Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (155)

Search Parameters:
Keywords = flow induced orientation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5234 KiB  
Article
Effects of Variations in Water Table Orientation on LNAPL Migration Processes
by Huiming Yu, Qingqing Guan, Xianju Zhao, Hongguang He, Li Chen and Yuan Gao
Water 2025, 17(13), 1989; https://doi.org/10.3390/w17131989 - 2 Jul 2025
Viewed by 287
Abstract
Light non-aqueous phase liquids (LNAPLs) are significant groundwater contaminants whose migration in aquifers is governed by dynamic groundwater level fluctuations. This study establishes a multiphase flow coupling model integrating hydraulic, gaseous, LNAPL, and chemical fields, utilizing continuous multi-point water level data to quantify [...] Read more.
Light non-aqueous phase liquids (LNAPLs) are significant groundwater contaminants whose migration in aquifers is governed by dynamic groundwater level fluctuations. This study establishes a multiphase flow coupling model integrating hydraulic, gaseous, LNAPL, and chemical fields, utilizing continuous multi-point water level data to quantify water table orientation variations. Key findings demonstrate that (1) LNAPL migration exhibits directional dependence on water table orientation: flatter gradients reduce migration rates, while steeper gradients accelerate movement. (2) Saturation dynamics correlate with gradient steepness, showing minimal variation under flattened gradients but significant fluctuations under steeper conditions. (3) Water table reorientation induces vertical mixing, homogenizing temperature distributions near the interface. (4) Dissolution and volatilization rates of LNAPLs decrease progressively with water table fluctuations. These results elucidate the critical role of hydraulic gradient dynamics in controlling multiphase transport mechanisms at LNAPL-contaminated sites, providing insights for predictive modeling and remediation strategies. Full article
Show Figures

Figure 1

31 pages, 17228 KiB  
Article
The Hydrodynamic Performance of a Vertical-Axis Hydro Turbine with an Airfoil Designed Based on the Outline of a Sailfish
by Aiping Wu, Shiming Wang and Chenglin Ding
J. Mar. Sci. Eng. 2025, 13(7), 1266; https://doi.org/10.3390/jmse13071266 - 29 Jun 2025
Viewed by 336
Abstract
This study investigates an aerodynamic optimization framework inspired by marine biological morphology, utilizing the sailfish profile as a basis for airfoil configuration. Through Latin hypercube experimental design combined with optimization algorithms, four key geometric variables governing the airfoil’s hydrodynamic characteristics were systematically analyzed. [...] Read more.
This study investigates an aerodynamic optimization framework inspired by marine biological morphology, utilizing the sailfish profile as a basis for airfoil configuration. Through Latin hypercube experimental design combined with optimization algorithms, four key geometric variables governing the airfoil’s hydrodynamic characteristics were systematically analyzed. Parametric studies revealed that pivotal factors including installation angle significantly influenced the fluid dynamic performance metrics of lift generation and pressure drag. Response surface methodology was employed to establish predictive models for these critical performance indicators, effectively reducing computational resource consumption and experimental validation costs. The refined bio-inspired configuration demonstrated multi-objective performance improvements compared to the baseline configuration, validating the computational framework’s effectiveness for hydrodynamic profile optimization studies. Furthermore, a coaxial dual-rotor vertical axis turbine configuration was developed, integrating centrifugal and axial-flow energy conversion mechanisms through a shared drivetrain system. The centrifugal rotor component harnessed tidal current kinetic energy while the axial-flow rotor module captured wave-induced potential energy. Transient numerical simulations employing dynamic mesh techniques and user-defined functions within the Fluent environment were conducted to analyze rotor interactions. Results indicated the centrifugal subsystem demonstrated peak hydrodynamic efficiency at a 25° installation angle, whereas the axial-flow module achieves optimal performance at 35° blade orientation. Parametric optimization revealed maximum energy extraction efficiency for the centrifugal rotor occurs at λ = 1.25 tip-speed ratio under Re = 1.3 × 105 flow conditions, while the axial-flow counterpart attained optimal performance at λ = 1.5 with Re = 5.5 × 104. This synergistic configuration demonstrated complementary operational characteristics under marine energy conversion scenarios. Full article
Show Figures

