Effects of Pulsed Electric Field Technology on Whey Protein Concentrate
Abstract
1. Introduction
2. Results and Discussion
2.1. PEF Treatment
2.2. Physical and Functional Properties
2.2.1. Effect of PEF Treatment on Apparent Viscosity
2.2.2. Effect of PEF Treatment on Concentrate Solubility
2.2.3. Effect of PEF Treatment on Foamability
2.2.4. Effect of PEF Treatment on Emulsification
2.2.5. Effect of PEF Treatment on Particle Size and Zeta Potential
2.2.6. Effect of PEF Treatment on Protein Molecular Weights by Gel Electrophoresis
2.3. Structural Characteristics
2.3.1. Effect of PEF Treatment on Secondary Structure Determined by Circular Dichroism
2.3.2. Effect of PEF Treatment on Tertiary Structure Determined by Intrinsic Fluorescence
2.3.3. Effect of PEF Treatment on Thermal Stability Determined by Differential Scanning Calorimetry
2.4. Correlation Between Protein Structure and Improved Properties
3. Materials and Methods
3.1. Preparation of Whey Protein Concentrate Solution
3.2. Pulsed Electric Field Treatment
3.3. Apparent Viscosity
3.4. Concentrate Solubility
3.5. Foamability
3.6. Emulsification
3.7. Particle Size and Zeta Potential
3.8. Gel Electrophoresis
3.9. Circular Dichroism
3.10. Fluorescence Spectroscopy
3.11. Differential Scanning Calorimetry
3.12. Statistical Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PEF | Pulsed electric field |
| WPC | Whey protein concentrate |
| m/v | Mass per volume |
| kV/cm | Kilovolt per centimeter |
| kJ/L | Kilojoule per liter |
| CD | Circular dichroism |
| DSC | Differential scanning calorimetry |
| m/m | Mass per mass |
| WPI | Whey protein isolate |
| L/h | Liter per hour |
| mg/mL | Milligram per milliliter |
| kJ/kg | Kilojoule per kilogram |
| mL/min | Milliliter per minute |
| µs | Microsecond |
| Hz | Hertz |
| FI | Fluorescence intensity |
| ms | Millisecond |
| S | Solubility |
| EAI | Emulsifying activity index |
| ESI | Emulsifying stability index |
| AV | Apparent viscosity |
| PS | Particle size |
| ZP | Zeta potential |
| mS/cm | MilliSiemens per centimeter |
| cP | Centipoise |
| mV | Millivolt |
| PDI | Polydispersity index |
| SDS-PAGE | Sodium dodecyl sulfate page electrophoresis |
| kDa | Kilodalton |
| IgG | Immunoglobulin G |
| BSA | Bovine serum albumin |
| µJ/s | Microjoule per second |
| au | Arbitrary units |
| rpm | Revolutions per minute |
| rcf | Relative centrifugal force |
| g/L | Gram per liter |
| FO | Foam overrun |
| FV | Foam volume |
| g/mL | Gram per milliliter |
| v/v | Volume per volume |
| DLS | Dynamic light scattering |
| mm | Millimeter |
| V | Volt |
| °C/min | Degrees Celsius per minute |
References
- Minj, S.; Anand, S. Whey Proteins and Its Derivatives: Bioactivity, Functionality, and Current Applications. Dairy 2020, 1, 233–258. [Google Scholar] [CrossRef]
- Auestad, N.; Layman, D.K. Dairy Bioactive Proteins and Peptides: A Narrative Review. Nutr. Rev. 2021, 79, 36–47. [Google Scholar] [CrossRef]
- Smithers, G.W. Whey and Whey Proteins-From “Gutter-to-Gold”. Int. Dairy J. 2008, 18, 695–704. [Google Scholar] [CrossRef]
- González Siso, M.I. The Biotechnological Utilization of Cheese Whey: A Review. Bioresour. Technol. 1996, 57, 1–11. [Google Scholar] [CrossRef]
- Kolli, U.K. Challenges Involved in the Drying of Dairy Powders. In Handbook for Drying of Dairy Products; Anandharamakrishnan, C., Ed.; John Wiley and Sons Ltd.: West Sussex, UK, 2017; pp. 287–299. [Google Scholar]
