM-CNN) is developed to predict the tensile performance of carbon fiber reinforced polylactic acid (PLA-CF) composites manufactured by FDM. Four key printing parameters, layer thickness, nozzle temperature, material flow rate, and printing speed, are systematically investigated, resulting in 256 parameter combinations and corresponding tensile test data for constructing a multi-modal dataset. By integrating multi-modal feature representations and incorporating an attention mechanism, the proposed model effectively learns the nonlinear relationships between printing parameters and mechanical performance under multi-parameter conditions. The results show that all evaluation metrics, including accuracy, precision, recall, and F1-score, exceed 0.95, and the prediction accuracy is improved by at least 17.3% compared with baseline models. These findings demonstrate that the proposed ATT-MM-CNN provides an effective and reliable framework for tensile property prediction and process-parameter optimization of FDM-printed composite structures. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Graphical abstract

20 pages, 8776 KB  
Article
Composition, Genesis, and Adsorption Properties of Smectite–Palygorskite Clays (Lower Carboniferous, Russia)
by Sergey Zakusin, Olga Zakusina, Tatiana Koroleva, Ivan Morozov, Mikhail Chernov and Victoria Krupskaya
Minerals 2026, 16(1), 70; https://doi.org/10.3390/min16010070 - 12 Jan 2026
Viewed by 48
Abstract
Infrared spectroscopic analysis of palygorskite clay from the Dashkovskoye and Borshchevskoye deposits yielded key insights into the sedimentation conditions prevailing in the study area. In this paper, the composition, structure, and adsorption properties of smectite–palygorskite clays from the Steshevian sub-stage of the Lower [...] Read more.
Infrared spectroscopic analysis of palygorskite clay from the Dashkovskoye and Borshchevskoye deposits yielded key insights into the sedimentation conditions prevailing in the study area. In this paper, the composition, structure, and adsorption properties of smectite–palygorskite clays from the Steshevian sub-stage of the Lower Carboniferous (Russia) are investigated. The study applied X-ray diffraction, infrared spectroscopy, scanning electron microscopy, assessment of cation exchange capacity by adsorption of [Cu(trien)2+], assessment of Cs sorption, and particle size analysis. It is demonstrated that the Al–palygorskite of the Dashkovskoye deposit was formed by sedimentation from suspended matter in a shallow-water basin in the Steshevian sub-age, despite a different genesis (chemogenic in the case of the palygorskites, clastic/redeposited in the case of the smectites). The palygorskites of the Borschovskoye deposit have a complex terrigenous genesis and were formed from redeposited chemogenic Al–palygorskites transported into the basin from the surrounding region of the Dashkovskoye deposit. With increasing depth of the basin in the Steshevian sub-age, the volume of incoming palygorskite material decreases, and the proportion of smectite material increases. The Fe–palygorskites entered the Borschovskoye deposit due to the redeposition of sediments from soils upstream of water flows. All the studied clays have considerable adsorption properties (32–49 mg-eq/100 g) and can be used in various industries. Full article
Show Figures

Graphical abstract

14 pages, 6095 KB  
Article
Analysis of Off-Design Performance and Thermal–Fluid–Structural Coupling Characteristics of an Adjustable Air Ejector
by Yingwen Zhang, Liru Yan, Jingxian Zhang, Suxia Ma and Wenlong Guo
Materials 2026, 19(2), 294; https://doi.org/10.3390/ma19020294 - 11 Jan 2026
Viewed by 162
Abstract
Systematic investigation into the structural integrity of adjustable ejectors, particularly concerning thermal–fluid–structural (TFS) coupling, is currently lacking. Utilizing the Workbench platform, this study performs unidirectional steady-state TFS coupling numerical simulation of the adjustable air ejector under off-design conditions to systematically analyze its internal [...] Read more.
Systematic investigation into the structural integrity of adjustable ejectors, particularly concerning thermal–fluid–structural (TFS) coupling, is currently lacking. Utilizing the Workbench platform, this study performs unidirectional steady-state TFS coupling numerical simulation of the adjustable air ejector under off-design conditions to systematically analyze its internal flow characteristics and structural mechanical responses across various needle openings. The results show that thermal load is the dominant factor governing the ejector’s structural stress and deformation. The overall deformation is primarily characterized by axial elongation, with the maximum thermal deformation localized at the ejector’s exit section. The nozzle exit is identified as the primary structural weak point, exhibiting the highest local stress, which peaks at 196.8 MPa when the needle opening is minimized. Shock train structures extending from the nozzle’s divergent section into the mixing chamber, coupled with the axial displacement of the needle, significantly influence the ejector’s thermal deformation and thermal stress. Based on the thermally dominated stress mechanism identified, this study proposes a composite nozzle design utilizing a nickel-plated Invar alloy substrate. This material fully leverages Invar alloy’s low thermal expansion to mitigate thermal stress and deformation while the nickel plating ensures corrosion resistance, thereby significantly enhancing the nozzle’s mechanical properties and operational reliability in thermal environments. The findings of this analysis are applicable to off-design evaluations under unidirectional steady-state coupling conditions, providing a valuable reference for the structural design and strength optimization of similar ejectors operating in high-temperature, unsteady environments. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