Figure 1

17 pages, 8225 KiB  
Article
Numerical Study on the Influence of Cooling-Fin Geometry on the Aero-Thermal Behavior of a Rotating Tire
by Kyoungmi Yu and SangWook Lee
Energies 2025, 18(12), 3133; https://doi.org/10.3390/en18123133 - 14 Jun 2025
Viewed by 374
Abstract
An excessive temperature rise in vehicle tires during driving can degrade dynamic performance, safety, and fuel efficiency by increasing rolling resistance and softening materials. To mitigate these issues, it is essential to enhance the cooling performance of tires without inducing significant aerodynamic penalties. [...] Read more.
An excessive temperature rise in vehicle tires during driving can degrade dynamic performance, safety, and fuel efficiency by increasing rolling resistance and softening materials. To mitigate these issues, it is essential to enhance the cooling performance of tires without inducing significant aerodynamic penalties. In this study, we propose the use of sidewall-mounted cooling fins and investigate their aero-thermal effects under both ground-contact and no-ground-contact conditions. Seven fin configurations were tested, with installation angles ranging from −67.5° to 67.5°, with positive angles indicating an orientation opposite to the direction of wheel rotation and negative angles indicating alignment with the direction of rotation. High-fidelity unsteady Reynolds-averaged Navier–Stokes simulations were conducted using the SST k-w turbulence model. The sliding mesh technique was employed to capture the transient flow behavior induced by tire rotation. The results showed that, under no-ground-contact conditions, the 45° configuration achieved a 16.8% increase in convective heat transfer with an increase in drag less than 3%. Under ground-contact conditions, the 22.5° configuration increased heat transfer by over 13% with a minimal aerodynamic penalty (~1.7%). These findings provide valuable guidance for designing passive cooling solutions that improve tire heat dissipation performance without compromising aerodynamic efficiency. Full article
Show Figures

Figure 1

49 pages, 5500 KiB  
Review
Heat Transfer Enhancement in Heat Exchangers by Longitudinal Vortex Generators: A Review of Numerical and Experimental Approaches
by Yidie Luo, Gongli Li, Nick S. Bennett, Zhen Luo, Adnan Munir and Mohammad S. Islam
Energies 2025, 18(11), 2896; https://doi.org/10.3390/en18112896 - 31 May 2025
Viewed by 1257
Abstract
Heat exchangers are critical components in various industrial applications, requiring efficient thermal management to enhance thermal performance and energy efficiency. Longitudinal vortex generators (LVGs) have emerged as a potent mechanism to enhance heat transfer within these devices. A precise knowledge of the thermal [...] Read more.
Heat exchangers are critical components in various industrial applications, requiring efficient thermal management to enhance thermal performance and energy efficiency. Longitudinal vortex generators (LVGs) have emerged as a potent mechanism to enhance heat transfer within these devices. A precise knowledge of the thermal performance enhancement of HE through LVGs is missing in the literature. Therefore, this study aims to provide a critical review of both numerical simulations and experimental studies focusing on the enhancement of heat transfer through LVGs to further enhance the knowledge of the field. It begins with elucidating the fundamental principles behind LVGs and delineating their role in manipulating flow patterns to augment heat transfer. This is followed by an exploration of the various numerical methods employed in the field, including computational fluid dynamics techniques such as Reynolds-Averaged Navier–Stokes (RANS) models, Large Eddy Simulation (LES), and Direct Numerical Simulation (DNS). Various experimental methods are then summarised, including differential pressure measuring instruments, temperature measurements, velocity measurements, heat transfer coefficient measurements, and flow visualisation techniques. The effectiveness of these methods in capturing the complex fluid dynamics and thermal characteristics induced by LVGs is critically assessed. The review covers a wide range of LVG configurations, including their geometry, placements, and orientations, and their effects on the thermal performance of heat exchangers. Different from previous reviews that mainly focus on classical configurations and historical studies, this review also emphasizes recent developments in computational fluid dynamics and progress in interdisciplinary fields such as innovative materials, additive manufacturing, surface finishing, and machine learning. By bridging the gap between fluid dynamics, thermal enhancement, and emerging manufacturing technologies, this paper provides a forward-looking, comprehensive analysis that is valuable for both academic and industrial innovations. Full article
Show Figures