- Taha, A.; Casanova, F.; Šimonis, P.; Stankevič, V.; Gomaa, M.A.E.; Stirkė, A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022, 11, 1556. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Munir, A.; Buntat, Z.; Ahmad, M.H.; Jusoh, Y.M.M.; Bekhit, A.E.D.; Roobab, U.; Manzoor, M.F.; Aadil, R.M. Electrical Systems for Pulsed Electric Field Applications in the Food Industry: An Engineering Perspective. Trends Food Sci. Technol. 2020, 104, 1–13. [Google Scholar] [CrossRef]
- Esteghlal, S.; Gahruie, H.H.; Niakousari, M.; Barba, F.J.; Bekhit, A.E.D.; Mallikarjunan, K.; Roohinejad, S. Bridging the Knowledge Gap for the Impact of Non-Thermal Processing on Proteins and Amino Acids. Foods 2019, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Nunes, L.; Tavares, G.M. Thermal Treatments and Emerging Technologies: Impacts on the Structure and Techno-Functional Properties of Milk Proteins. Trends Food Sci. Technol. 2019, 90, 88–99. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Munir, M.A.; Naderipour, A.; Qureshi, M.I.; El-Din Bekhit, A.; Liu, Z.W.; Aadil, R.M. Pulsed Electric Field: A Potential Alternative towards a Sustainable Food Processing. Trends Food Sci. Technol. 2021, 111, 43–54. [Google Scholar] [CrossRef]
- Soltanzadeh, M.; Peighambardoust, S.H.; Gullon, P.; Hesari, J.; Gullón, B.; Alirezalu, K.; Lorenzo, J. Quality Aspects and Safety of Pulsed Electric Field (PEF) Processing on Dairy Products: A Comprehensive Review. Food Rev. Int. 2020, 38, 96–117. [Google Scholar] [CrossRef]
- Han, Z.; Cai, M.; Cheng, J.-H.; Sun, D.-W. Effects of Electric Fields and Electromagnetic Wave on Food Protein Structure and Functionality: A Review. Trends Food Sci. Technol. 2018, 75, 1–9. [Google Scholar] [CrossRef]
- Ostermeier, R.; Hill, K.; Dingis, A.; Töpfl, S.; Jäger, H. Influence of Pulsed Electric Field (PEF) and Ultrasound Treatment on the Frying Behavior and Quality of Potato Chips. Innov. Food Sci. Emerg. Technol. 2021, 67, 102553. [Google Scholar] [CrossRef]
- Skinner, M.M.; Fong, M.A.; Rimkus, T.P.; Hendricks, A.N.; Truong, T.P.; Woodbury, L.G.; Pu, X.; McDougal, O.M. Pulsed Electric Field Treatment of Sweet Potatoes to Reduce Oil and Acrylamide in Kettle Chips. Foods 2025, 14, 577. [Google Scholar] [CrossRef]
- Santiago-Mora, P.; Skinner, M.; Hendricks, A.; Rimkus, T.; Meyer, B.; Gratzek, J.; Pu, S.; Woodbury, L.; Bond, L.; McDougal, O. Pulsed Electric Field Effect on Acrylamide Reduction and Quality Attributes of Continuous-Style Lamoka Potato Chips. Heliyon 2024, 10, e31790. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.A.; Sheikh, M.A.; Mir, N.A. A Review on Pulsed Electric Field Modification of Proteins: Effect on the Functional and Structural Properties. Food Biosci. 2024, 61, 104636. [Google Scholar] [CrossRef]
- Sharma, P.; Oey, I.; Everett, D.W. Effect of Pulsed Electric Field Processing on the Functional Properties of Bovine Milk. Trends Food Sci. Technol. 2014, 35, 87–101. [Google Scholar] [CrossRef]
- Wan, J.; Coventry, J.; Swiergon, P.; Sanguansri, P.; Versteeg, C. Advances in Innovative Processing Technologies for Microbial Inactivation and Enhancement of Food Safety—Pulsed Electric Field and Low-Temperature Plasma. Trends Food Sci. Technol. 2009, 20, 414–424. [Google Scholar] [CrossRef]
- Sui, Q.; Roginski, H.; Williams, R.P.W.; Versteeg, C.; Wan, J. Effect of Pulsed Electric Field and Thermal Treatment on the Physicochemical and Functional Properties of Whey Protein Isolate. Int. Dairy J. 2011, 21, 206–213. [Google Scholar] [CrossRef]
