Flood Mud Index (FMI): A Rapid and Effective Tool for Mapping Muddy Areas After Floods—The Valencia Case
Abstract
:1. Introduction
2. Study Area and Dataset
3. Methods
3.1. Pre-Processing
3.2. Masking
3.2.1. Sea Mask
3.2.2. Cloud Mask
3.3. Index Calculation
3.3.1. Normalized Difference Water Index (NDWI)
3.3.2. Modified Normalized Difference Water Index-1 (MNDWI-1)
3.3.3. Modified Normalized Difference Water Index-2 (MNDWI-2)
3.3.4. Automated Water Extraction Index—No Shadows (AWEINS)
3.3.5. Automated Water Extraction Index—Shadows (AWEIS)
3.3.6. NDFI
3.3.7. New Index Proposal: Flood Mud Index (FMI)
3.4. Classification
3.4.1. Maximum Likelihood Classification
3.4.2. Decision Tree
3.4.3. Support Vector Machine
3.5. Accuracy Assessment
4. Results and Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Getahun, Y.S.; Gebre, S.L. Flood hazard assessment and mapping of flood inundation area of the Awash River Basin in Ethiopia using GIS and HEC-GeoRAS/HEC-RAS model. J. Civ. Environ. Eng. 2015, 5, 1–12. [Google Scholar] [CrossRef]
- Mudashiru, R.B.; Sabtu, N.; Abustan, I.; Balogun, W. Flood hazard mapping methods: A review. J. Hydrol. 2021, 603, 126846. [Google Scholar] [CrossRef]
- Alcaras, E.; Mercogliano, P.; Morale, D.; Parente, C. GIS analysis for defining sea level rise effects on Sicily coasts for the end of the 21st century. In Proceedings of the 2023 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), La Valletta, Malta, 4–6 October 2023; IEEE: New York, NY, USA, 2023; pp. 62–66. [Google Scholar] [CrossRef]
- Jonkman, S.N.; Vrijling, J.K. Loss of life due to floods. J. Flood Risk Manag. 2008, 1, 43–56. [Google Scholar] [CrossRef]
- United Nations. International Stratety for Disaster Reduction. Secretariat, & International Strategy for Disaster Reduction. Global Assessment Report on Disaster Risk Reduction. 2015. Available online: https://www.undrr.org/quick/11404 (accessed on 29 November 2024).
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- European Union: Directive 2007/60/EC of the European Council and European Parliament of 23 October 2007 on the Assessment and Management of Flood Risks, Official Journal of the European Union, 27–34. Available online: http://data.europa.eu/eli/dir/2007/60/oj (accessed on 29 November 2024).
- Díaz-Delgado, R.; Aragonés, D.; Afán, I.; Bustamante, J. Long-term monitoring of the flooding regime and hydroperiod of Doñana marshes with Landsat time series (1974–2014). Remote Sens. 2016, 8, 775. [Google Scholar] [CrossRef]
- McCormack, T.; Campanyà, J.; Naughton, O. A methodology for mapping annual flood extent using multi-temporal Sentinel-1 imagery. Remote Sens. Environ. 2022, 282, 113273. [Google Scholar] [CrossRef]
- Schumann, G.J.; Brakenridge, G.R.; Kettner, A.J.; Kashif, R.; Niebuhr, E. Assisting flood disaster response with earth observation data and products: A critical assessment. Remote Sens. 2018, 10, 1230. [Google Scholar] [CrossRef]
- Jain, S.K.; Singh, R.D.; Jain, M.K.; Lohani, A.K. Delineation of flood-prone areas using remote sensing techniques. Water Resour. Manag. 2005, 19, 333–347. [Google Scholar] [CrossRef]
- Jongman, B.; Wagemaker, J.; Revilla Romero, B.; Coughlan de Perez, E. Early flood detection for rapid humanitarian response: Harnessing near real-time satellite and Twitter signals. ISPRS Int. J. Geo-Inf. 2015, 4, 2246–2266. [Google Scholar] [CrossRef]