Figure 1

30 pages, 12333 KiB  
Article
Investigating the Geothermal Potentiality of Hail Granites, Northern KSA: The Preliminary Results
by Aref Lashin, Oussama Makhlouf, Faisal K. Zaidi and Abdulmalek Amin Noman
Sustainability 2025, 17(10), 4656; https://doi.org/10.3390/su17104656 - 19 May 2025
Viewed by 585
Abstract
The work aims to give a preliminary investigation of the geothermal potentiality of the hot dry granitic rocks in the Hail area, Northern KSA. The Hail area is characterized by a massive exposed belt of radioactive granitic rocks in the southern part, while [...] Read more.
The work aims to give a preliminary investigation of the geothermal potentiality of the hot dry granitic rocks in the Hail area, Northern KSA. The Hail area is characterized by a massive exposed belt of radioactive granitic rocks in the southern part, while the northern part is covered by a sedimentary section. A comprehensive methodology utilizing different categories of mineralogical petrographic, geochemical, geophysical well logging and, radiometry datasets, was used to assess the radiogenic heat production capacity of this granite. The measured data are integrated and interpreted to quantify the potential geothermal capacity of the granite and estimate its possible power production. The radioactivity and radiogenic heat production (RHP) of the Hail granites are among the highest recorded values in Saudi Arabia. Land measurements indicate uranium, thorium, potassium, and RHP values of 17.80 ppm, 90.0 ppm, 5.20%, and 11.93 µW/m3, respectively. The results indicated the presence of a reasonable subsurface geothermal reservoir condition with heat flow up to 99.87 mW/M2 and a reservoir temperature of 200 °C (5 km depth). Scenarios for energy production through injecting water and high-pressure CO2 in the naturally/induced fractured rock are demonstrated. Reserve estimate revealed that at a 2% heat recovery level, the Hail granites could generate about 3.15 × 1016 MWe, contributing to an average figure of 3.43 × 1012 kWh/y, for annual energy per capita Saudi share. The results of this study emphasized the potential contribution of the Hail granite in the future of the energy mix of KSA, as a new renewable and sustainable resource. It is recommended to enhance the surface geophysical survey in conjunction with a detailed thermo-mechanical laboratory investigation to delineate the subsurface orientation and geometry of the granite and understand its behavior under different temperature and pressure conditions. Full article
Show Figures

Figure 1

18 pages, 4359 KiB  
Article
Vortex-Induced Micro-Cantilever Vibrations with Small and Large Amplitudes in Rarefied Gas Flow
by Emil Manoach, Kiril Shterev and Simona Doneva
Appl. Sci. 2025, 15(10), 5547; https://doi.org/10.3390/app15105547 - 15 May 2025
Viewed by 374
Abstract
This study employs a fully coupled fluid–structure interaction (FSI) to investigate the vibrations of an elastic micro-cantilever induced by a rarefied gas flow. Two distinct models are employed to characterize the beam vibrations: the small deflection Euler–Bernoulli beam theory and the large deflection [...] Read more.
This study employs a fully coupled fluid–structure interaction (FSI) to investigate the vibrations of an elastic micro-cantilever induced by a rarefied gas flow. Two distinct models are employed to characterize the beam vibrations: the small deflection Euler–Bernoulli beam theory and the large deflection beam theory. The cantilever is oriented normally to the free stream, creating a regular Kármán vortex street behind the beam, resulting in vortex-induced vibrations (VIV) in the micro-cantilever. The Direct Simulation Monte Carlo (DSMC) method is used to model the rarefied gas flow to capture non-continuum effects. A hybrid numerical approach couples the beam dynamics and gas flow, enabling a fully coupled FSI simulation. A substantial number of numerical computations indicate that the range of vibration amplitudes expands when the natural frequency of the beam approaches the vortex shedding frequency. Notably, the large deflection beam theory predicts that the peak amplitude occurs at a slightly lower frequency than the vortex frequency. In this frequency range, as well as for thinner beams, the amplitude ranges predicted by the large deflection beam theory exceed those obtained from the small deflection beam theory. This finding implies that for more complex behaviours involving nonlinear effects, the large deflection theory may yield more accurate predictions. Full article
(This article belongs to the Special Issue Nonlinear Dynamics in Mechanical Engineering and Thermal Engineering)
Show Figures

