Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = flood detention basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6786 KiB  
Article
Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil
by Azuri Sofia Gally Koroll, Rodrigo Perdigão Gomes Bezerra, André Ferreira Rodrigues, Bruno Melo Brentan, Joaquín Izquierdo and Gustavo Meirelles
Water 2025, 17(15), 2219; https://doi.org/10.3390/w17152219 - 24 Jul 2025
Viewed by 436
Abstract
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing [...] Read more.
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing a large volume of water to be released after the peak discharge. By doing this, a large amount of energy is stored, which can be recovered via micro-hydropower. In addition, as the release flow is controlled and almost constant, Pumps as Turbines (PAT) could be a feasible and economic option in these cases. Thus, this study investigates the feasibility of micro-hydropower (MHP) in urban detention basins, using the Santa Lúcia detention basin in Belo Horizonte as a case study. The methodology involved hydrological modeling, hydraulic analysis, and economic and environmental assessment. The results demonstrated that PAT selection has a crucial role in the feasibility of the MHP, and exploiting rainfall with lower intensities but higher frequencies is more attractive. Using multiple PATs with different operating points also showed promising results in improving energy production. In addition to the economic benefits, the MHP in the detention basin produces minimal environmental impact and, as it exploits a wasted energy source, it also reduces the carbon footprint in the urban water cycle. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

32 pages, 23000 KiB  
Article
Land Use and Land Cover Change Assessment and Predictions in Flood Detention Areas of Yangtze River Basin Based on AIF-HOM-PLUS Model
by Siyuan Liao, Wei Wang, Chao Wang, Renke Ji, Aoxue Cui, Dong Chen, Xiang Zhang and Nengcheng Chen
Remote Sens. 2025, 17(11), 1857; https://doi.org/10.3390/rs17111857 - 26 May 2025
Viewed by 554
Abstract
As global urbanization accelerates and economic development progresses rapidly, a series of ecological and environmental challenges have emerged. In certain countries, particularly in developing nations such as China, India, and Bangladesh, flood detention areas (FDAs) have been increasingly encroached upon by urbanization, resulting [...] Read more.
As global urbanization accelerates and economic development progresses rapidly, a series of ecological and environmental challenges have emerged. In certain countries, particularly in developing nations such as China, India, and Bangladesh, flood detention areas (FDAs) have been increasingly encroached upon by urbanization, resulting in growing conflicts between flood control functions and economic development. Therefore, accurately predicting urban expansion trends in these regions is considered essential for providing scientific guidance for sustainable regional development. In this study, the PLUS model was selected as the baseline based on comparative experiments. On this foundation, a novel AIF-HOM-PLUS framework was developed. In this framework, a new method, Adjacent Image Fusion (AIF), was proposed to reduce local temporal noise by utilizing adjacent multi-temporal data. Subsequently, Higher-Order Markov chains (HOM) were incorporated to capture complex temporal dependencies and long-term transition patterns. The Middle-Reach Yangtze River urban agglomeration (MRYRUA), including FDAs in the Yangtze River Basin (YRB), was selected as the study area, and LULCCs in 2035 and 2050 were predicted. The results showed the following: (1) among the basic models, the PLUS model exhibited the best performance, while the AIF method significantly improved its overall accuracy (OA) by 2%; (2) the area of impervious surfaces within the FDAs of the YRB will increase at an average annual rate of 1.29%, which pertains to the conflict between the United Nations Sustainable Development Goals (SDGs) 9.1 and SDG 11.a, which has become a critical issue that needs urgent attention; (3) the area of impervious surfaces in the MRYRUA will increase at an average annual rate of 1.3%, primarily at the expense of cropland and water bodies. Full article
Show Figures

