Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = floodwater mapping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2990 KB  
Article
A New Semi-Empirical Model to Predict Vehicle Instability in Urban Flooding
by Omayma Amellah
Water 2026, 18(1), 80; https://doi.org/10.3390/w18010080 - 28 Dec 2025
Viewed by 409
Abstract
Urban floods frequently destabilize most objects they encounter, including vehicles, which potentially worsens flood impacts, leading to significant casualties and material losses. Improving the prediction of vehicle instability under flood conditions is therefore essential for effective risk assessment and emergency management. This work [...] Read more.
Urban floods frequently destabilize most objects they encounter, including vehicles, which potentially worsens flood impacts, leading to significant casualties and material losses. Improving the prediction of vehicle instability under flood conditions is therefore essential for effective risk assessment and emergency management. This work introduces a new physics-based, hazard assessment model for vehicle instability in urban floodwaters. The core of the model is the construction of a comprehensive parameter that integrates the main hydraulic mechanisms responsible for vehicle destabilization within a single and integrative formulation. An extensive set of experimental data covering multiple vehicle types was used and integrated into the modelling framework. Through calibration, model parameters were determined for three representative vehicle categories, allowing the derivation of distinct critical stability curves as functions of flow depth and velocity. Vehicle stability is evaluated using a physics-based force balance approach that explicitly accounts for the interaction between flood hydrodynamics and vehicle physical characteristics, enhancing model adaptability across different vehicle types and flood scenarios. The proposed model is validated through comparison with existing experimental data and stability criteria, including widely used guidelines. The results show good agreement while demonstrating improved accuracy in predicting critical stability thresholds for modern vehicles. Overall, the model provides a generalizable parameter for flood hazard assessment, with direct applications in urban flood risk mapping and decision support for emergency management. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

23 pages, 29233 KB  
Article
Geospatial and Deep Learning Approaches for Modeling Floodwater Depth in Urbanized Areas
by Jeffrey Blay and Leila Hashemi-Beni
Remote Sens. 2026, 18(1), 60; https://doi.org/10.3390/rs18010060 - 24 Dec 2025
Viewed by 415
Abstract
Floodwater depth estimation is essential for disaster response and infrastructure planning yet remains challenging in urban areas with limited gage and hydrological data. This study presents a deep learning-based framework grounded in the hydrostatic equilibrium principle to estimate flood depth using a remote [...] Read more.
Floodwater depth estimation is essential for disaster response and infrastructure planning yet remains challenging in urban areas with limited gage and hydrological data. This study presents a deep learning-based framework grounded in the hydrostatic equilibrium principle to estimate flood depth using a remote sensing approach. A series of ResNet architectures were trained and evaluated under two different scenarios: (a) a baseline model input using LiDAR-derived DTM and flood extent, and (b) an enhanced model incorporating additional terrain features such as slope, curvature, and Topographic Wetness Index (TWI). The results demonstrate that ResNet18 outperformed deeper models, achieving an RMSE of 0.71 ft, Huber Loss of 0.28 ft, MAE of 0.23 ft, SSIM of approximately 99% and R-Squared of approximately 94% under the enhanced scenario. Inclusion of terrain predictors led to significant improvements in prediction accuracy and spatial coherence. They improved Huber Loss by 28%, RMSE by 13%, and MAE by 21%. However, when applied to an unseen peri-urban catchment, model performance declined (RMSE = 1.95 ft), mainly due to limited and temporally misaligned ground truth data, and differences in spatial characteristics. Despite these limitations, ResNet18 generalizes well, mapping flood depth in unseen catchments, and demonstrates the potential for rapid assessments in data-scarce regions. Full article
Show Figures