- Rahman, M.S.; Di, L. The state of the art of spaceborne remote sensing in flood management. Nat. Hazards 2017, 85, 1223–1248. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H. A review on applications of remote sensing and geographic information systems (GIS) in water resources and flood risk management. Water 2018, 10, 608. [Google Scholar] [CrossRef]
- Notti, D.; Giordan, D.; Caló, F.; Pepe, A.; Zucca, F.; Galve, J.P. Potential and limitations of open satellite data for flood mapping. Remote Sens. 2018, 10, 1673. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Ji, L.; Geng, X.; Sun, K.; Zhao, Y.; Gong, P. Target detection method for water mapping using Landsat 8 OLI/TIRS imagery. Water 2015, 7, 794–817. [Google Scholar] [CrossRef]
- Nozarpour, N.; Gharechelou, S.; Rafiee, F. Flood zoning using Sentinel 1–2 and Landsat-8 data in Khuzestan province. In Proceedings of the 12th International Congress on Civil Engineering, Mashhad, Iran, 12–14 July 2021; Ferdowsi University of Mashhad: Mashhad, Iran, 2021. [Google Scholar]
- Memon, A.A.; Muhammad, S.; Rahman, S.; Haq, M. Flood monitoring and damage assessment using water indices: A case study of Pakistan flood-2012. Egypt. J. Remote Sens. Space Sci. 2015, 18, 99–106. [Google Scholar] [CrossRef]
- Dash, P.; Sar, J. Identification and validation of potential flood hazard area using GIS-based multi-criteria analysis and satellite data-derived water index. J. Flood Risk Manag. 2020, 13, e12620. [Google Scholar] [CrossRef]
- Gebrehiwot, A.; Hashemi-Beni, L. Automated indunation mapping: Comparison of methods. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 September 2020; IEEE: New York, NY, USA, 2020; pp. 3265–3268. [Google Scholar] [CrossRef]
- Singh, S.; Kansal, M.L. Chamoli flash-flood mapping and evaluation with a supervised classifier and NDWI thresholding using Sentinel-2 optical data in Google earth engine. Earth Sci. Inform. 2022, 15, 1073–1086. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Khalifeh Soltanian, F.; Abbasi, M.; Riyahi Bakhtyari, H.R. Flood monitoring using ndwi and mndwi spectral indices: A case study of aghqala flood-2019, Golestan Province, Iran. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 605–607. [Google Scholar] [CrossRef]
- Mehmood, H.; Conway, C.; Perera, D. Mapping of flood areas using landsat with google earth engine cloud platform. Atmosphere 2021, 12, 866. [Google Scholar] [CrossRef]
- Afzal, M.A.; Ali, S.; Nazeer, A.; Khan, M.I.; Waqas, M.M.; Aslam, R.A.; Cheema, M.J.M.; Nadeem, M.; Saddique, N.; Muzammil, M.; et al. Flood inundation modeling by integrating HEC–RAS and satellite imagery: A case study of the Indus River Basin. Water 2022, 14, 2984. [Google Scholar] [CrossRef]
- Albertini, C.; Gioia, A.; Iacobellis, V.; Manfreda, S. Detection of surface water and floods with multispectral satellites. Remote Sens. 2022, 14, 6005. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Deruyter, G.; Glas, H.; Piette, T. Semi-automatic flood detection using historic satellite imagery. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM, Albena, Bulgaria, 2–8 July 2018; Volume 18, pp. 551–558. [Google Scholar] [CrossRef]
- Goffi, A.; Stroppiana, D.; Brivio, P.A.; Bordogna, G.; Boschetti, M. Towards an automated approach to map flooded areas from Sentinel-2 MSI data and soft integration of water spectral features. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101951. [Google Scholar] [CrossRef]