Figure 1

28 pages, 830 KiB  
Review
Enhancing Urban Drainage Resilience Through Holistic Stormwater Regulation: A Review
by Jiankun Xie, Wei Qiang, Yiyuan Lin, Yuzhou Huang, Kai-Qin Xu, Dangshi Zheng, Shengzhen Chen, Yanyan Pei and Gongduan Fan
Water 2025, 17(10), 1536; https://doi.org/10.3390/w17101536 - 20 May 2025
Viewed by 1159
Abstract
Under the dual pressures of global climate change and rapid urbanization, urban drainage systems (UDS) face severe challenges caused by extreme precipitation events and altered surface hydrological processes. The drainage paradigm is shifting toward resilient systems integrating grey and green infrastructure, necessitating a [...] Read more.
Under the dual pressures of global climate change and rapid urbanization, urban drainage systems (UDS) face severe challenges caused by extreme precipitation events and altered surface hydrological processes. The drainage paradigm is shifting toward resilient systems integrating grey and green infrastructure, necessitating a comprehensive review of the design and operation of grey infrastructure. This study systematically summarizes advances in urban stormwater process-wide regulation, focusing on drainage network design optimization, siting and control strategies for flow control devices (FCDs), and coordinated management of Quasi-Detention Basins (QDBs). Through graph theory-driven topological design, real-time control (RTC) technologies, and multi-objective optimization algorithms (e.g., genetic algorithms, particle swarm optimization), the research demonstrates that decentralized network layouts, dynamic gate regulation, and stormwater resource utilization significantly enhance system resilience and storage redundancy. Additionally, deep learning applications in flow prediction, flood assessment, and intelligent control exhibit potential to overcome limitations of traditional models. Future research should prioritize improving computational efficiency, optimizing hybrid infrastructure synergies, and integrating deep learning with RTC to establish more resilient and adaptive urban stormwater management frameworks. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

17 pages, 5360 KiB  
Article
Performance Analysis of Residential Detention Tanks Based on Spatial Arrangement in an Urbanized Basin in the Federal District, Brazil
by Artur Borges Barros, Maria Elisa Leite Costa and Sérgio Koide
Sustainability 2025, 17(9), 4032; https://doi.org/10.3390/su17094032 - 30 Apr 2025
Viewed by 382
Abstract
This study evaluated the allocation of residential detention tanks in the Alto da Boa Vista Condominium, Federal District, Brazil, using hydrological and hydraulic modeling using the PCSWMM software (version 7.6.3610). The objective was to investigate the impact of urbanization on local hydrology, considering [...] Read more.
This study evaluated the allocation of residential detention tanks in the Alto da Boa Vista Condominium, Federal District, Brazil, using hydrological and hydraulic modeling using the PCSWMM software (version 7.6.3610). The objective was to investigate the impact of urbanization on local hydrology, considering the occurrence of erosive processes in the area. Critical points in the infrastructure and regions susceptible to flooding were identified. The methodology involved implementing residential detention tanks in different allocation scenarios, including the use of isochrones. Isochrones, which represent lines of equal concentration time in the drainage network, were employed to segment the basin into three main regions: upstream (ISO 1+2), central (ISO 3+4), and downstream (ISO 5+6). The isochrone-based scenarios enabled the assessment of the impact of concentrating residential detention tanks in these specific zones. Additionally, two other scenarios were analyzed: one with the residential detention tanks uniformly distributed throughout the basin and another without the presence of these devices. Finally, a scenario with a random distribution of residential detention tanks was tested, encompassing a total of 54 distinct configurations, to investigate the influence of different spatial arrangements on the basin’s hydraulic performance. The results indicated that the number of residential detention tanks installed is the main determinant for peak flow attenuation at the basin’s outlet. It was observed that, regardless of the distribution of the devices, whether in concentrated scenarios (upstream, central, and downstream, as defined by the isochrones) or in randomly distributed configurations, the results were similar. In all cases, installing residential detention tanks in more than 30% of the basin area resulted in an approximately 5% reduction in peak flow at the outlet. It is concluded that implementing residential detention tanks is an effective and feasible solution for sustainable stormwater management, significantly contributing to surface runoff control and peak flow mitigation in urbanized areas. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