Graphical abstract

39 pages, 4207 KB  
Article
Ensemble Learning-Driven Flood Risk Management Using Hybrid Defense Systems
by Nadir Murtaza and Ghufran Ahmed Pasha
AI 2026, 7(1), 2; https://doi.org/10.3390/ai7010002 - 22 Dec 2025
Viewed by 435
Abstract
Climate-induced flooding is a major issue throughout the globe, resulting in damage to infrastructure, loss of life, and the economy. Therefore, there is an urgent need for sustainable flood risk management. This paper assesses the effectiveness of the hybrid defense system using advanced [...] Read more.
Climate-induced flooding is a major issue throughout the globe, resulting in damage to infrastructure, loss of life, and the economy. Therefore, there is an urgent need for sustainable flood risk management. This paper assesses the effectiveness of the hybrid defense system using advanced artificial intelligence (AI) techniques. A data series of energy dissipation (ΔE), flow conditions, roughness, and vegetation density was collected from literature and laboratory experiments. Out of the selected 136 data points, 80 points were collected from literature and 56 from a laboratory experiment. Advanced AI models like Random Forest (RF), Extreme Boosting Gradient (XGBoost) with Particle Swarm Optimization (PSO), Support Vector Regression (SVR) with PSO, and artificial neural network (ANN) with PSO were trained on the collected data series for predicting floodwater energy dissipation. The predictive capability of each model was evaluated through performance indicators, including the coefficient of determination (R2) and root mean square error (RMSE). Further, the relationship between input and output parameters was evaluated using a correlation heatmap, scatter pair plot, and HEC-contour maps. The results demonstrated the superior performance of the Random Forest (RF) model, with a high coefficient of determination (R2 = 0.96) and a low RMSE of 3.03 during training. This superiority was further supported by statistical analyses, where ANOVA and t-tests confirmed the significant performance differences among the models, and Taylor’s diagram showed closer agreement between RF predictions and observed energy dissipation. Further, scatter pair plot and HEC-contour maps also supported the result of SHAP analysis, demonstrating greater impact of the roughness condition followed by vegetation density in reducing floodwater energy dissipation under diverse flow conditions. The findings of this study concluded that RF has the capability of modeling flood risk management, indicating the role of AI models in combination with a hybrid defense system for enhanced flood risk management. Full article
(This article belongs to the Special Issue Sensing the Future: IOT-AI Synergy for Climate Action)
Show Figures

Graphical abstract

24 pages, 7126 KB  
Article
FLDSensing: Remote Sensing Flood Inundation Mapping with FLDPLN
by Jackson Edwards, Francisco J. Gomez, Son Kim Do, David A. Weiss, Jude Kastens, Sagy Cohen, Hamid Moradkhani, Venkataraman Lakshmi and Xingong Li
Remote Sens. 2025, 17(19), 3362; https://doi.org/10.3390/rs17193362 - 4 Oct 2025
Viewed by 3059
Abstract
Flood inundation mapping (FIM), which is essential for effective disaster response and management, requires rapid and accurate delineation of flood extent and depth. Remote sensing FIM, especially using satellite imagery, offers certain capabilities and advantages, but also faces challenges such as cloud and [...] Read more.
Flood inundation mapping (FIM), which is essential for effective disaster response and management, requires rapid and accurate delineation of flood extent and depth. Remote sensing FIM, especially using satellite imagery, offers certain capabilities and advantages, but also faces challenges such as cloud and canopy obstructions and flood depth estimation. This research developed a novel hybrid approach, named FLDSensing, which combines remote sensing imagery with the FLDPLN (pronounced “floodplain”) flood inundation model, to improve remote sensing FIM in both inundation extent and depth estimation. The method first identifies clean flood edge pixels (i.e., floodwater pixels next to bare ground), which, combined with the FLDPLN library, are used to estimate the water stages at certain stream pixels. Water stage is further interpolated and smoothed at additional stream pixels, which is then used with an FLDPLN library to generate flood extent and depth maps. The method was applied over the Verdigris River in Kansas to map the flood event that occurred in late May 2019, where Sentinel-2 imagery was used to generate remote sensing FIM and to identify clean water-edge pixels. The results show a significant improvement in FIM accuracy when compared to a HEC-RAS 2D (Version 6.5) benchmark, with the metrics of CSI/POD/FAR/F1-scores reaching 0.89/0.98/0.09/0.94 from 0.55/0.56/0.03/0.71 using remote sensing alone. The method also performed favorably against several existing hybrid approaches, including FLEXTH and FwDET 2.1. This study demonstrates that integrating remote sensing imagery with the FLDPLN model, which uniquely estimates stream stage through floodwater-edges, offers a more effective hybrid approach to enhancing remote sensing-based FIM. Full article
(This article belongs to the Special Issue Multi-Source Remote Sensing Data in Hydrology and Water Management)
Show Figures