- Duplančić Leder, T.; Leder, N.; Baučić, M. Application of satellite imagery and water indices to the hydrography of the Cetina River Basin (Middle Adriatic). Trans. Marit. Sci. 2020, 9, 374–384. [Google Scholar] [CrossRef]
- Al-Ali, Z.; Abulibdeh, A.; Al-Awadhi, T.; Mohan, M.; Al Nasiri, N.; Al-Barwani, M.; Al Nabbi, S.; Abdullah, M. Examining the potential and effectiveness of water indices using multispectral sentinel-2 data to detect soil moisture as an indicator of mudflow occurrence in arid regions. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103887. [Google Scholar] [CrossRef]
- Haibo, Y.; Zongmin, W.; Hongling, Z.; Yu, G. Water body extraction methods study based on RS and GIS. Procedia Environ. Sci. 2011, 10, 2619–2624. [Google Scholar] [CrossRef]
- Alcaras, E.; Amoroso, P.P.; Figliomeni, F.G.; Parente, C.; Prezioso, G. Accuracy Evaluation of Coastline Extraction Methods in Remote Sensing: A Smart Procedure for Sentinel-2 Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 48, 13–19. [Google Scholar] [CrossRef]
- Zollini, S.; Dominici, D.; Alicandro, M.; Cuevas-González, M.; Angelats, E.; Ribas, F.; Simarro, G. New Methodology for Shoreline Extraction Using Optical and Radar (SAR) Satellite Imagery. J. Mar. Sci. Eng. 2023, 11, 627. [Google Scholar] [CrossRef]
- Wan, K.M.; Billa, L. Post-flood land use damage estimation using improved Normalized Difference Flood Index (NDFI3) on Landsat 8 datasets: December 2014 floods, Kelantan, Malaysia. Arab. J. Geosci. 2018, 11, 434. [Google Scholar] [CrossRef]
- Byun, Y.; Han, D. Relative radiometric normalization of bitemporal very high-resolution satellite images for flood change detection. J. Appl. Remote Sens. 2018, 12, 026021. [Google Scholar] [CrossRef]
- Peng, B.; Liu, X.; Meng, Z.; Huang, Q. Urban flood mapping with residual patch similarity learning. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery, Chicago, IL, USA, 5 November 2019; pp. 40–47. [Google Scholar] [CrossRef]
- Sivanpillai, R.; Jacobs, K.M.; Mattilio, C.M.; Piskorski, E.V. Rapid flood inundation mapping by differencing water indices from pre-and post-flood Landsat images. Front. Earth Sci. 2021, 15, 1–11. [Google Scholar] [CrossRef]
- Zhu, J.; Jin, Y.; Zhu, W.; Lee, D.K. High spatiotemporal-resolution mapping for a seasonal erosion flooding inundation using time-series Landsat and MODIS images. Sci. Rep. 2024, 14, 4203. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Wang, S.; Jiang, G.; Lu, S.; Tong, Q. Comparison of MNDWI and DFI for water mapping in flooding season. In Proceedings of the 2013 IEEE international geoscience and remote sensing symposium-IGARSS, Melbourne, Australia, 21–26 July 2013; IEEE: New York, NY, USA, 2013; pp. 2876–2879. [Google Scholar]
- Ghalehteimouri, K.J.; Ros, F.C.; Rambat, S.; Nasr, T. Spatial and temporal water pattern change detection through the normalized difference water index (NDWI) for initial flood assessment: A case study of Kuala Lumpur 1990 and 2021. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 114, 178–187. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, X.; Tong, X.; Atkinson, P.M. Spatio-temporal spectral unmixing of time-series images. Remote Sens. Environ. 2021, 259, 112407. [Google Scholar] [CrossRef]
- Bangira, T.; Alfieri, S.M.; Menenti, M.; Van Niekerk, A.; Vekerdy, Z. A spectral unmixing method with ensemble estimation of endmembers: Application to flood mapping in the Caprivi floodplain. Remote Sens. 2017, 9, 1013. [Google Scholar] [CrossRef]