21 pages, 7854 KiB  
Article
Optimization of Rural Residential Areas in Flood Detention Basins Based on Dual Minimum Accumulation Resistance Model: A Case Study of Xun County in Central China
by Enxiang Cai, Shihong Long, Ling Li, Ying Luo, Liling Ge, Weiqiang Chen and Guoquan Li
Land 2024, 13(12), 2217; https://doi.org/10.3390/land13122217 - 18 Dec 2024
Viewed by 880
Abstract
Optimizing rural residential areas (RRAs) in environmentally fragile areas such as flood detention basins is of great significance for improving the human–land relationship and achieving sustainable rural development. This study took Xun County in central China as a case study, established a dual [...] Read more.
Optimizing rural residential areas (RRAs) in environmentally fragile areas such as flood detention basins is of great significance for improving the human–land relationship and achieving sustainable rural development. This study took Xun County in central China as a case study, established a dual minimum cumulative resistance model (DMCR) that considered the dual factors of natural attributes and policy regulations to evaluate the optimization resistance of RRAs and determined the optimization directions and strategies accordingly. The main results are: (1) RRAs are relatively small and scattered, and there are spatial conflicts with policy regulations such as flood detention basin and urban development boundaries. (2) The spatial difference in optimization resistance of RRAS is higher in the central and northern towns and lower in the western and eastern towns. The factors with significant effects include policy resistance, location resistance, and production resistance. (3) The optimization of RRAs is divided into three directions: annexation or evacuation, consolidation and improvement, and clustering and upgrading, with their respective area proportions of 31.17%, 48.12%, and 20.72%. (4) RRAs in the direction of clustering and upgrading allow for moderate expansion; RRAs in the direction of consolidation and improvement achieve smart reduction through the renovation of homesteads; RRAs in the direction of annexation or evacuation are gradually integrated into the urban area in the suburbs and completely demolished in the outer suburbs. Full article
Show Figures

Figure 1

16 pages, 10358 KiB  
Article
Simulation of Flood-Control Reservoirs: Comparing Fully 2D and 0D–1D Models
by Susanna Dazzi, Riccardo Verbeni, Paolo Mignosa and Renato Vacondio
Hydrology 2024, 11(11), 180; https://doi.org/10.3390/hydrology11110180 - 26 Oct 2024
Viewed by 1972
Abstract
Flood-control reservoirs are often used as a structural measure to mitigate fluvial floods, and numerical models are a fundamental tool for assessing their effectiveness. This work aims to analyze the suitability of fully 2D shallow-water models to simulate these systems by adopting internal [...] Read more.
Flood-control reservoirs are often used as a structural measure to mitigate fluvial floods, and numerical models are a fundamental tool for assessing their effectiveness. This work aims to analyze the suitability of fully 2D shallow-water models to simulate these systems by adopting internal boundary conditions to describe hydraulic structures (i.e., dams) and by using a parallelized code to reduce the computational burden. The 2D results are also compared with the more established approach of coupling a 1D model for the river and a 0D model for the reservoir. Two test cases, including an in-stream reservoir and an off-stream basin, both located in Italy, are considered. Results show that the fully 2D model can effectively handle the simulation of a complex flood-control system. Moreover, compared with the 0D–1D model, it captures the velocity field and the filling/emptying process of the reservoir more realistically, especially for off-stream reservoirs. Conversely, when the basin is characterized by very limited flood dynamics, the two approaches provide similar results (maximum levels in the reservoir differ by less than 10 cm, and peak discharges by about 5%). Thanks to parallelization and the inclusion of internal boundary conditions, fully 2D models can be applied not only for local hydrodynamic analyses but also for river-scale studies, including flood-control reservoirs, with reasonable computational effort (i.e., ratios of physical to computational times on the order of 30–100). Full article
Show Figures