Figure 1

30 pages, 9692 KB  
Article
Integrating GIS, Remote Sensing, and Machine Learning to Optimize Sustainable Groundwater Recharge in Arid Mediterranean Landscapes: A Case Study from the Middle Draa Valley, Morocco
by Adil Moumane, Abdessamad Elmotawakkil, Md. Mahmudul Hasan, Nikola Kranjčić, Mouhcine Batchi, Jamal Al Karkouri, Bojan Đurin, Ehab Gomaa, Khaled A. El-Nagdy and Youssef M. Youssef
Water 2025, 17(15), 2336; https://doi.org/10.3390/w17152336 - 6 Aug 2025
Cited by 3 | Viewed by 3055
Abstract
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies [...] Read more.
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies and compares six machine learning (ML) algorithms—decision trees (CART), ensemble methods (random forest, LightGBM, XGBoost), distance-based learning (k-nearest neighbors), and support vector machines—integrating GIS, satellite data, and field observations to delineate zones suitable for groundwater recharge. The results indicate that ensemble tree-based methods yielded the highest predictive accuracy, with LightGBM outperforming the others by achieving an overall accuracy of 0.90. Random forest and XGBoost also demonstrated strong performance, effectively identifying priority areas for artificial recharge, particularly near ephemeral streams. A feature importance analysis revealed that soil permeability, elevation, and stream proximity were the most influential variables in recharge zone delineation. The generated maps provide valuable support for irrigation planning, aquifer conservation, and floodwater management. Overall, the proposed machine learning–geospatial framework offers a robust and transferable approach for mapping groundwater recharge zones (GWRZ) in arid and semi-arid regions, contributing to the achievement of Sustainable Development Goals (SDGs))—notably SDG 6 (Clean Water and Sanitation), by enhancing water-use efficiency and groundwater recharge (Target 6.4), and SDG 13 (Climate Action), by supporting climate-resilient aquifer management. Full article
Show Figures

Figure 1

21 pages, 6990 KB  
Article
Machine Learning-Driven Rapid Flood Mapping for Tropical Storm Imelda Using Sentinel-1 SAR Imagery
by Reda Amer
Remote Sens. 2025, 17(11), 1869; https://doi.org/10.3390/rs17111869 - 28 May 2025
Cited by 2 | Viewed by 3243
Abstract
Accurate and timely flood mapping is critical for informing emergency response and risk mitigation during extreme weather events. This study presents a synthetic aperture radar (SAR)-based approach for rapid flood extent mapping using Sentinel-1 imagery, demonstrated for Tropical Storm Imelda (17–21 September 2019) [...] Read more.
Accurate and timely flood mapping is critical for informing emergency response and risk mitigation during extreme weather events. This study presents a synthetic aperture radar (SAR)-based approach for rapid flood extent mapping using Sentinel-1 imagery, demonstrated for Tropical Storm Imelda (17–21 September 2019) in southeastern Texas. Dual-polarization Sentinel-1 SAR data (VH and VV) were processed by computing the VH/VV backscatter ratio, and the resulting ratio image was classified using a supervised Random Forest classifier to delineate water and land. All Sentinel-1 images underwent radiometric calibration, speckle noise filtering, and terrain correction to ensure precision in flood delineation. The Random Forest classifier achieved an overall flood mapping accuracy exceeding 94%, with Cohen’s kappa coefficients of approximately 0.75–0.80, demonstrating the approach’s reliability in distinguishing transient floodwaters from permanent water bodies. The spatial distribution of flooding was strongly influenced by topography and land cover. Analysis of Shuttle Radar Topography Mission (SRTM) digital elevation data revealed that low-lying, flat terrain was most vulnerable to inundation; correspondingly, the land cover types most affected were hay/pasture, cultivated land, and emergent wetlands. Additionally, urban areas with low-intensity development experienced extensive flooding, attributed to impervious surfaces exacerbating runoff. A strong, statistically significant correlation (R2 = 0.87, p < 0.01) was observed between precipitation and flood extent, indicating that heavier rainfall led to greater inundation; accordingly, the areas with the highest rainfall totals (e.g., Jefferson and Chambers counties) experienced the most extensive flooding, as confirmed by SAR-based change detection. The proposed approach eliminates the need for manual threshold selection, thereby reducing misclassification errors due to speckle noise and land cover heterogeneity. Harnessing globally available Sentinel-1 data with near-real-time processing and a robust classifier, this approach provides a scalable solution for rapid flood monitoring. These findings underscore the potential of SAR-based flood mapping under adverse weather conditions, thereby contributing to improved disaster preparedness and resilience in flood-prone regions. Full article
Show Figures