- Pour, A.B.; Ranjbar, H.; Sekandari, M.; El-Wahed, M.A.; Hossain, M.S.; Hashim, M.; Yousefi, M.; Zoheir, B.; Wambo, J.D.T.; Muslim, A.M. Remote sensing for mineral exploration. In Geospatial Analysis Applied to Mineral Exploration; Elsevier: Amsterdam, The Netherlands, 2023; pp. 17–149. [Google Scholar] [CrossRef]
- Guerra, R.; Santos, L.; López, S.; Sarmiento, R. A new fast algorithm for linearly unmixing hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6752–6765. [Google Scholar] [CrossRef]
- Borsoi, R.A.; Imbiriba, T.; Bermudez, J.C.M.; Richard, C.; Chanussot, J.; Drumetz, L.; Tourneret, J.-Y.; Zare, A.; Jutten, C. Spectral variability in hyperspectral data unmixing: A comprehensive review. IEEE Geosci. Remote Sens. Mag. 2021, 9, 223–270. [Google Scholar] [CrossRef]
- Ghosh, P.; Roy, S.K.; Koirala, B.; Rasti, B.; Scheunders, P. Hyperspectral unmixing using transformer network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember variability in spectral mixture analysis: A review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Pérez-Landa, G.; Ciais, P.; Sanz, M.J.; Gioli, B.; Miglietta, F.; Palau, J.L.; Gangoiti, G.; Millán, M.M. Mesoscale circulations over complex terrain in the Valencia coastal region, Spain–Part 1: Simulation of diurnal circulation regimes. Atmos. Chem. Phys. 2007, 7, 1835–1849. [Google Scholar] [CrossRef]
- Masachs-Alavedra, V. El Regimen de los ríos Peninsulares; CSIC: Barcelona, Spacin, 1948; 511p. [Google Scholar]
- Ruiz-Pérez, J.M.; Carmona, P. Turia river delta and coastal barrier-lagoon of Valencia (Mediterranean coast of Spain): Geomorphological processes and global climate fluctuations since Iberian-Roman times. Quat. Sci. Rev. 2019, 219, 84–101. [Google Scholar] [CrossRef]
- Carmona, P.; Ruiz, J.M. Historical morphogenesis of the Turia River coastal flood plain in the Mediterranean littoral of Spain. Catena 2011, 86, 139–149. [Google Scholar] [CrossRef]
- Ruiz, J.M.; Carmona, P.; Pérez Cueva, A. Flood frequency and seasonality of the Jucar and Turia Mediterranean rivers (Spain) during the “Little Ice Age”. Méditerranée. Rev. Géographique Des Pays Méditerranéens/J. Mediterr. Geogr. 2014, 122, 121–130. [Google Scholar] [CrossRef]
- FAO. Historical Irrigation System at l’Horta de València, Spain; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/3c2710e7-5c70-4c0b-9777-b761cea4f000/content (accessed on 1 December 2024).
- Garcia, J.M. Environmental management of peri-urban natural resources: L’Horta de Valencia case study. In En: WIT Transactions on Ecology and the Environment; WIT Press Southampton: Ashurst, UK, 2015; Volume 192, pp. 99–110. [Google Scholar]
- Melo, C. L’Horta De València: Past and present dynamics in landscape change and planning. Int. J. Sustain. Dev. Plan. 2020, 15, 28–44. [Google Scholar] [CrossRef]
- Soria, J.M. Past, present and future of la Albufera of Valencia Natural Park. Limnetica 2006, 25, 135–142. [Google Scholar] [CrossRef]
- Canet, R.; Chaves, C.; Pomares, F.; Albiach, R. Agricultural use of sediments from the Albufera Lake (eastern Spain). Agric. Ecosyst. Environ. 2003, 95, 29–36. [Google Scholar] [CrossRef]
- Sòria-Perpinyà, X.; Urrego, P.; Pereira-Sandoval, M.; Ruiz-Verdú, A.; Peña, R.; Soria, J.M.; Moreno, J. Monitoring the ecological state of a hypertrophic lake (Albufera of València, Spain) using multitemporal Sentinel-2 images. Limnetica 2019, 38, 457–469. [Google Scholar] [CrossRef]