18 pages, 7234 KB  
Article
Preparation and Material–Structure–Performance Relationships of Biaxially Stretched Polytetrafluoroethylene (PTFE) Membranes for Air Filtration
by Chunxing Zhou, Haiqin Mo, Yiqin Shao, Parpiev Khabibulla, Juramirza Abdiramatovich Kayumov and Guocheng Zhu
Polymers 2026, 18(2), 199; https://doi.org/10.3390/polym18020199 - 11 Jan 2026
Viewed by 109
Abstract
Biaxially stretched polytetrafluoroethylene (PTFE) membranes are promising media for high-efficiency air filtration because of their stable node–fiber microstructure and environmental durability. To clarify how resin properties and microstructure govern filtration behavior, ten PTFE resins with different average molecular weights (Mn) and particle size [...] Read more.
Biaxially stretched polytetrafluoroethylene (PTFE) membranes are promising media for high-efficiency air filtration because of their stable node–fiber microstructure and environmental durability. To clarify how resin properties and microstructure govern filtration behavior, ten PTFE resins with different average molecular weights (Mn) and particle size characteristics were processed into membranes under essentially identical biaxial stretching and sintering conditions. Resin particle size, fiber diameter and pore size distributions were quantified, and coefficients of variation (CVs), together with Spearman rank correlations, were used to analyze material–structure–performance links. Filtration efficiency, pressure drop and quality factor (QF) were measured according to ISO 29463-3 using 0.1–0.3 μm aerosols. Higher Mn combined with lower particle-size dispersion favored finer fibers and narrower pores, yielding efficiencies close to 100%, but increased pressure drop and slightly reduced QF, indicating a trade-off between efficiency and flow resistance. The sample with the lowest Mn in its group and a high machine-direction draw ratio (12×), showed pronounced fibril breakage, node coalescence, broadened pore-size distribution and degraded QF, illustrating the sensitivity of structure and performance to resin-process mismatch. Overall, the study establishes a hierarchical material–fiber–pore–performance relationship that can guide resin selection, structural tuning and process optimization of biaxially stretched PTFE membranes. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

27 pages, 13431 KB  
Article
In Vitro and In Silico Assessment of the Anticancer Potential of Ethyl Acetate/Water Extract from the Leaves of Cotinus coggygria Scop. in HepG2 Human Hepatocarcinoma Cells
by Inna Sulikovska, Vera Djeliova, Ani Georgieva, Elina Tsvetanova, Liudmil Kirazov, Anelia Vasileva, Vanyo Mitev, Ivaylo Ivanov and Mashenka Dimitrova
Appl. Sci. 2026, 16(2), 740; https://doi.org/10.3390/app16020740 - 11 Jan 2026
Viewed by 171
Abstract
Cotinus coggygria Scop., a member of the Anacardiaceae family, is known for its antiseptic, anti-inflammatory, and antitumor properties. In the present study, the ethyl acetate/water leaf extract of C. coggygria was evaluated for antioxidant and anticancer activities. The extract exhibited strong radical-scavenging potential, [...] Read more.
Cotinus coggygria Scop., a member of the Anacardiaceae family, is known for its antiseptic, anti-inflammatory, and antitumor properties. In the present study, the ethyl acetate/water leaf extract of C. coggygria was evaluated for antioxidant and anticancer activities. The extract exhibited strong radical-scavenging potential, effectively neutralizing DPPH, ABTS•+, and superoxide radicals in a concentration-dependent manner. The cytotoxic effects of the extract on human hepatocellular carcinoma HepG2 cells were also investigated. Flow cytometry revealed significant S-phase cell cycle arrest, while fluorescent microscopy and annexin V-FITC/PI staining demonstrated induction of apoptosis. DNA damage was confirmed by alkaline comet assay. Molecular docking was used to evaluate the binding affinity and inhibitory potential of penta-O-galloyl-β-D-glucose, a representative of gallotannins found in C. coggygria extracts, towards cyclin-dependent kinase 2 and checkpoint kinase 1. A high inhibition ability was demonstrated, which could explain the observed cell cycle block. Collectively, these findings suggest that C. coggygria extract exerts strong antioxidant capacity and selective antiproliferative activity in HepG2 cells. The anticancer effects of C. coggygria extract were associated with DNA damage, cell cycle arrest, disruption of mitochondrial membrane potential, and apoptosis induction. The results show the potential of the herb as a natural therapeutic agent for hepatocellular carcinoma. Full article
Show Figures