Figure 1

42 pages, 29424 KB  
Article
Mapping of Flood Impacts Caused by the September 2023 Storm Daniel in Thessaly’s Plain (Greece) with the Use of Remote Sensing Satellite Data
by Triantafyllos Falaras, Anna Dosiou, Stamatina Tounta, Michalis Diakakis, Efthymios Lekkas and Issaak Parcharidis
Remote Sens. 2025, 17(10), 1750; https://doi.org/10.3390/rs17101750 - 16 May 2025
Cited by 2 | Viewed by 5137
Abstract
Floods caused by extreme weather events critically impact human and natural systems. Remote sensing can be a very useful tool in mapping these impacts. However, processing and analyzing satellite imagery covering extensive periods is computationally intensive and time-consuming, especially when data from different [...] Read more.
Floods caused by extreme weather events critically impact human and natural systems. Remote sensing can be a very useful tool in mapping these impacts. However, processing and analyzing satellite imagery covering extensive periods is computationally intensive and time-consuming, especially when data from different sensors need to be integrated, hampering its operational use. To address this issue, the present study focuses on mapping flooded areas and analyzing the impacts of the 2023 Storm Daniel flood in the Thessaly region (Greece), utilizing Earth Observation and GIS methods. The study uses multiple Sentinel-1, Sentinel-2, and Landsat 8/9 satellite images based on backscatter histogram statistics thresholding for SAR and Modified Normalized Difference Water Index (MNDWI) for multispectral images to delineate the extent of flooded areas triggered by the 2023 Storm Daniel in Thessaly region (Greece). Cloud computing on the Google Earth Engine (GEE) platform is utilized to process satellite image acquisitions and track floodwater evolution dynamics until the complete drainage of the area, making the process significantly faster. The study examines the usability and transferability of the approach to evaluate flood impact through land cover, linear infrastructure, buildings, and population-related geospatial datasets. The results highlight the vital role of the proposed approach of integrating remote sensing and geospatial analysis for effective emergency response, disaster management, and recovery planning. Full article
Show Figures

Figure 1

27 pages, 42566 KB  
Article
Unsupervised Rural Flood Mapping from Bi-Temporal Sentinel-1 Images Using an Improved Wavelet-Fusion Flood-Change Index (IWFCI) and an Uncertainty-Sensitive Markov Random Field (USMRF) Model
by Amin Mohsenifar, Ali Mohammadzadeh and Sadegh Jamali
Remote Sens. 2025, 17(6), 1024; https://doi.org/10.3390/rs17061024 - 14 Mar 2025
Cited by 3 | Viewed by 2083
Abstract
Synthetic aperture radar (SAR) remote sensing (RS) technology is an ideal tool to map flooded areas on account of its all-time, all-weather imaging capability. Existing SAR data-based change detection approaches lack well-discriminant change indices for reliable floodwater mapping. To resolve this issue, an [...] Read more.
Synthetic aperture radar (SAR) remote sensing (RS) technology is an ideal tool to map flooded areas on account of its all-time, all-weather imaging capability. Existing SAR data-based change detection approaches lack well-discriminant change indices for reliable floodwater mapping. To resolve this issue, an unsupervised change detection approach, made up of two main steps, is proposed for detecting floodwaters from bi-temporal SAR data. In the first step, an improved wavelet-fusion flood-change index (IWFCI) is proposed. The IWFCI modifies the mean-ratio change index (CI) to fuse it with the log-ratio CI using the discrete wavelet transform (DWT). The IWFCI also employs a discriminant feature derived from the co-flood image to enhance the separability between the non-flood and flood areas. In the second step, an uncertainty-sensitive Markov random field (USMRF) model is proposed to diminish the over-smoothness issue in the areas with high uncertainty based on a new Gaussian uncertainty term. To appraise the efficacy of the floodwater detection approach proposed in this study, comparative experiments were conducted in two stages on four datasets, each including a normalized difference water index (NDWI) and pre-and co-flood Sentinel-1 data. In the first stage, the proposed IWFCI was compared to a number of state-of-the-art (SOTA) CIs, and the second stage compared USMRF to the SOTA change detection algorithms. From the experimental results in the first stage, the proposed IWFCI, yielding an average F-score of 86.20%, performed better than SOTA CIs. Likewise, according to the experimental results obtained in the second stage, the USMRF model with an average F-score of 89.27% outperformed the comparative methods in classifying non-flood and flood classes. Accordingly, the proposed floodwater detection approach, combining IWFCI and USMRF, can serve as a reliable tool for detecting flooded areas in SAR data. Full article
Show Figures