- Martín, M.; Hernández-Crespo, C.; Andrés-Doménech, I.; Benedito-Durá, V. Fifty years of eutrophication in the Albufera lake (Valencia, Spain): Causes, evolution and remediation strategies. Ecol. Eng. 2020, 155, 105932. [Google Scholar] [CrossRef]
- Segrelles, C.E.E.; Martín, M.Á.P.; Martínez, G.G. Climate change impacts on a Mediterranean coastal wetland due to sea level rise (L’Albufera de Valencia, Spain). Copernic. Meet. 2021, EGU21, 1599. [Google Scholar] [CrossRef]
- Soria, J.M.; Vicente, E.; Miracle, M.R. The influence of flash floods on the limnology of the Albufera of Valencia lagoon (Spain). Int. Ver. Theor. Angew. Limnol. Verhandlungen 2000, 27, 2232–2235. [Google Scholar] [CrossRef]
- Cavallo, C.; Papa, M.N.; Gargiulo, M.; Palau-Salvador, G.; Vezza, P.; Ruello, G. Continuous monitoring of the flooding dynamics in the Albufera Wetland (Spain) by Landsat-8 and Sentinel-2 datasets. Remote Sens. 2021, 13, 3525. [Google Scholar] [CrossRef]
- Perilla, O.L.U.; Gómez, A.G.; Gómez, A.G.; Díaz, C.Á.; Cortezón, J.A.R. Methodology to assess sustainable management of water resources in coastal lagoons with agricultural uses: An application to the Albufera lagoon of Valencia (Eastern Spain). Ecol. Indic. 2012, 13, 129–143. [Google Scholar] [CrossRef]
- Cerdà, A.; Imeson, A.C.; Calvo, A. Fire and aspect induced differences on the erodibility and hydrology of soils at La Costera, Valencia, southeast Spain. Catena 1995, 24, 289–304. [Google Scholar] [CrossRef]
- Soria, J.; Vera-Herrera, L.; Calvo, S.; Romo, S.; Vicente, E.; Sahuquillo, M.; Sòria-Perpinyà, X. Residence time analysis in the albufera of Valencia, a Mediterranean Coastal Lagoon, Spain. Hydrology 2021, 8, 37. [Google Scholar] [CrossRef]
- Belmonte, A.M.C.; Beltrán, F.S. Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain. Catena 2001, 45, 229–249. [Google Scholar] [CrossRef]
- Portugués-Mollá, I.; Bonache-Felici, X.; Mateu-Bellés, J.F.; Marco-Segura, J.B. A GIS-Based Model for the analysis of an urban flash flood and its hydro-geomorphic response. The Valencia event of 1957. J. Hydrol. 2016, 541, 582–596. [Google Scholar] [CrossRef]
- Sanjaume, E.; Pardo-Pascual, J.E. Erosion by human impact on the Valencian coastline (E of Spain). J. Coast. Res. 2005, SI 49, 76–82. [Google Scholar]
- U.S. Geological Survey. Landsat 8 (L8) Data Users Handbook—Version 5.0. November 2019. Available online: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf (accessed on 1 December 2024).
- NASA—USGS. Landsat 9. 2022. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-9/ (accessed on 1 December 2024).
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Chavez, P.S., Jr. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Viñals, M.J.; Vizcauno, A.; Benavent, J.M.; Romo, S. Restoring a coastal wetland: L’Albufera of Vaencia, Spain. In Restoration of Mediterranean Wetlands; Athens and Greek Biotope/Wetland Centre: Thermi, Greece, 2002; 237p. [Google Scholar]
- Ministerio de Agricultura, Pesca y Alimentación. Cartografía y SIG—Descarga ficheros GIS: Espacios Naturales Protegidos. Available online: https://www.mapama.gob.es/app/descargas/descargafichero.aspx?f=enp.zip#app_section (accessed on 5 November 2024).
- Ministerio para la Transición Ecológica y el Reto Demográfico. Cartografía y SIG—Infraestructura de Dades Espacials: Red Hidrográfica. Available online: https://www.mapama.gob.es/app/descargas/descargafichero.aspx?f=Canales.zip (accessed on 17 January 2025).