Figure 1

13 pages, 4069 KiB  
Article
Bioresorbable High-Strength HA/PLLA Composites for Internal Fracture Fixation
by Jie Liu, Mingtao Sun, Yipeng He, Weixia Yan, Muhuo Yu and Keqing Han
Molecules 2025, 30(9), 1889; https://doi.org/10.3390/molecules30091889 - 23 Apr 2025
Viewed by 468
Abstract
In modern surgery, the internal fixation plates fabricated from hydroxyapatite/poly(L-lactide) (HA/PLLA) composites encounter clinical limitations in fracture treatment due to their inadequate mechanical properties. In this work, pressure-induced flow (PIF) technique is employed to address this limitation. Under optimal processing conditions (140 °C [...] Read more.
In modern surgery, the internal fixation plates fabricated from hydroxyapatite/poly(L-lactide) (HA/PLLA) composites encounter clinical limitations in fracture treatment due to their inadequate mechanical properties. In this work, pressure-induced flow (PIF) technique is employed to address this limitation. Under optimal processing conditions (140 °C and 250 MPa), the HA/PLLA composites exhibit an impressive flexural strength of 199.2 MPa, which is comparable to that of human cortical bone, the strongest bone tissue in the body. The tensile strength and the notched Izod impact strength are close to 84.2 MPa and 16.7 kJ/m2, respectively. Meanwhile, the HA/PLLA composites develop multi-level stacked crystal layers during PIF processing, accompanied by increases in crystallinity (53.1%), crystal orientation (81.6%) and glass transition temperature (78.8 °C). After 2 months of in vitro degradation, the HA/PLLA composites processed by the PIF technique still maintain considerable flexural strength (135.3 MPa). The excellent mechanical properties of HA/PLLA composites processed by PIF technique expand their potential as an internal fixation plate. Full article
(This article belongs to the Special Issue Molecular Scaffolds Design and Biomedical Applications)
Show Figures

Figure 1

15 pages, 8506 KiB  
Article
Mitigation of Sink Voids in Thick-Walled Thermoplastic Components via Integrated Taguchi DOE and CAE Simulations
by Feng Wang, Wenbo Luo, Jiling Bu, Bo Zou and Xingwu Ding
Polymers 2025, 17(8), 1126; https://doi.org/10.3390/polym17081126 - 21 Apr 2025
Viewed by 435
Abstract
A gauge plate is a typical thick-walled injection-molded component featuring a complex construction used in high-speed railways, and it is prone to sink voids during the injection process. It is difficult to obtain a void-free injection molded part due to uneven cooling-induced localized [...] Read more.
A gauge plate is a typical thick-walled injection-molded component featuring a complex construction used in high-speed railways, and it is prone to sink voids during the injection process. It is difficult to obtain a void-free injection molded part due to uneven cooling-induced localized thermal gradients, crystallization shrinkage of semicrystalline thermoplastics, fiber orientation-induced anisotropic shrinkage, injection parameter-dependent fountain flow, and inconsistent core compensation. This work employed design of experiment (DOE) and computer-aided engineering (CAE) simulations to analyze the influence of injection parameters on the volumetric shrinkage of the gauge plate and to identify the optimal injection process. A Taguchi orthogonal array L9 was applied, in which four injection molding process parameters were varied at three different levels. The fundamental causes of sink void defects in the gauge plate were then examined via MoldFlow analysis on the basis of the optimized injection parameters. The MoldFlow study indicates a high probability of the presence of sink void defects in the injection-molded gauge plate. To minimize sink void defects, a structural optimization design of the gauge plate was implemented to achieve a more uniform wall thickness, and the advantages of this optimization were demonstrated via comparative analysis. The small batch production of the injection-molded gauge plates demonstrates that the optimized gauge plate shows no sink voids, ensuring consistent quality that adheres to the engineering process and technical specifications. Full article
Show Figures