Graphical abstract

28 pages, 34904 KB  
Article
Evaluation of the Soil Conservation Service Curve Number (SCS-CN) Method for Flash Flood Runoff Estimation in Arid Regions: A Case Study of Central Eastern Desert, Egypt
by Mohammed I. Khattab, Mohamed E. Fadl, Hanaa A. Megahed, Amr M. Saleem, Omnia El-Saadawy, Marios Drosos, Antonio Scopa and Maha K. Selim
Hydrology 2025, 12(3), 54; https://doi.org/10.3390/hydrology12030054 - 8 Mar 2025
Cited by 4 | Viewed by 4896
Abstract
Flash floods are highly destructive natural disasters, particularly in arid and semi-arid regions like Egypt, where data scarcity poses significant challenges for analysis. This study focuses on the Wadi Al-Barud basin in Egypt’s Central Eastern Desert (CED), where a severe flash flood occurred [...] Read more.
Flash floods are highly destructive natural disasters, particularly in arid and semi-arid regions like Egypt, where data scarcity poses significant challenges for analysis. This study focuses on the Wadi Al-Barud basin in Egypt’s Central Eastern Desert (CED), where a severe flash flood occurred on 26–27 October 2016. This flash flood event, characterized by moderate rainfall (16.4 mm/day) and a total volume of 8.85 × 106 m3, caused minor infrastructure damage, with 78.4% of the rainfall occurring within 6 h. A significant portion of floodwaters was stored in dam reservoirs, reducing downstream impacts. Multi-source data, including Landsat 8 OLI imagery, ALOS-PALSAR radar data, Global Precipitation Measurements—Integrated Multi-satellite Retrievals for Final Run (GPM-FR) precipitation data, geologic maps, field measurements, and Triangulated Irregular Networks (TINs), were integrated to analyze the flash flood event. The Soil Conservation Service Curve Number (SCS-CN) method integrated with several hydrologic models, including the Hydrologic Modelling System (HEC-HMS), Soil and Water Assessment Tool (SWAT), and European Hydrological System Model (MIKE-SHE), was applied to evaluate flood forecasting, watershed management, and runoff estimation, with results cross-validated using TIN-derived DEMs, field measurements, and Landsat 8 imagery. The SCS-CN method proved effective, with percentage differences of 5.4% and 11.7% for reservoirs 1 and 3, respectively. High-resolution GPM-FR rainfall data and ALOS-derived soil texture mapping were particularly valuable for flash flood analysis in data-scarce regions. The study concluded that the existing protection plan is sufficient for 25- and 50-year return periods but inadequate for 100-year events, especially under climate change. Recommendations include constructing additional reservoirs (0.25 × 106 m3 and 1 × 106 m3) along Wadi Kahlah and Al-Barud Delta, reinforcing the Safaga–Qena highway, and building protective barriers to divert floodwaters. The methodology is applicable to similar flash flood events globally, and advancements in geomatics and datasets will enhance future flood prediction and management. Full article
Show Figures