Figure 1

22 pages, 5690 KB  
Article
Cancer Immunomodulatory Effect of Bidens pilosa L. in Mice: Suppression of Tumor-Associated Macrophages and Regulatory T Cells
by Meihua Zhu, Jiayan Xiong, Ruyi Zhang, Xingyan Yang, Weiqing Sun, Ziyi Yang, Yuhan Chai, Yang Tao, Yu-Qiang Zhao, Baomin Fan and Guangzhi Zeng
Cells 2026, 15(2), 126; https://doi.org/10.3390/cells15020126 - 10 Jan 2026
Viewed by 115
Abstract
Bidens pilosa L., a traditional Chinese medicinal herb, has been used in clinical practice for the treatment of inflammatory diseases and cancer. BPA, an extract derived from the whole herb of B. pilosa L., has been shown to possess potent immunomodulatory properties [...] Read more.
Bidens pilosa L., a traditional Chinese medicinal herb, has been used in clinical practice for the treatment of inflammatory diseases and cancer. BPA, an extract derived from the whole herb of B. pilosa L., has been shown to possess potent immunomodulatory properties by regulating tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) within the tumor microenvironment (TME) in a mouse syngeneic colorectal cancer (CRC) model. RT-PCR and flow cytometry analyses showed that BPA, together with its flavonoid and polyacetylene constituents, effectively suppressed the differentiation of M2-TAMs and Tregs by downregulating Arg-1 and CD25 expression. They had minimal effects on the expression of markers associated with M1-TAMs and promoted the proliferation of CD4+ T cells that were inhibited by M2-TAMs and Tregs. In mice, BPA markedly inhibited the growth of syngeneic CRC tumors, accompanied by decreased serum levels of the immunosuppressive cytokine IL-10 and reduced expression of the proliferative marker Ki67 in tumor tissues. Moreover, BPA downregulated the mRNA expression of markers associated with M2-TAMs and Tregs, while increasing markers associated with M1-TAMs. Western blot analyses of tumor tissues revealed that BPA reduced the expression of marker proteins associated with M2-TAMs and Tregs, while increasing the expression of the immune-stimulatory markers CD80, GITR and CD4. In addition, combined treatment with BPA and 5-fluorouracil (5-FU), a commonly used chemotherapeutic agent for CRC, notably enhanced the anti-tumor effect in mice. These findings indicate that BPA, an active extract of B. pilosa L., showed antitumor activity in mice by suppressing the differentiation of pro-tumorigenic TAMs and Tregs within the TME. Full article
Show Figures

Figure 1

17 pages, 977 KB  
Article
Effects of Pulsed Electric Field Technology on Whey Protein Concentrate
by Elizabeth L. Ryan and Owen M. McDougal
Molecules 2026, 31(2), 237; https://doi.org/10.3390/molecules31020237 - 10 Jan 2026
Viewed by 148
Abstract
Whey protein concentrate (WPC-80) was reconstituted to 10% (m/v) and pumped through a pulsed electric field (PEF) system using three treatment conditions. The PEF-treated whey solution was assessed for viscosity, whereas dried whey was resolubilized and tested for protein [...] Read more.
Whey protein concentrate (WPC-80) was reconstituted to 10% (m/v) and pumped through a pulsed electric field (PEF) system using three treatment conditions. The PEF-treated whey solution was assessed for viscosity, whereas dried whey was resolubilized and tested for protein structure integrity by circular dichroism (CD), fluorescence, and differential scanning calorimetry (DSC), and functionality was assessed by measuring solubility, foamability, emulsification, and particle size. PEF treatment resulted in a reduction in apparent viscosity (from 2.74 cP down to 2.57 cP) and particle size (from 325.9 nm down to 297.6 nm), and increased solubility (from 90.41% up to 92.34%) and emulsification stability (from 1727 min up to 4821 min), while emulsification stability decreased initially (from 1.645 m2/g to 1.283 m2/g) then increased at the high treatment level (1.915 m2/g). The foamability and molecular weight profile did not change with PEF treatment. Exposure to PEF resulted in no statistically significant changes to protein structure based on data obtained from CD, fluorescence, or DSC. This study represents the first instance of a WPC-80 being treated with a commercially available, scalable, continuous flow PEF system at a higher concentration (10% m/v), resulting in favorable changes to the physical and functional properties of the whey solution and dried powder. Full article
Show Figures