Figure 1

26 pages, 13999 KiB  
Article
Development Characteristics of Natural Fractures in Metamorphic Basement Reservoirs and Their Impacts on Reservoir Performance: A Case Study from the Bozhong Depression, Bohai Sea Area, Eastern China
by Guanjie Zhang, Jingshou Liu, Lei Zhang, Elsheikh Ahmed, Qi Cheng, Ning Shi and Yang Luo
J. Mar. Sci. Eng. 2025, 13(4), 816; https://doi.org/10.3390/jmse13040816 - 19 Apr 2025
Viewed by 545
Abstract
Archaean metamorphic basement reservoirs, characterized by the development of natural fractures, constitute the primary target for oil and gas exploration in the Bozhong Depression, Bohai Bay Basin, Eastern China. Based on analyses of geophysical image logs, cores, scanning electron microscopy (SEM), and laboratory [...] Read more.
Archaean metamorphic basement reservoirs, characterized by the development of natural fractures, constitute the primary target for oil and gas exploration in the Bozhong Depression, Bohai Bay Basin, Eastern China. Based on analyses of geophysical image logs, cores, scanning electron microscopy (SEM), and laboratory measurements, tectonic fractures are identified as the dominant type of natural fracture. Their development is primarily controlled by lithology, weathering intensity, and faulting. Fractures preferentially develop in metamorphic rocks with low plastic mineral content and are positively correlated with weathering intensity. Fracture orientations are predominantly parallel or subparallel to fault strikes, while localized stress perturbations induced by faulting significantly increase fracture density. Open fractures, constituting more than 60% of the total reservoir porosity, serve as both primary storage spaces and dominant fluid flow conduits, fundamentally governing reservoir quality. Consequently, spatial heterogeneity in fracture distribution drives distinct vertical zonation within the reservoir. The lithological units are ranked by fracture development potential (in descending order): leptynite, migmatitic granite, gneiss, cataclasite, diorite-porphyrite, and diabase. Diabase represents the lower threshold for effective reservoir formation, whereas overlying lithologies may function as reservoirs under favorable conditions. The large-scale compressional orogeny during the Indosinian period marked the primary phase of tectonic fracture formation. Subsequent uplift and inversion during the Yanshanian period further modified and overlaid the Indosinian structures. These structures are characterized by strong strike-slip strain, resulting in a series of conjugate shear fractures. During the Himalayan period, preexisting fractures were primarily reactivated, significantly influencing fracture effectiveness. The development model of the fracture network system in the metamorphic basement reservoirs of the study area is determined by a coupling mechanism of dominant lithology and multiphase fracturing. The spatial network reservoir system, under the control of multistage structure and weathering, is key to the formation of large-scale effective reservoirs in the metamorphic basement. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
Show Figures