- Xiang, B.Y.; Ngadi, M.O.; Ochoa-Martinez, L.A.; Simpson, M.V. Pulsed Electric Field-Induced Structural Modification of Whey Protein Isolate. Food Bioprocess Technol. 2011, 4, 1341–1348. [Google Scholar] [CrossRef]
- Sun, W.; Yu, S.; Zeng, X.; Yang, X.; Jia, X. Properties of Whey Protein Isolate—Dextran Conjugate Prepared Using Pulsed Electric Field. Food Res. Int. 2011, 44, 1052–1058. [Google Scholar] [CrossRef]
- Xu, F.Y.; Wen, Q.H.; Wang, R.; Li, J.; Chen, B.R.; Zeng, X.A. Enhanced Synthesis of Succinylated Whey Protein Isolate by Pulsed Electric Field Pretreatment. Food Chem. 2021, 363, 129892. [Google Scholar] [CrossRef]
- Hu, X.; Wang, H.; Hu, Y.; Tu, Z. Insight into the Effects of Pulsed Electric Field on the Structure, Aggregation Characteristics and Functional Properties of Whey Proteins. Food Hydrocoll. 2024, 154, 110111. [Google Scholar] [CrossRef]
- Xiang, B.Y.; Simpson, M.V.; Ngadi, M.O.; Simpson, B.K. Flow Behaviour and Viscosity of Reconstituted Skimmed Milk Treated with Pulsed Electric Field. Biosyst. Eng. 2011, 109, 228–234. [Google Scholar] [CrossRef]
- Sharma, P.; Oey, I.; Everett, D.W. Thermal Properties of Milk Fat, Xanthine Oxidase, Caseins and Whey Proteins in Pulsed Electric Field-Treated Bovine Whole Milk. Food Chem. 2016, 207, 34–42. [Google Scholar] [CrossRef]
- Guo, M.; Wang, G. History of Whey Production and Whey Protein Manufacturing. In Whey Protein Production, Chemistry, Functionality, and Applications; Guo, M., Ed.; John Wiley and Sons Inc.: West Sussex, UK, 2019; pp. 1–12. [Google Scholar]
- Kassim, M.S.; Sarow, S.A. Flows of Viscous Fluids in Food Processing Industries: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 870, 012032. [Google Scholar] [CrossRef]
- Deotale, S.M.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Foaming and Defoaming–Concepts and Their Significance in Food and Allied Industries: A Review. Discov. Chem. Eng. 2023, 3, 9. [Google Scholar] [CrossRef]
- Hammershøj, M.; Prins, A.; Qvist, K.B. Influence of PH on Surface Properties of Aqueous Egg Albumen Solutions in Relation to Foaming Behaviour. J. Sci. Food Agric. 1999, 79, 859–868. [Google Scholar] [CrossRef]
- Ho, T.M.; Xiong, X.; Bhandari, B.R.; Bansal, N. Foaming Properties and Foam Structure of Milk Determined by Its Protein Content and Protein to Fat Ratio. Food Bioprocess Technol. 2024, 17, 4665–4678. [Google Scholar] [CrossRef]
- Hammershøj, M.; Peters, L.V.; Andersen, H.J. The Significance of Critical Processing Steps in the Production of Dried Egg Albumen Powder on Gel Textural and Foaming Properties. J. Sci. Food Agric. 2004, 84, 1039–1048. [Google Scholar] [CrossRef]
- Raghunath, S.; Schoenfuss, T.; Mallikarjunan, K. Optimization of Pulsed Electric Field Processing to Reduce the Viscosity of Micellar Casein Concentrate. Innov. Food Sci. Emerg. Technol. 2024, 96, 103750. [Google Scholar] [CrossRef]
- Ryan, K.N.; Zhong, Q.; Foegeding, E.A. Use of Whey Protein Soluble Aggregates for Thermal Stability—A Hypothesis Paper. J. Food Sci. 2013, 78, R1105–R1115. [Google Scholar] [CrossRef]
- Xiao, T.; Ma, X.; Hu, H.; Xiang, F.; Zhang, X.; Zheng, Y.; Dong, H.; Adhikari, B.; Wang, Q.; Shi, A. Advances in Emulsion Stability: A Review on Mechanisms, Role of Emulsifiers, and Applications in Food. Food Chem. X 2025, 29, 102792. [Google Scholar] [CrossRef]