Figure 1

31 pages, 7927 KB  
Review
Research Progress of High-Entropy Ceramic Films via Arc Ion Plating
by Haoran Chen, Baosen Mi, Jingjing Wang, Tianju Chen, Xun Ma, Ping Liu and Wei Li
Coatings 2026, 16(1), 82; https://doi.org/10.3390/coatings16010082 - 9 Jan 2026
Viewed by 267
Abstract
High-entropy ceramic (HEC) thin films generally refer to multi-component solid solutions composed of multiple metallic and non-metallic elements, existing in forms such as carbides, nitrides, and borides. Benefiting from the high-entropy effect, lattice distortion, sluggish diffusion, and cocktail effect of high-entropy systems, HEC [...] Read more.
High-entropy ceramic (HEC) thin films generally refer to multi-component solid solutions composed of multiple metallic and non-metallic elements, existing in forms such as carbides, nitrides, and borides. Benefiting from the high-entropy effect, lattice distortion, sluggish diffusion, and cocktail effect of high-entropy systems, HEC thin films form simple amorphous or nanocrystalline structures while exhibiting high hardness/elastic modulus, excellent tribological properties, and thermal stability. Although the mixing entropy increases with the number of elements in the system, a higher number of elements does not guarantee improved performance. In addition to system configuration, the regulation of preparation methods and processes is also a key factor in enhancing performance. Arc ion plating (AIP) has emerged as one of the mainstream techniques for fabricating high-entropy ceramic (HEC) thin films, which is attributed to its high ionization efficiency, flexible multi-target configuration, precise control over process parameters, and high deposition rate. Through rational design of the compositional system and optimization of key process parameters—such as the substrate bias voltage, gas flow rates, and arc current—HEC thin films with high hardness/toughness, wear resistance, high-temperature oxidation resistance, and electrochemical performance can be fabricated, and several of these properties can even be simultaneously achieved. Against the backdrop of AIP deposition, this review focuses on discussions grounded in the thermodynamic principles of high-entropy systems. It systematically discusses how process parameters influence the microstructure and, consequently, the mechanical, tribological, electrochemical, and high-temperature oxidation behaviors of HEC thin films under various complex service conditions. Finally, the review outlines prospective research directions for advancing the AIP-based synthesis of high-entropy ceramic coatings. Full article
Show Figures

Figure 1

27 pages, 4899 KB  
Review
Advances in Texturing of Polycrystalline Diamond Tools in Cutting Hard-to-Cut Materials
by Sergey N. Grigoriev, Anna A. Okunkova, Marina A. Volosova, Khaled Hamdy and Alexander S. Metel
J. Manuf. Mater. Process. 2026, 10(1), 27; https://doi.org/10.3390/jmmp10010027 - 9 Jan 2026
Viewed by 201
Abstract
The operational ability of a unit or mechanism depends mainly on the quality of the mechanically produced working surfaces. Many materials can be assigned to a group of hard-to-cut materials that includes titanium- and aluminum-based alloys, a new class of heat-resistant alloys, SiCp/Al [...] Read more.
The operational ability of a unit or mechanism depends mainly on the quality of the mechanically produced working surfaces. Many materials can be assigned to a group of hard-to-cut materials that includes titanium- and aluminum-based alloys, a new class of heat-resistant alloys, SiCp/Al composites, hard alloys, and other alloys. The difficulties in their machining are related not only to the high temperatures achieved on the contact pads under mechanical load and the extreme cutting conditions but also to the properties of those materials, which affect the adhesion of the chip to the tool faces, hindering chip flow. One of the possible solutions to reduce those effects and improve the operational life of the tool, and as a consequence, the final quality of the working surface of the unit, is texturing the rake face of the tool with microgrooves or nanogrooves, microholes or nanoholes (pits, dimples), micronodes, cross-chevron textures, and other microtextures, the depth of which is in the range of 3.0–200.0 µm. This review is addressed at systematizing the data obtained on micro- and nanotexturing of PCD tools for cutting hard-to-cut materials by different techniques (fiber laser graving, femto- and nanosecond laser, electrical discharge machining, fused ion beam), additionally subjected to fluorination and dip- and drop-based coatings, and the effect created by the use of the textured PCD tool on the machined surface. Full article
Show Figures

Figure 1

Back to TopTop