Figure 1

27 pages, 6070 KiB  
Article
The Effects of Water Immersion-Induced Softening and Anisotropy of Mechanical Properties on Gas Depletion in Underground Coal Mines
by Yuling Tan, Hanlei Zhang, Xiuling Chen, Qinghe Niu and Guanglei Cui
Energies 2025, 18(8), 2033; https://doi.org/10.3390/en18082033 - 16 Apr 2025
Viewed by 290
Abstract
Coalbed methane (CBM), a highly efficient and clean energy source with substantial reserves, holds significant development potential. Permeability is a crucial factor in CBM recovery in underground coal mines. Hydraulic fracturing technology causes water to enter the coal reservoir, which will change mechanical [...] Read more.
Coalbed methane (CBM), a highly efficient and clean energy source with substantial reserves, holds significant development potential. Permeability is a crucial factor in CBM recovery in underground coal mines. Hydraulic fracturing technology causes water to enter the coal reservoir, which will change mechanical properties, affecting permeability changes and gas depletion trends. This study combines theoretical analysis with numerical simulation techniques to create a coupling model for fluid flow and reservoir deformation. The numerical model is established by referring to the geological conditions of the Wangpo coal mine, Shanxi province. Specifically, the impact of water immersion-induced softening and changes in the anisotropic mechanical properties on the directional permeability and gas flow rate is examined through parametric analysis. The dominant role in controlling the evolution of permeability varies depending on the orientation. Horizontal deformation primarily affects vertical permeability, which is subsequently influenced by the gas adsorption effect. In contrast, horizontal permeability is mainly determined by vertical deformation. Water immersion-induced softening significantly reduces the permeability and gas flow rate. Young’s modulus, which is dependent on water saturation, alters the permeability trend under water-rich conditions. Vertical permeability evolution is more sensitive to water-induced softening and changes in the anisotropic mechanical properties. When Sw0 is 0.7, the vertical permeability decreases by 60%, while the horizontal permeability decreases by 43%. Ultimately, the vertical permeability ratio stabilizes between 0.9 and 1.0, while the horizontal permeability ratio stabilizes in the range of 0.6 to 0.7. The influence of permeability on gas production characteristics is dependent on the water saturation conditions. In water-scarce conditions, variations in the fracture permeability greatly influence production flow rates. Conversely, in water-rich conditions, a higher permeability facilitates a quicker return to original levels and also enhances gas production flow rates. The research findings from this study provide important insights for fully understanding the mechanical properties of coal and ensuring the sustainable production of CBM. Full article
(This article belongs to the Special Issue Advanced Clean Coal Technology)
Show Figures

Figure 1

23 pages, 5824 KiB  
Review
Alteration of Catchments and Rivers, and the Effect on Floods: An Overview of Processes and Restoration Actions
by Eduardo Juan-Diego, Alejandro Mendoza, Maritza Liliana Arganis-Juárez and Moisés Berezowsky-Verduzco
Water 2025, 17(8), 1177; https://doi.org/10.3390/w17081177 - 15 Apr 2025
Viewed by 1243
Abstract
Flooding is a prevalent and growing problem involving significant economic losses worldwide. Traditional flood mitigation measures are based on the use of levees, dams, dredging, and river channelization, which can distort the perception of risk, leading to a false sense of security that [...] Read more.
Flooding is a prevalent and growing problem involving significant economic losses worldwide. Traditional flood mitigation measures are based on the use of levees, dams, dredging, and river channelization, which can distort the perception of risk, leading to a false sense of security that can induce an increase in the occupation of flood-prone areas. An undisturbed watershed and its fluvial system provide regulating services that contribute to flood mitigation. However, anthropogenic activities can degrade and diminish such services, impacting the magnitude of floods by changing the runoff patterns, erosion, sedimentation, channel conveyance capacity, and floodplain connectivity. Restoration and natural flood management (NFM) seek to recover and improve their watershed regulation services. The bibliographic review performed here aimed to assess the degradation of the natural regulation services of watersheds, which allowed us to identify significant alterations to runoff and streamflow. Also, the review studies of NMF allowed us to identify the restoration actions oriented to recover or enhance the flow regulation capacity of catchments and their fluvial systems. A current challenge is to accumulate more empirical evidence for the effectiveness of such flood mitigation solutions. Currently, the results for large catchments have been obtained mainly by the application of hydrologic and hydraulic models. Also, the adequacy of the different NFM actions to catchments with different physiographic and climatological settings needs to be addressed. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