Figure 1

14 pages, 2337 KiB  
Article
Flood Simulation in the Complex River Basin Affected by Hydraulic Structures Using a Coupled Hydrological and Hydrodynamic Model
by Keying Zhang, Zhansheng Ji, Xiaoliang Luo, Zhenyi Liu and Hua Zhong
Water 2024, 16(17), 2383; https://doi.org/10.3390/w16172383 - 25 Aug 2024
Cited by 5 | Viewed by 1820
Abstract
Due to the complexity of terrain and climate in the mountain–plain transition zone, it is difficult to simulate and forecast the flow discharge of river basins accurately. The poor regularity of the river thus leads to uncertain flood control scheduling. Meanwhile, reservoirs and [...] Read more.
Due to the complexity of terrain and climate in the mountain–plain transition zone, it is difficult to simulate and forecast the flow discharge of river basins accurately. The poor regularity of the river thus leads to uncertain flood control scheduling. Meanwhile, reservoirs and flood detention areas are constructed to store and divert water when severe floods threaten the safety of the basin. In order to improve the accuracy of flood forecasts and the effectiveness of flood control, a hydrological and 1D/2D hydrodynamic coupling model was developed to enable the joint computation of multiple objects, including mountainous streams, plains river networks, hydraulic control structures, and flood detention areas. For the hydrological component, the Xin’anjiang model with the Muskingum module is employed to simulate mountainous flow discharge. For the hydrodynamic component, the Saint–Venant equations and shallow water equations are applied to estimate flood processes in rivers and on land surfaces, respectively. The Dongtiaoxi River Basin in Zhejiang Province, China, serves as the case study, where river flow is influenced by both upstream mountainous floods and downstream backwater effects. Using the integrated model, flood routing and scheduling are simulated and visualized. Both the Xin’anjiang model and the 1D hydrodynamic model demonstrate over 80% acceptability in calibration and validation, confirming their robustness and reliability. Meanwhile, inundation in flood detention areas can be effectively estimated by coupling the 1D and 2D hydrodynamic models with a flood diversion scheduling model. The coupled model proves capable of simulating flood routing in complex river basins that include mountains, plains, and hydraulic control structures, accounting for the interactions between hydrological elements. These findings provide a new perspective on flood simulation in other similarly complex river basins. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

25 pages, 12881 KiB  
Article
The Identification of Flood-Prone Areas in Accra, Ghana Using a Hydrological Screening Method
by Thomas Balstrøm, Bent Hasholt, Albert N. M. Allotey and Prince Martin Gyekye
GeoHazards 2024, 5(3), 755-779; https://doi.org/10.3390/geohazards5030038 - 22 Jul 2024
Viewed by 3654
Abstract
Information about flood-prone areas in Accra, Ghana, acting as obstacles to the main infrastructure was required as input for a transportation study. We successfully identified these areas using the hydrologic screening software Arc-Malstrøm. Earlier studies have used a digital elevation model with a [...] Read more.
Information about flood-prone areas in Accra, Ghana, acting as obstacles to the main infrastructure was required as input for a transportation study. We successfully identified these areas using the hydrologic screening software Arc-Malstrøm. Earlier studies have used a digital elevation model with a spatial resolution of 30 m, which unfortunately is not a true digital terrain model as it includes elevations from ground surfaces, structures, and vegetation. However, this study shows the benefits of using a hydro-conditioned 10 m resolution digital terrain model from AirbusTM in predicting flood-prone areas. The entire investigation area covers approximately 23% of the Greater Accra Metropolitan Area (GAMA), including the entire Odaw River basin. In this area, 5018 landscape sinks with water depths ≥ 0.1 m and volumes ≥ 5 m3 were identified. From this, 163 flood-induced roadblocks were found with maximum depths ≥ 0.3 m, rendering them impassable to normal vehicles. Beyond the adaptation of infrastructures in the hydro-conditioning process, more steps were necessary along the Odaw River’s southernmost course before its outlet into the Gulf of Guinea due to local trash accumulation reflected in the DTM. To address the unforeseen stochastic flood effects from trash piling up along the river channels, a simulation was conducted showing the upstream consequences caused by a trash barrier at the river’s outlet into the ocean. This leads to a discussion of the hazards posed by improper waste handling, coupled with increasing runoff predictions within the river’s drainage basin. Finally, we discuss local alternatives to the establishment of large central retention and detention basins to reduce flood-prone areas in GAMA during periods when stormwater-induced floods become more frequent, primarily due to uncontrolled urbanization increasing runoff volumes. Full article
(This article belongs to the Collection Geohazard Characterization, Modeling, and Risk Assessment)
Show Figures