Figure 1

24 pages, 6145 KB  
Article
Flood Mapping and Assessment of Crop Damage Based on Multi-Source Remote Sensing: A Case Study of the “7.27” Rainstorm in Hebei Province, China
by Chenhao Wen, Zhongchang Sun, Hongwei Li, Youmei Han, Dinoo Gunasekera, Yu Chen, Hongsheng Zhang and Xiayu Zhao
Remote Sens. 2025, 17(5), 904; https://doi.org/10.3390/rs17050904 - 4 Mar 2025
Cited by 2 | Viewed by 3429
Abstract
Flooding is among the world’s most destructive natural disasters. From 27 July to 1 August 2023, Zhuozhou City and surrounding areas in Hebei Province experienced extreme rainfall, severely impacting local food security. To swiftly map the spatial and temporal distribution of the floodwaters [...] Read more.
Flooding is among the world’s most destructive natural disasters. From 27 July to 1 August 2023, Zhuozhou City and surrounding areas in Hebei Province experienced extreme rainfall, severely impacting local food security. To swiftly map the spatial and temporal distribution of the floodwaters and assess the damage to major crops, this study proposes a water body identification method with a dual polarization band combination for synthetic-aperture radar (SAR) data to solve the differences in water body feature recognition in SAR due to different polarization modes. Based on the SAR water body extent, the flood inundation extent was mapped with GF-6 optical data. In addition, Landsat-8 data were used to generate information on significant crops in the study area, while Sentinel-2 data and the Google Earth Engine (GEE) platform were used to classify the extent of crop damage. The results indicate that the flood inundated 700.51 km2, 14.10% of the study area. Approximately 40,700 hectares (ha) or 8.46% of the main crops were affected, including 33,700 ha of maize, 4300 ha of vegetables, and 2800 ha of beans. Moderate crop damage was the most widespread, affecting 37.62% of the crops, while very extreme damage was the least, affecting 5.10%. Zhuozhou City experienced the most significant impact, with 13,700 ha of crop damage, accounting for 33.70% of the total. This study provides a computational framework for rapid flood monitoring using multi-source remote sensing data, which also serves as a reference for post-disaster recovery, agricultural production, and crop risk assessment. Full article
Show Figures

Figure 1

27 pages, 7651 KB  
Article
Flood Mud Index (FMI): A Rapid and Effective Tool for Mapping Muddy Areas After Floods—The Valencia Case
by Emanuele Alcaras
Remote Sens. 2025, 17(5), 770; https://doi.org/10.3390/rs17050770 - 23 Feb 2025
Cited by 4 | Viewed by 3571
Abstract
Mapping flooded areas immediately after heavy rainfall is particularly challenging when sediment-laden floodwaters dominate the landscape. Traditional indices, such as the Normalized Difference Water Index (NDWI), are designed to detect water-covered areas but fail to identify muddy zones with high turbidity, which are [...] Read more.
Mapping flooded areas immediately after heavy rainfall is particularly challenging when sediment-laden floodwaters dominate the landscape. Traditional indices, such as the Normalized Difference Water Index (NDWI), are designed to detect water-covered areas but fail to identify muddy zones with high turbidity, which are common during extreme flood events. These muddy floodwaters often blend spectrally with surrounding land, leading to significant misclassifications. This study introduces the Flood Mud Index (FMI), a novel spectral index specifically developed to detect debris-laden flooded areas using only the red and blue bands. Landsat 8 imagery was utilized to validate the FMI, and its performance was evaluated through confusion matrices. The index achieved an overall accuracy of 97.86%, outperforming existing indices and demonstrating exceptional precision in delineating muddy floodplains. By relying solely on red and blue bands, the FMI is applicable to any platform equipped with RGB sensors, offering versatility for flood monitoring. Its compatibility with low-cost drones makes it especially valuable for rapid post-flood assessments, enabling immediate data collection even in scenarios with persistent cloud cover. The FMI addresses a critical gap in flood mapping, providing an effective tool for emergency response and management in sediment-rich environments. Full article
(This article belongs to the Special Issue Remote Sensing in Natural Hazard Exploration and Impact Assessment)
Show Figures