18 pages, 3599 KiB  
Article
FRET Visualization of High Mechanosensation of von Willebrand Factor to Hydrodynamic Force
by Mingxing Ouyang, Yao Gao, Binqian Zhou, Jia Guo, Lei Lei, Yingxiao Wang and Linhong Deng
Biosensors 2025, 15(4), 248; https://doi.org/10.3390/bios15040248 - 14 Apr 2025
Viewed by 507
Abstract
von Willebrand factor (vWF) is a large glycoprotein in the circulation system, which senses hydrodynamic force at vascular injuries and then recruits platelets in assembling clots. How vWF mechanosenses shear flow for molecular unfolding is an important topic. Here, a Förster resonance energy [...] Read more.
von Willebrand factor (vWF) is a large glycoprotein in the circulation system, which senses hydrodynamic force at vascular injuries and then recruits platelets in assembling clots. How vWF mechanosenses shear flow for molecular unfolding is an important topic. Here, a Förster resonance energy transfer (FRET) biosensor was developed to monitor vWF conformation change to hydrodynamic force. The vWF-based biosensor is anchored on the cell surface, in which the A2 domain is flanked with a FRET pair. With 293T cells seeded into microfluidic channels, 2.8 dyn/cm2 of shear force (i.e., 28 μN/cm2, or 264.1/s in shear rate) induced a remarkable FRET change (~60%) in 30 min. A gradient micro-shear below 2.8 dyn/cm2 demonstrated FRET responses positively related to flow magnitudes, with 0.14 dyn/cm2 (1.4 μN/cm2) inducing an obvious change (~16%). The FRET increases indicate closer positioning of A2’s two terminals in vWF or the addition of a more parallel orientation of the FRET pair, supported with the high FRET of the A2-only-based biosensor, which probably resulted from flow-induced A2 dissociation from vWF intramolecular binding such as that in A1/A3 domains. Interestingly, gradient flow increases from 2.8 to 28 dyn/cm2 led to decreasing FRET changes, suggesting the second-level unfolding in the A2 domain. The LOCK-vWF biosensor with bridged A2 two terminals or an A2-only biosensor could not sense the shear, indicating a structure-flexible A2 and large vWF molecules that are important in the mechanosensation. In conclusion, the developed vWF-based biosensor demonstrated the high mechanosensation of vWF with two-level unfolding to shear force: the dissociation of the A2 domain from vWF intramolecular binding under a micro-shear, and then the unfolding of A2 in vWF under a higher shear; the FRET response to shear force at a very low scale may support the observed clot formation at microvascular wounds. This study provides new insights into the vWF’s mechanosensitive feature for its physiological functions and implicated disorders. Full article
Show Figures

Figure 1

12 pages, 2964 KiB  
Article
Azimuthal Variation in the Surface Wave Velocity of the Philippine Sea Plate
by Víctor Corchete
J. Mar. Sci. Eng. 2025, 13(3), 606; https://doi.org/10.3390/jmse13030606 - 19 Mar 2025
Viewed by 316
Abstract
A study of the azimuthal variation in the surface wave fundamental-mode phase velocity is performed for the Philippine Sea Plate (PSP). This azimuthal variation has been anisotropically inverted for the PSP to determine the isotropic and anisotropic structure of this plate from 0 [...] Read more.
A study of the azimuthal variation in the surface wave fundamental-mode phase velocity is performed for the Philippine Sea Plate (PSP). This azimuthal variation has been anisotropically inverted for the PSP to determine the isotropic and anisotropic structure of this plate from 0 to 260 km. This azimuthal variation is due to anisotropy in the upper mantle. The crust is found in an isotropic structure, but the lithosphere and asthenosphere exhibit anisotropic structures. For the lithosphere, the main cause of anisotropy is the alignment of anisotropic crystals approximately parallel to the direction of seafloor spreading, and the fast axis of the seismic velocity is in the direction of ~163° of azimuth. For the asthenosphere, the seismic anisotropy can be derived from the lattice-preferred orientation (LPO) in response to the shear strains induced by mantle flow, and the fast axis of the seismic velocity is also the direction of ~163° of azimuth. This result suggests that a mantle flow pattern may occur in the asthenosphere and seems to be approximately parallel to the direction of seafloor spreading observed for the lithosphere. Finally, the changes in the parameter ξ with depth are studied to estimate the depth of the lithosphere–asthenosphere boundary (LAB), observing a clear change in this parameter at 80 km depth. Full article
(This article belongs to the Special Issue Storm Tide and Wave Simulations and Assessment, 3rd Edition)
Show Figures