- Dong, M.; Xu, Y.; Zhang, Y.; Han, M.; Wang, P.; Xu, X.; Zhou, G. Physicochemical and Structural Properties of Myofibrillar Proteins Isolated from Pale, Soft, Exudative (PSE)-like Chicken Breast Meat: Effects of Pulsed Electric Field (PEF). Innov. Food Sci. Emerg. Technol. 2020, 59, 102277. [Google Scholar] [CrossRef]
- Liu, Z.; Hemar, Y.; Tan, S.; Sanguansri, P.; Niere, J.; Buckow, R.; Augustin, M.A. Pulsed Electric Field Treatment of Reconstituted Skim Milks at Alkaline PH or with Added EDTA. J. Food Eng. 2015, 144, 112–118. [Google Scholar] [CrossRef]
- Qian, J.Y.; Ma, L.J.; Wang, L.J.; Jiang, W. Effect of Pulsed Electric Field on Structural Properties of Protein in Solid State. LWT 2016, 74, 331–337. [Google Scholar] [CrossRef]
- Melchior, S.; Calligaris, S.; Bisson, G.; Manzocco, L. Understanding the Impact of Moderate-Intensity Pulsed Electric Fields (MIPEF) on Structural and Functional Characteristics of Pea, Rice and Gluten Concentrates. Food Bioprocess Technol. 2020, 13, 2145–2155. [Google Scholar] [CrossRef]
- Ranjbar, B.; Gill, P. Circular Dichroism Techniques: Biomolecular and Nanostructural Analyses—A Review. Chem. Biol. Drug Des. 2009, 74, 101–120. [Google Scholar] [CrossRef] [PubMed]
- USDA Specifications for Dry Whey Protein Concentrate. 2003. Available online: https://www.ams.usda.gov/sites/default/files/media/drywheyconcentrate.pdf (accessed on 24 October 2024).
- Schmidt, J.M.; Damgaard, H.; Greve-Poulsen, M.; Larsen, L.B.; Hammershøj, M. Foam and Emulsion Properties of Potato Protein Isolate and Purified Fractions. Food Hydrocoll. 2018, 74, 367–378. [Google Scholar] [CrossRef]
- Khalesi, M.; FitzGerald, R.J. Investigation of the Flowability, Thermal Stability and Emulsification Properties of Two Milk Protein Concentrates Having Different Levels of Native Whey Proteins. Food Res. Int. 2021, 147, 110576. [Google Scholar] [CrossRef]
- Pearce, K.N.; Kinsella, J.E. Emulsifying Properties of Proteins: Evaluation of Turbidimetric Technique. J. Agric. Food Chem. 1978, 26, 716–723. [Google Scholar] [CrossRef]
- Chaiwong, N.; Seesuriyachan, P.; Rachtanapun, P.; Gavahian, M.; Bangar, S.P.; Mousavi Khaneghah, A.; Wangtueai, S.; Leksawasdi, N.; Jantanasakulwong, K.; Chailangka, A.; et al. Enhancing Solubility, Emulsion Properties, and Antioxidant Activity of Whey Protein Powder via Wet−heating Conjugated with Galactooligosaccharides. J. Agric. Food Res. 2025, 19, 101666. [Google Scholar] [CrossRef]
- Li, W.; Wei, M.; Zhao, Y.; Li, L.; Ning, C.; Hu, F. Effects of Heat Treatment on Structure and Processing Characteristics of Donkey Milk Whey Protein. J. Food Biochem. 2024, 2024, 5598462. [Google Scholar] [CrossRef]
- Dissanayake, M.; Vasiljevic, T. Functional Properties of Whey Proteins Affected by Heat Treatment and Hydrodynamic High-Pressure Shearing. J. Dairy Sci. 2009, 92, 1387–1397. [Google Scholar] [CrossRef] [PubMed]
- Lobley, A.; Whitmore, L.; Wallace, B.A. DICHROWEB: An Interactive Website for the Analysis of Protein Secondary Structure from Circular Dichroism Spectra. Bioinformatics 2002, 18, 211–212. [Google Scholar] [CrossRef] [PubMed]
- Miles, A.J.; Ramalli, S.G.; Wallace, B.A. DichroWeb, a Website for Calculating Protein Secondary Structure from Circular Dichroism Spectroscopic Data. Protein Sci. 2021, 31, 37–46. [Google Scholar] [CrossRef] [PubMed]
- DichroWeb—Online Circular Dichroism Analysis. Available online: http://dichroweb.cryst.bbk.ac.uk/html/home.shtml (accessed on 15 December 2025).