Figure 1

25 pages, 9966 KiB  
Article
Balancing Flood Control and Economic Development in Flood Detention Areas of the Yangtze River Basin
by Siyuan Liao, Chao Wang, Renke Ji, Xiang Zhang, Zhifei Wang, Wei Wang and Nengcheng Chen
ISPRS Int. J. Geo-Inf. 2024, 13(4), 122; https://doi.org/10.3390/ijgi13040122 - 8 Apr 2024
Cited by 5 | Viewed by 3126
Abstract
Serving as a crucial part of the Yangtze River Basin (YRB)’s flood control system, Flood Detention Areas (FDAs) are vital in mitigating large-scale floods. Urbanization has led to the development of urban FDAs, but significant losses could ensue if these FDAs are activated. [...] Read more.
Serving as a crucial part of the Yangtze River Basin (YRB)’s flood control system, Flood Detention Areas (FDAs) are vital in mitigating large-scale floods. Urbanization has led to the development of urban FDAs, but significant losses could ensue if these FDAs are activated. With improved reservoirs and embankments, flood pressure in the middle reaches has lessened, posing challenges in balancing flood control and economic benefits. This paper presents a comparative analysis of land use, GDP, and population in FDAs and adjacent cities, enhancing our understanding of their disparities and interrelations. Using the Analytic Hierarchy Process (AHP)–Entropy Weight Method (EW)–Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) comprehensive evaluation method, we assess changes in flood control and economic values in FDAs. The results show a conflict between flood control and economic policies in FDAs, highlighting their underestimated economic potential, especially in urban areas. This study identifies differences in economic development across FDAs and a strong correlation between flood control value and inundation rates. Based on evaluations and simulations of the 1954 flood, we provide recommendations for the FDAs’ construction plan, which serves the development and flood management of the YRB and offer insights for similar assessments elsewhere. Full article
Show Figures

Figure 1

19 pages, 4409 KiB  
Article
Investigating Flood Characteristics and Mitigation Measures in Plain-Type River-Connected Lakes: A Case Study of Poyang Lake
by Shupan Deng, Qiuqin Wu, Zhichao Wang, Longhua Wu, Zhiwen Huang and Guangming Zhang
Water 2024, 16(2), 281; https://doi.org/10.3390/w16020281 - 12 Jan 2024
Cited by 8 | Viewed by 2072
Abstract
The flow of plain-type river-connected lakes is affected by both upstream and downstream rivers, and the hydrological conditions are very complex. Poyang Lake, situated in Jiangxi Province, is the largest river-connected lake in the Yangtze River Basin. Its unique geographical features and complex [...] Read more.
The flow of plain-type river-connected lakes is affected by both upstream and downstream rivers, and the hydrological conditions are very complex. Poyang Lake, situated in Jiangxi Province, is the largest river-connected lake in the Yangtze River Basin. Its unique geographical features and complex hydrological conditions have made it a heavy disaster area and a frequent area of floods since ancient times. As typical mitigation measures of Poyang Lake, semi-restoration polder areas and flood storage and detention areas play a crucial role in the flood control of Poyang Lake. Taking Poyang Lake as an example, this article studies the flood characteristics of Poyang Lake based on the measured hydrological data. Furthermore, by using the weir (gate) outflow formula to construct the hydraulic model of semi-restoration polder areas and DHI MIKE to construct the hydrodynamic model of Kangshan flood storage and detention area, the flood diversion capacity of the two, and the flood diversion effect under the super-historical flood in 2020 are analyzed. The results show that compared with the non-use of mitigation measures, the maximum cumulative reduction in Xingzi water level can be reduced by 0.68 m and 0.48 m when semi-restoration polder areas and Kangshan flood storage and detention areas are used alone. Finally, the article puts forward some thoughts and suggestions on the flood control of Poyang Lake. The research results can offer some reference to the flood risk management of plain-type river-connected lakes. Full article
(This article belongs to the Special Issue Flood Risk Identification and Management)
Show Figures