Figure 1

19 pages, 27702 KB  
Article
Low-Cost, LiDAR-Based, Dynamic, Flood Risk Communication Viewer
by Debra F. Laefer, Evan O’Keeffe, Kshitij Chandna, Kim Hertz, Jing Zhu, Raul Lejano, Anh Vu Vo, Michela Bertolotto and Ulrich Ofterdinger
Remote Sens. 2025, 17(4), 592; https://doi.org/10.3390/rs17040592 - 9 Feb 2025
Cited by 2 | Viewed by 2205
Abstract
This paper proposes a flood risk visualization method that is (1) readily transferable (2) hyperlocal, (3) computationally inexpensive, and (4) geometrically accurate. This proposal is for risk communication, to provide high-resolution, three-dimensional flood visualization at the sub-meter level. The method couples a laser [...] Read more.
This paper proposes a flood risk visualization method that is (1) readily transferable (2) hyperlocal, (3) computationally inexpensive, and (4) geometrically accurate. This proposal is for risk communication, to provide high-resolution, three-dimensional flood visualization at the sub-meter level. The method couples a laser scanning point cloud with algorithms that produce textured floodwaters, achieved through compounding multiple sine functions in a graphics shader. This hyper-local approach to visualization is enhanced by the ability to portray changes in (i) watercolor, (ii) texture, and (iii) motion (including dynamic heights) for various flood prediction scenarios. Through decoupling physics-based predictions from the visualization, a dynamic, flood risk viewer was produced with modest processing resources involving only a single, quad-core processor with a frequency around 4.30 GHz and with no graphics card. The system offers several major advantages. (1) The approach enables its use on a browser or with inexpensive, virtual reality hardware and, thus, promotes local dissemination for flood risk communication, planning, and mitigation. (2) The approach can be used for any scenario where water interfaces with the built environment, including inside of pipes. (3) When tested for a coastal inundation scenario from a hurricane, 92% of the neighborhood participants found it to be more effective in communicating flood risk than traditional 2D mapping flood warnings provided by governmental authorities. Full article
Show Figures

Figure 1

28 pages, 8147 KB  
Article
INterpolated FLOod Surface (INFLOS), a Rapid and Operational Tool to Estimate Flood Depths from Earth Observation Data for Emergency Management
by Quentin Poterek, Alessandro Caretto, Rémi Braun, Stephen Clandillon, Claire Huber and Pietro Ceccato
Remote Sens. 2025, 17(2), 329; https://doi.org/10.3390/rs17020329 - 18 Jan 2025
Cited by 5 | Viewed by 3344
Abstract
The INterpolated FLOod Surface (INFLOS) tool was developed to meet the operational needs of the Copernicus Emergency Management Service (CEMS) Rapid Mapping (RM) component, which delivers critical crisis information within hours during and after disasters. With increasing demand for accurate and real-time flood [...] Read more.
The INterpolated FLOod Surface (INFLOS) tool was developed to meet the operational needs of the Copernicus Emergency Management Service (CEMS) Rapid Mapping (RM) component, which delivers critical crisis information within hours during and after disasters. With increasing demand for accurate and real-time flood depth estimates, INFLOS provides a rapid, adaptable solution for estimating floodwater depth across diverse flood scenarios, using remotely sensed data and high-resolution Digital Terrain Models (DTMs). INFLOS calculates flood depth by interpolating water surface elevation from sample points along flooded area boundaries, derived from satellite imagery. This tool is capable of delivering flood depth estimates in a rapid mapping context, leveraging a multistep interpolation and filtering process for improved accuracy. Tested across fourteen regions in Europe and South America, INFLOS has been successfully integrated into CEMS RM operations. The tool’s computational optimisations further enhance efficiency, improving computation times by up to 15-fold, compared to similar techniques. Indeed, it is able to process areas of up to 6000 ha in a median time of 5.2 min, and up to 30 min at most. In conclusion, INFLOS is currently operational and consistently generates flood depth products quickly, supporting real-time emergency management and reinforcing the CEMS RM portfolio. Full article
Show Figures