- Provencher, S.W.; Glockner, J. Estimation of Globular Protein Secondary Structure from Circular Dichroism. Biochemistry 1981, 20, 33–37. [Google Scholar] [CrossRef]
- Sreerama, N.; Woody, R.W. Estimation of Protein Secondary Structure from Circular Dichroism Spectra: Comparison of CONTIN, SELCON, and CDSSTR Methods with an Expanded Reference Set. Anal. Biochem. 2000, 287, 252–260. [Google Scholar] [CrossRef]
- Xiang, B.Y.; Ngadi, M.O.; Simpson, B.K.; Simpson, M.V. Pulsed Electric Field Induced Structural Modification of Soy Protein Isolate as Studied by Fluorescence Spectroscopy. J. Food Process. Preserv. 2011, 35, 563–570. [Google Scholar] [CrossRef]
- Teng, Y.T.; Freire, P.; Zamora, A.; Castillo, M. Tryptophan Front-Face Fluorescence and Functional Properties of Whey: A Preliminary Study. LWT 2022, 163, 113589. [Google Scholar] [CrossRef]
- Jennings, C.C.; Freidenberger, M.; Christensen, S.A.; Conlin, J.; Freidenberger, O.; Kenealey, J.D. Thermal Characterization and Separation of Whey Proteins by Differential Scanning Calorimetry. Food Chem. 2024, 441, 138347. [Google Scholar] [CrossRef]





| Whey Solution | Reconstituted Concentration | PEF System | PEF Conditions | Significant Results * | Citation |
| WPI | 1% or 10% (m/m) | Custom, flow-cell with 4 co-field treatment chambers of 0.23 cm at 60 mL/min | 35 kV/cm, bipolar square pulse, 2 µs pulse width, 100 Hz frequency, 19.2 µs treatment time, 131.9 kJ/L | No significant changes to physicochemical properties | [19] |
| WPI | 3% or 5% (m/v) | Custom, batch system with 0.7 cm treatment chamber gap | 12–20 kV/cm, 10–30 pulses, 0.5 Hz frequency | FI ↑ | [20] |
| WPI | 1% (m/v) | Custom, flow-cell system with 2 parallel plate treatment chambers at 30 mL/min | 15 and 30 kV/cm, square-wave pulse, 25 µs pulse duration, 1.04 kHz frequency, 7.35 ms treatment time | Dextran conjugation ↑ S ↑ EAI ↑ and ESI ↑ Helices and turns ↓ sheets and random coil ↑ | [21] |
| WPI | 1% (m/m) | Custom, continuous system with 0.3 cm electrode distance | 10 kV/cm, bipolar square wave, 1 kHz frequency, 40 ms holding time | Succinylation degree ↑ Helices ↓, sheets, turns, and random coil ↑ FI ↓ | [22] |
| WPC-80 | 3 mg/mL 0.3% (m/v) | Independently designed with flow-through tandem parallel electrodes (1 and 0.4 cm) at 30 mL/min | 5–20 kV/cm, 2–8 ms treatment times, 0.125 × 103 to 8.04 × 103 kJ/kg, 50 Hz frequency, 10 µs pulse width | AV ↑ & S ↑ EAI ↑ & ESI ↑ PS ↓ & ZP ↑ Helices ↓ random coil ↑ FI ↓ | [23] |