Figure 1

26 pages, 9045 KiB  
Article
Flash Flood Hazard Assessment along the Red Sea Coast Using Remote Sensing and GIS Techniques
by Mohamed Rashwan, Adel K. Mohamed, Fahad Alshehri, Sattam Almadani, Mohammed Khattab and Lamees Mohamed
ISPRS Int. J. Geo-Inf. 2023, 12(11), 465; https://doi.org/10.3390/ijgi12110465 - 16 Nov 2023
Cited by 7 | Viewed by 3784
Abstract
The Egyptian Red Sea coast is periodically exposed to flash floods that cause severe human and economic losses. That is due to its hydro-geomorphological characteristics. Therefore, identifying flash flood hazards in these areas is critically important. This research uses an integrated approach of [...] Read more.
The Egyptian Red Sea coast is periodically exposed to flash floods that cause severe human and economic losses. That is due to its hydro-geomorphological characteristics. Therefore, identifying flash flood hazards in these areas is critically important. This research uses an integrated approach of remote sensing data and GIS techniques to assess flash flood hazards based on morphometric measurements. There are 12 drainage basins in the study area. These basins differ in their morphometric characteristics, and their main streams range between the 4th and 7th order. The morphometric parameter analysis indicates that three wadis are highly prone to flooding, five wadis are classified as moderate hazard, and four wadis are rated under low probability of flooding. The study area has a probability offlooding, which could cause serious environmental hazards. To protect the region from flash flood hazards and the great benefit of rainwater, the study recommended detention, crossing, diversion, and/or storage of the accumulated rainwater by building a number of dams or culverts along the main streams of wadis to minimize the flooding flow. Full article
Show Figures

Figure 1

26 pages, 5051 KiB  
Article
Hydraulic Planning in Insular Urban Territories: The Case of Madeira Island—Ribeira Brava, Tabua
by Sérgio Lousada, Raul Alves, Mário Fernandes and Leonardo Gonçalves
Water 2023, 15(14), 2609; https://doi.org/10.3390/w15142609 - 18 Jul 2023
Cited by 3 | Viewed by 2043
Abstract
This study’s primary goal was to conduct an analysis of the flood propensity of the Tabua (Ribeira Brava) drainage basin’s main watercourse. In addition to that, this study also recommends two different methodologies in order to mitigate flood impacts, namely by dimensioning a [...] Read more.
This study’s primary goal was to conduct an analysis of the flood propensity of the Tabua (Ribeira Brava) drainage basin’s main watercourse. In addition to that, this study also recommends two different methodologies in order to mitigate flood impacts, namely by dimensioning a detention basin and adjusting the riverbed roughness coefficient. Regarding the study on the flood propensity, it was necessary to resort to geomorphological data, which were obtained when characterizing the watershed; these data were crucial to determining the expected peak flow rate, according to the Gumbel distribution methodology and considering a 100-year return period, and to perform necessary tasks in the SIG ArcGIS 10.5 software. Lastly, the drainage capacity of this drainage basin’s river mouth was also analyzed in order to conclude whether it would have the capacity to drain the total volume of rainwater if an extreme flood event were to happen. Indeed, the main results show that this watershed’s river mouth does not have the necessary drainage capacity to cope with an extreme event for the return period that was considered. As a consequence, the two aforementioned mitigation measures were developed considering the Tabua (Ribeira Brava) drainage basin’s specific features. The size of the detention basin was estimated through the Dutch method and the simplified triangular hydrograph method, while the adjustment of the roughness coefficient was considered a valid solution to enhance the drainage capacity of this river mouth. Full article
(This article belongs to the Special Issue Port Structures, Maritime Transport and Tourism)
Show Figures