Graphical abstract

39 pages, 10616 KB  
Article
Ensemble Learning for Urban Flood Segmentation Through the Fusion of Multi-Spectral Satellite Data with Water Spectral Indices Using Row-Wise Cross Attention
by Han Xu and Alan Woodley
Remote Sens. 2025, 17(1), 90; https://doi.org/10.3390/rs17010090 - 29 Dec 2024
Viewed by 2348
Abstract
In post-flood disaster analysis, accurate flood mapping in complex riverine urban areas is critical for effective flood risk management. Recent studies have explored the use of water-related spectral indices derived from satellite imagery combined with machine learning (ML) models to achieve this purpose. [...] Read more.
In post-flood disaster analysis, accurate flood mapping in complex riverine urban areas is critical for effective flood risk management. Recent studies have explored the use of water-related spectral indices derived from satellite imagery combined with machine learning (ML) models to achieve this purpose. However, relying solely on spectral indices can lead these models to overlook crucial urban contextual features, making it difficult to distinguish inundated areas from other similar features like shadows or wet roads. To address this, our research explores a novel approach to improve flood segmentation by integrating a row-wise cross attention (CA) module with ML ensemble learning. We apply this method to the analysis of the Brisbane Floods of 2022, utilizing 4-band satellite imagery from PlanetScope and derived spectral indices. Applied as a pre-processing step, the CA module fuses a spectral band index into each band of a peak-flood satellite image using a row-wise operation. This process amplifies subtle differences between floodwater and other urban characteristics while preserving complete landscape information. The CA-fused datasets are then fed into our proposed ensemble model, which is constructed using four classic ML models. A soft voting strategy averages their binary predictions to determine the final classification for each pixel. Our research demonstrates that CA datasets can enhance the sensitivity of individual ML models to floodwater in complex riverine urban areas, generally improving flood mapping accuracy. The experimental results reveal that the ensemble model achieves high accuracy (approaching 100%) on each CA dataset. However, this may be affected by overfitting, which indicates that evaluating the model on additional datasets may lead to reduced accuracy. This study encourages further research to optimize the model and validate its generalizability in various urban contexts. Full article
Show Figures

Figure 1

23 pages, 22589 KB  
Article
Landslide Prediction Validation in Western North Carolina After Hurricane Helene
by Sophia Lin, Shenen Chen, Ryan A. Rasanen, Qifan Zhao, Vidya Chavan, Wenwu Tang, Navanit Shanmugam, Craig Allan, Nicole Braxtan and John Diemer
Geotechnics 2024, 4(4), 1259-1281; https://doi.org/10.3390/geotechnics4040064 - 14 Dec 2024
Cited by 5 | Viewed by 4214
Abstract
Hurricane Helene triggered 1792 landslides across western North Carolina and has caused damage to 79 bridges to date. Helene hit western North Carolina days after a low-pressure system dropped up to 254 mm of rain in some locations of western North Carolina (e.g., [...] Read more.
Hurricane Helene triggered 1792 landslides across western North Carolina and has caused damage to 79 bridges to date. Helene hit western North Carolina days after a low-pressure system dropped up to 254 mm of rain in some locations of western North Carolina (e.g., Asheville Regional Airport). The already waterlogged region experienced devastation as significant additional rainfall occurred during Helene, where some areas, like Asheville, North Carolina received an additional 356 mm of rain (National Weather Service, 2024). In this study, machine learning (ML)-generated multi-hazard landslide susceptibility maps are compared to the documented landslides from Helene. The landslide models use the North Carolina landslide database, soil survey, rainfall, USGS digital elevation model (DEM), and distance to rivers to create the landslide variables. From the DEM, aspect factors and slope are computed. Because recent research in western North Carolina suggests fault movement is destabilizing slopes, distance to fault was also incorporated as a predictor variable. Finally, soil types were used as a wildfire predictor variable. In total, 4794 landslides were used for model training. Random Forest and logistic regression machine learning algorithms were used to develop the landslide susceptibility map. Furthermore, landslide susceptibility was also examined with and without consideration of wildfires. Ultimately, this study indicates heavy rainfall and debris-laden floodwaters were critical in triggering both landslides and scour, posing a dual threat to bridge stability. Field investigations from Hurricane Helene revealed that bridge damage was concentrated at bridge abutments, with scour and sediment deposition exacerbating structural vulnerability. We evaluated the assumed flooding potential (AFP) of damaged bridges in the study area, finding that bridges with lower AFP values were particularly vulnerable to scour and submersion during flood events. Differentiating between landslide-induced and scour-induced damage is essential for accurately assessing risks to infrastructure. The findings emphasize the importance of comprehensive hazard mapping to guide infrastructure resilience planning in mountainous regions. Full article
Show Figures

Figure 1

Back to TopTop