- Alcaras, E.; Falchi, U.; Parente, C.; Prezioso, G. Using GIS tools to enhance the shape of coastline extracted from Sentinel-2 satellite images. In Proceedings of the 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Fez, Morocco, 16–17 May 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Oreopoulos, L.; Wilson, M.J.; Várnai, T. Implementation on Landsat data of a simple cloud-mask algorithm developed for MODIS land bands. IEEE Geosci. Remote Sens. Lett. 2011, 8, 597–601. [Google Scholar] [CrossRef]
- McFeeters, S.K. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sens. 2013, 5, 3544–3561. [Google Scholar] [CrossRef]
- Yulianto, F.; Suwarsono, N.; Sulma, S.; Khomarudin, M.R. Observing the inundated area using Landsat-8 multitemporal images and determination of flood-prone area in Bandung basin. Int. J. Remote Sens. Earth Sci. (IJReSES) 2019, 15, 131–140. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Boschetti, M.; Nutini, F.; Manfron, G.; Brivio, P.A.; Nelson, A. Comparative analysis of normalised difference spectral indices derived from MODIS for detecting surface water in flooded rice cropping systems. PLoS ONE 2014, 9, e88741. [Google Scholar] [CrossRef]
- Sisodia, P.S.; Tiwari, V.; Kumar, A. Analysis of supervised maximum likelihood classification for remote sensing image. In Proceedings of the International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), Jaipur, India, 9–11 May 2014; IEEE: New York, NY, USA, 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Colwell, R.N. Manual of Remote Sensing; American Society of Photogrammetry: Falls Church, VA, USA, 1983. [Google Scholar]
- Liu, X. Supervised classification and unsupervised classification. ATS 2005, 670, 1–12. [Google Scholar]
- Muñoz-Marí, J.; Bruzzone, L.; Camps-Valls, G. A support vector domain description approach to supervised classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2683–2692. [Google Scholar] [CrossRef]
- Perumal, K.; Bhaskaran, R. Supervised Classification Performance of Multispectral Images. J. Comput. 2010, 2, 124–129. [Google Scholar] [CrossRef]
- Alcaras, E.; Amoroso, P.P.; Falchi, U.; Figliomeni, F.G.; Parente, C. Using bi-temporal Sentinel-2 images to detect the effects of Hunga Tonga-Hunga Ha’apai eruption. In Proceedings of the 2022 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Milazzo, Italy, 3–5 October 2022; IEEE: New York, NY, USA, 2022; pp. 127–132. [Google Scholar] [CrossRef]
- Richards, J.A.; Richards, J.A. Supervised classification techniques. Remote Sens. Digit. Image Anal. 2022, 263–367. [Google Scholar] [CrossRef]
- Schowengerdt, R.A. Techniques for Image Processing and Classifications in Remote Sensing; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Bilucan, F.; Teke, A. Comparison of support vector machines, random forest and decision tree methods for classification of sentinel-2A image using different band combinations. In Proceedings of the 41st Asian Conference on Remote Sensing (ACRS 2020), Deqing, China, 9–11 November 2020; pp. 1–8. [Google Scholar]
- Vapnik, V. The Nature of Statistical Theory; Springer-Verlag: New York, NY, USA, 1995. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Nasr, M.; Zenati, H.; Dhieb, M. Using RS and GIS to mapping land cover of the Cap Bon (Tunisia). Environ. Remote Sens. GIS Tunis. 2021, 117–142. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R.G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Liu, C.; Frazier, P.; Kumar, L. Comparative assessment of the measures of thematic classification accuracy. Remote Sens. Environ. 2007, 107, 606–616. [Google Scholar] [CrossRef]