Figure 1

52 pages, 10073 KiB  
Review
Evolution of Floods: From Ancient Times to the Present Times (ca 7600 BC to the Present) and the Future
by Andreas N. Angelakis, Andrea G. Capodaglio, Mohammad Valipour, Jens Krasilnikoff, Abdelkader T. Ahmed, Laila Mandi, Vasileios A. Tzanakakis, Alper Baba, Rohitashw Kumar, Xiaoyun Zheng, Zhang Min, Mooyoung Han, Bashiru Turay, Esra Bilgiç and Nicholas Dercas
Land 2023, 12(6), 1211; https://doi.org/10.3390/land12061211 - 11 Jun 2023
Cited by 24 | Viewed by 26270
Abstract
Floods are one of the most dangerous natural disasters, causing great destruction, damage, and even fatalities worldwide. Flooding is the phenomenon of a sudden increase or even slow increase in the volume of water in a river or stream bed as the result [...] Read more.
Floods are one of the most dangerous natural disasters, causing great destruction, damage, and even fatalities worldwide. Flooding is the phenomenon of a sudden increase or even slow increase in the volume of water in a river or stream bed as the result of several possible factors: heavy or very long precipitation, melting snowpack, strong winds over the water, unusually high tides, tsunamis, or the failure of dams, gages, detention basins, or other structures that hold back water. To gain a better understanding of flooding, it is necessary to examine evidence, search for ancient wisdom, and compare flood-management practices in different regions in a chronological perspective. This study reviews flood events caused by rising sea levels and erratic weather from ancient times to the present. In addition, this review contemplates concerns about future flood challenges and possible countermeasures. Thus, it presents a catalogue of past examples in order to present a point of departure for the study of ancient floods and to learn lessons for preparation for future flood incidents including heavy rainfalls, particularly in urbanized areas. The study results show that ancient societies developed multifaceted technologies to cope with floods and many of them are still usable now and may even represent solutions and measures to counter the changing and increasingly more erratic weather of the present. Full article
Show Figures

Figure 1

23 pages, 3631 KiB  
Article
Hydraulic Planning in Insular Urban Territories: The Case of Madeira Island—São João Stream, Funchal, Portugal
by Sérgio Lousada, Raul Alves, Mário Fernandes and Leonardo Gonçalves
Water 2023, 15(11), 2075; https://doi.org/10.3390/w15112075 - 30 May 2023
Cited by 4 | Viewed by 2537
Abstract
This study’s primary goal was to conduct an analysis regarding the flood susceptibility of the main watercourse of the São João (Funchal) drainage basin. In addition, if proven necessary, we also aimed to suggest mitigation measures, such as sizing a detention basin and [...] Read more.
This study’s primary goal was to conduct an analysis regarding the flood susceptibility of the main watercourse of the São João (Funchal) drainage basin. In addition, if proven necessary, we also aimed to suggest mitigation measures, such as sizing a detention basin and promoting adjustments of the riverbed’s roughness coefficient. This study also resorted to geomorphological data—obtained during the watershed characterization process—that were then utilized in the SIG ArcGIS software, in order to estimate the expected peak flow rate, considering a return period of 100 years using the Gumbel distribution. Finally, the Manning–Strickler equation was utilized to determine the river discharge point’s drainage capacity; the reason for that was to verify whether its drainage capacity was sufficient to drain the entire volume of rainwater associated with an extreme flood event. In summary, the results obtained by this study indicate that the drainage capacity of the river discharge point of the São João watershed (Funchal) is insufficient when considering an extreme flood event, for a return period of 100 years. Hence, it became necessary to explore the two aforementioned mitigation measures: first, regarding the detention basin, its sizing was calculated through both the Dutch method and the simplified triangular hydrograph method; second, aiming to increase the drainage capacity of the river discharge point, it is suggested that the roughness coefficient should also be modified. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