| Physical/Functional Property | Relative Change (%) † | ||
|---|---|---|---|
| Low | Medium | High | |
| Conductivity (mS/cm) | ↑ 7.73 | ↑ 10.67 | ↑ 12.00 |
| Apparent Viscosity (cP) | ↓ 2.79 | ↓ 6.32 * | ↓ 4.50 |
| Solubility (%) | ↑ 2.13 ** | ↑ 1.36 | ↑ 1.04 |
| Foam Overrun (mL/mL) | ↓ 12.66 | ↓ 2.15 | ↓ 0.26 |
| Foam Volume (%) | ↓ 7.02 | N/C | ↓ 1.74 |
| Emulsifying Activity Index (m2/g) | ↓ 17.08 *** | ↓ 22.01 *** | ↑ 16.41 *** |
| Emulsifying Stability Index (min) | ↑ 23.80 *** | ↑ 95.43 *** | ↑ 179.20 *** |
| Particle Size (nm) | ↓ 8.70 * | ↓ 8.38 * | ↓ 8.01 * |
| Zeta Potential (mV) | ↑ 2.17 | ↓ 0.48 | ↓ 2.45 |
| PEF Treatment | Particle Size (nm) | PDI | Zeta Potential (mV) |
|---|---|---|---|
| Control | 325.9 ± 6.4 | 0.3616 ± 0.0367 | −18.13 ± 0.52 |
| Low | 297.6 ± 3.5 * | 0.2899 ± 0.0021 | −18.52 ± 0.63 |
| Medium | 298.6 ± 5.9 * | 0.2801 ± 0.0148 | −18.04 ± 0.34 |
| High | 299.8 ± 2.7 * | 0.2648 ± 0.0145 | −17.68 ± 0.41 |
| PEF Treatment | Secondary Structure Content (%) | |||
|---|---|---|---|---|
| α-Helix | β-Sheet | Turns | Unordered | |
| Control | 12.5 ± 1.1 | 31.4 ± 1.2 | 22.1 ± 1.3 | 33.9 ± 1.0 |
| Low | 11.5 ± 1.4 | 30.0 ± 2.3 | 23.5 ± 1.4 | 35.0 ± 2.3 |
| Medium | 11.7 ± 0.4 | 32.5 ± 1.7 | 22.6 ± 0.1 | 33.2 ± 1.5 |
| High | 11.0 ± 1.5 | 28.7 ± 2.3 | 24.0 ± 1.5 | 36.2 ± 2.2 |
| PEF Treatment | Maximum Fluorescence Intensity (au) | Melting Temperatures (°C) | |
|---|---|---|---|
| Peak 1 | Peak 2 | ||
| Control | 17.62 ± 0.27 | 69.7 ± 0.3 | 85.7 ± 0.3 |
| Low | 17.63 ± 0.10 | 69.5 ± 0.1 | 85.9 ± 0.1 |
| Medium | 17.97 ± 0.17 | 70.0 ± 0.1 | 85.9 ± 0.1 |
| High | 18.25 ± 0.48 | 68.9 ± 0.3 | 85.7 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ryan, E.L.; McDougal, O.M. Effects of Pulsed Electric Field Technology on Whey Protein Concentrate. Molecules 2026, 31, 237. https://doi.org/10.3390/molecules31020237
Ryan EL, McDougal OM. Effects of Pulsed Electric Field Technology on Whey Protein Concentrate. Molecules. 2026; 31(2):237. https://doi.org/10.3390/molecules31020237
Chicago/Turabian StyleRyan, Elizabeth L., and Owen M. McDougal. 2026. "Effects of Pulsed Electric Field Technology on Whey Protein Concentrate" Molecules 31, no. 2: 237. https://doi.org/10.3390/molecules31020237
APA StyleRyan, E. L., & McDougal, O. M. (2026). Effects of Pulsed Electric Field Technology on Whey Protein Concentrate. Molecules, 31(2), 237. https://doi.org/10.3390/molecules31020237