- Kumar, R.; Acharya, P. Flood hazard and risk assessment of 2014 floods in Kashmir Valley: A space-based multisensor approach. Nat. Hazards 2016, 84, 437–464. [Google Scholar] [CrossRef]
- Buma, W.G.; Lee, S.I.; Seo, J.Y. Recent surface water extent of lake Chad from multispectral sensors and GRACE. Sensors 2018, 18, 2082. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, H.; Ebadi, H.; Kiani, A.; Asgary, A. A novel flood/water extraction index (FWEI) for identifying water and flooded areas using sentinel-2 visible and near-infrared spectral bands. Stoch. Environ. Res. Risk Assess. 2024, 38, 1873–1895. [Google Scholar] [CrossRef]
Bands | Wavelength (µm) | Resolution (m) |
---|---|---|
B1—Coastal aerosol | 0.43–0.45 | 30 |
B2—Blue | 0.45–0.51 | 30 |
B3—Green | 0.53–0.59 | 30 |
B4—Red | 0.64–0.67 | 30 |
B5—Near-Infrared (NIR) | 0.85–0.88 | 30 |
B6—Shortwave infrared (SWIR 1) | 1.57–1.65 | 30 |
B7—Shortwave infrared (SWIR 2) | 2.11–2.29 | 30 |
B8—Panchromatic (PAN) | 0.50–0.68 | 15 |
B9—Cirrus | 1.36–1.38 | 30 |
Method | Accuracy Index | Mud | No-Mud |
---|---|---|---|
NDWI | UA | 100% | 50.11% |
PA | 0.43% | 100% | |
OA | 50.21% | ||
MNDWI-1 | UA | 81.04% | 71.64% |
PA | 66.57% | 84.43% | |
OA | 75.50% | ||
MNDWI-2 | UA | 81.65% | 76.04% |
PA | 73.71% | 83.43% | |
OA | 78.57% | ||
AWEIS | UA | 95.71% | 69.59% |
PA | 57.43% | 97.43% | |
OA | 77.43% | ||
AWEINS | UA | 97.88% | 74.35% |
PA | 66.00% | 98.57% | |
OA | 82.29% | ||
NDFI | UA | 79.62% | 70.89% |
PA | 65.86% | 83.14% | |
OA | 74.50% | ||
FMI | UA | 97.85% | 97.44% |
PA | 97.43% | 97.86% | |
OA | 97.64% |
Method | Accuracy Index | Mud | No-Mud |
---|---|---|---|
NDWI | UA | 61.47% | 68.94% |
PA | 76.57% | 52.00% | |
OA | 64.29% | ||
MNDWI-1 | UA | 69.93% | 81.55% |
PA | 85.71% | 63.14% | |
OA | 74.43% | ||
MNDWI-2 | UA | 73.22% | 88.11% |
PA | 91.00% | 66.71% | |
OA | 78.86% | ||
AWEIS | UA | 67.86% | 78.88% |
PA | 91.00% | 66.71% | |
OA | 78.86% | ||
AWEINS | UA | 79.54% | 83.41% |
PA | 84.43% | 78.29% | |
OA | 81.36% | ||
NDFI | UA | 65.89% | 83.22% |
PA | 89.14% | 53.86% | |
OA | 71.50% | ||
FMI | UA | 97.30% | 97.99% |
PA | 98.00% | 97.29% | |
OA | 97.64% |
Method | Accuracy Index | Mud | No-Mud |
---|---|---|---|
NDWI | UA | 100% | 56.64% |
PA | 30.00% | 91.43% | |
OA | 60.71% | ||
MNDWI-1 | UA | 69.44% | 80.40% |
PA | 84.71% | 62.71% | |
OA | 73.71% | ||
MNDWI-2 | UA | 73.76% | 88.41% |
PA | 91.14% | 67.57% | |
OA | 79.36% | ||
AWEIS | UA | 75.59% | 74.17% |
PA | 73.43% | 76.29% | |
OA | 74.86% | ||
AWEINS | UA | 93.59% | 79.24% |
PA | 75.14% | 94.86% | |
OA | 85.00% | ||
NDFI | UA | 74.06% | 84.11% |
PA | 86.86% | 69.57% | |
OA | 78.21% | ||
FMI | UA | 97.18% | 98.27% |
PA | 98.29% | 97.14% | |
OA | 97.71% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcaras, E. Flood Mud Index (FMI): A Rapid and Effective Tool for Mapping Muddy Areas After Floods—The Valencia Case. Remote Sens. 2025, 17, 770. https://doi.org/10.3390/rs17050770
Alcaras E. Flood Mud Index (FMI): A Rapid and Effective Tool for Mapping Muddy Areas After Floods—The Valencia Case. Remote Sensing. 2025; 17(5):770. https://doi.org/10.3390/rs17050770
Chicago/Turabian StyleAlcaras, Emanuele. 2025. "Flood Mud Index (FMI): A Rapid and Effective Tool for Mapping Muddy Areas After Floods—The Valencia Case" Remote Sensing 17, no. 5: 770. https://doi.org/10.3390/rs17050770
APA StyleAlcaras, E. (2025). Flood Mud Index (FMI): A Rapid and Effective Tool for Mapping Muddy Areas After Floods—The Valencia Case. Remote Sensing, 17(5), 770. https://doi.org/10.3390/rs17050770