27 pages, 5215 KiB  
Article
Optimal Preventive Maintenance, Repair, and Replacement Program for Catch Basins to Reduce Urban Flooding: Integrating Agent-Based Modeling and Monte Carlo Simulation
by Ghiwa Assaf and Rayan H. Assaad
Sustainability 2023, 15(11), 8527; https://doi.org/10.3390/su15118527 - 24 May 2023
Cited by 10 | Viewed by 3762
Abstract
Urban sprawl has resulted in great losses of vegetation areas, an increase in impervious surfaces, and consequently the direct flow of stormwater into stream channels (i.e., the immediate flow of stormwater into stream channels, in comparison to the indirect flow that is represented [...] Read more.
Urban sprawl has resulted in great losses of vegetation areas, an increase in impervious surfaces, and consequently the direct flow of stormwater into stream channels (i.e., the immediate flow of stormwater into stream channels, in comparison to the indirect flow that is represented by practices aiming to retain stormwater for a certain period of time and treat the polluted stormwater prior to flowing into the stream channels such as detention/retention basins, among others). Stormwater management systems such as catch basins (CBs) are needed to reduce the effect of stormwater runoff. Preventative maintenance, repair, and replacement of CBs are critical to achieve stormwater management best practices. Those practices prevent the blockage of the stormwater system, limit the pollutants in storm sewers, and reduce the risk of flooding. However, no preceding research studies have been conducted to model and simulate the serviceability of CBs and to determine optimal strategies for operating CBs. To that extent, this study establishes a framework to develop and validate an optimal and adaptive maintenance, repair, and overhaul (MRO) strategy for CBs. In relation to that, an agent-based model (ABM) integrated with Monte Carlo simulation was developed for all 560 CBs in New York City’s District 5 and was statistically validated using 99% confidence intervals. The MRO parameters were optimized to minimize the total cost of the system and attain the desired level of serviceability of CBs. Sensitivity analysis was conducted to guide the maintenance planning process of CBs and reveal the effect of the input parameters on the model’s behavior. In addition, ten thousand Monte Carlo iterations were simulated to derive the distributions of the defined parameters. The results proved that in order to minimize the overall cost of repair, maintenance, and replacement of CBs and attain a minimum serviceability threshold of 80%, the following optimal MRO policy needs to be implemented: having seven service crews (where service crews are human resources (i.e., MRO teams) needed to perform the required maintenance, repair, and replacement work), implementing a replacing policy, and replacing CBs after five maintenance periods. The findings revealed that the service crews represent the most critical parameter in affecting the total cost and serviceability of CBs. This research contributes to the existing literature by offering a better knowledge of the management process of CBs and devising optimal MRO strategies for properly operating them. Ultimately, this research helps decision-makers and engineers increase the lifespan of CBs and limit their risks of breakdown, increase their efficiency, and avoid unnecessary costs. The proposed model is flexible and can be implemented to any geographical area and with other model/system parameters, which makes it adaptive for any scenario and area presented by the user. Finally, maintaining stormwater management practices helps in protecting the environment by decreasing the demand on stormwater systems, reducing flooding, protecting people and properties, promoting healthier rivers, and consequently creating more sustainable communities. Full article
Show Figures

Figure 1

Back to TopTop