Figure 1

20 pages, 7166 KiB  
Article
Drag Force and Heat Transfer Characteristics of Ellipsoidal Particles near the Wall
by Yongkang Yang, Xinyu Dong and Ting Xiong
Water 2025, 17(5), 736; https://doi.org/10.3390/w17050736 - 3 Mar 2025
Cited by 1 | Viewed by 906
Abstract
This study investigates the force and heat transfer characteristics of oblate spheroidal particles in gas–solid two-phase flows near walls, addressing the influence of particle orientation, shape, Reynolds number, and particle–wall distance. These factors are critical in industrial processes such as pneumatic transport and [...] Read more.
This study investigates the force and heat transfer characteristics of oblate spheroidal particles in gas–solid two-phase flows near walls, addressing the influence of particle orientation, shape, Reynolds number, and particle–wall distance. These factors are critical in industrial processes such as pneumatic transport and crop drying, as well as in natural phenomena. Utilizing the Euler–Lagrangian model and large eddy simulation (LES), we simulated flow fields and heat transfer under various conditions. The results indicate that at Re = 500, turbulence mitigates wall interference, leading to a 14.4% increase in the Nusselt number (Nu). Particle orientation plays a crucial role in heat transfer, with Nu decreasing by 20% at = 90° due to restricted interstitial flow. A higher aspect ratio (Ar = 0.8) enhances heat transfer by 25% compared to a lower aspect ratio (Ar = 0.1). Additionally, increasing the particle–wall distance from H = 0.25dv to H = 0.5dv reduces wall-induced drag by 30%. The findings enhance the understanding of particle–fluid interactions near walls, providing a foundation for optimizing computational fluid dynamics models and improving industrial applications. Future work should consider additional variables such as particle roughness to further refine predictive capabilities. This study contributes to advancing theoretical and practical insights into non-spherical particle behaviors in complex flow environments. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

17 pages, 7335 KiB  
Article
Dynamic Plasticity and Fracture of Al 7075 and V95T1 Alloys: High-Velocity Impact Experiments
by Egor S. Rodionov, Andrey Ya. Cherepanov, Alfiya G. Fazlitdinova, Timur T. Sultanov, Victor G. Lupanov, Polina N. Mayer and Alexander E. Mayer
Dynamics 2025, 5(1), 6; https://doi.org/10.3390/dynamics5010006 - 15 Feb 2025
Viewed by 1132
Abstract
A novel method to measure dynamic flow stress and corresponding strain rates obtained from Taylor tests using profiled samples with a reduced cylindrical head part was applied to study the dynamic characteristics of similar commercial 7075 and V95T1 aluminum alloys. The measured dynamic [...] Read more.
A novel method to measure dynamic flow stress and corresponding strain rates obtained from Taylor tests using profiled samples with a reduced cylindrical head part was applied to study the dynamic characteristics of similar commercial 7075 and V95T1 aluminum alloys. The measured dynamic flow stress is verified using a classical Taylor’s approach with uniform cylinders and compared with the literature data. Our study shows that the dynamic flow stress of 7075 alloy, which is 786 MPa at strain rates of (4–8) × 103 s−1, exceeds the value of 624 MPa for V95T1 alloy at strain rates of (2–6) × 103 s−1 by 25%. The threshold impact velocity resulting in fracture of the 4 mm head part of the profiled samples is 116–130 m/s for 7075 alloy and only 108 m/s for V95T1 alloy. The fracture pattern is also different between the alloys with characteristic shear-induced cracks oriented at 45° to the impact direction in the case of V95T1 alloy and perpendicular to the breaking off head part in the case of 7075 alloy. On the other hand, the compressive fracture strain of V95T1 alloy, which is 0.29–0.36, exceeds that of 7075 alloy, which is 0.27–0.33, by approximately 8%. Thus, V95T1 aluminum alloy exhibits less strength but is more ductile, while 7075 aluminum alloy exhibits more strength but is simultaneously more brittle. Full article
Show Figures

Figure 1

Back to TopTop