Enhancing Urban Drainage Resilience Through Holistic Stormwater Regulation: A Review
Abstract
:1. Introduction
2. Drainage Network
2.1. Design Process of Drainage Networks
2.1.1. Spatial Layout-Based Design
2.1.2. Resilience Assessment Framework
2.2. Key Elements in Pipeline Network Operation and Maintenance: Flow Control Devices
2.2.1. Optimal Siting of Flow Control Devices
2.2.2. Real-Time Control Strategies for Flow Control Devices
Model Computation and Predictive Analytics
Pump Operation and Control Strategies
Distributed Gate Control Systems
Impacts of FCD Control on Wastewater Treatment Plant Performance
3. Quasi-Detention Basin
3.1. Design Process Optimization
3.1.1. Location–Capacity Integrated Design
3.1.2. Flood-Induced Economic Loss-Driven Design
3.1.3. Water Quality-Oriented Design Paradigm
3.2. Control Strategies for Quasi-Detention Basins
3.2.1. Reactive Control
3.2.2. Predictive Control/Model Predictive Control
3.2.3. Integration of Reactive and Predictive Control Frameworks
4. Future Research
4.1. Computational Efficiency Enhancement
4.2. Hybrid Green–Blue–Grey Infrastructures
4.3. Deep Learing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Description |
AHP | Analytic Hierarchy Process |
ANN | Artificial Neural Network |
BMP | Best Management Practices |
CSO | Combined Sewer Overflow |
CSS | Combined Sewer System |
DEM | Digital Elevation Model |
DP | Dynamic Programming |
DTM | Digital Terrain Model |
FLC | Fuzzy Logic Control |
GA | Genetic Algorithm |
GI | Green Infrastructure |
GBI | Green–Blue Infrastructure |
GreyI | Grey Infrastructure |
HGBGI | Hybrid Green–Blue–Grey Infrastructure |
HSA | Harmony Search Algorithm |
LASSO | The Least Absolute Shrinkage and Selection Operator |
LID | Low Impact Development |
LSTM | Long-Short Term Memory |
MIP | Mixed-Integer Programming |
MOPSO | Multiple Objective Particle Swarm Optimization |
PSO | Particle Swarm Optimization |
QDB | Quasi-Detention Basin |
RBC | Rule-Based Control |
RNN | Recurrent Neural Network |
RTC | Real-time Control |
SSO | Sanitation Sewer Overflow |
SUDS | Sustainable Urban Drainage Systems |
SWMM | Storm Water Management Model |
TSS | Total Soluble Solid |
UDS | Urban Drainage System |
WSUD | Water Sensitive Urban Design |
WWTP | Wastewater Treatment Plant |
References
- Zhang, W.; Zhou, T.; Wu, P. Anthropogenic Amplification of Precipitation Variability over the Past Century. Science 2024, 385, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, S.; Duraisekaran, E.; Mathivanan, M.; Ravikumar, G. Assessing the Impact of Urbanisation on the Hydrology of Tank (Detention Reservoirs) at City, Sub-Basin and Micro-Watershed Scale. Environ. Dev. 2024, 49, 100964. [Google Scholar] [CrossRef]
- Tradowsky, J.S.; Philip, S.Y.; Kreienkamp, F.; Kew, S.F.; Lorenz, P.; Arrighi, J.; Bettmann, T.; Caluwaerts, S.; Chan, S.C.; De Cruz, L.; et al. Attribution of the Heavy Rainfall Events Leading to Severe Flooding in Western Europe during July 2021. Clim. Chang. 2023, 176, 90. [Google Scholar] [CrossRef]
- Lin, F.; Ren, H.; Qin, J.; Wang, M.; Shi, M.; Li, Y.; Wang, R.; Hu, Y. Analysis of Pollutant Dispersion Patterns in Rivers under Different Rainfall Based on an Integrated Water-Land Model. J. Environ. Manag. 2024, 354, 120314. [Google Scholar] [CrossRef] [PubMed]
- Arden, S.; Ma, X.C.; Brown, M. An Ecohydrologic Model for a Shallow Groundwater Urban Environment. Water Sci. Technol. 2014, 70, 1789–1797. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and More—The Evolution and Application of Terminology Surrounding Urban Drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Feng, Y. Evapotranspiration from Green Infrastructure: Benefit, Measurement, and Simulation; IntechOpen: London, UK, 2018. [Google Scholar]
- Kourtis, I.M.; Tsihrintzis, V.A.; Baltas, E. A Robust Approach for Comparing Conventional and Sustainable Flood Mitigation Measures in Urban Basins. J. Environ. Manag. 2020, 269, 110822. [Google Scholar] [CrossRef]
- Sreeja, P.; Gupta, K. An Alternate Approach for Transient Flow Modeling in Urban Drainage Systems. Water Resour. Manag. 2007, 21, 1225–1244. [Google Scholar] [CrossRef]
- Liu, Z.; Li, W.; Wang, L.; Li, L.; Xu, B. The Scenario Simulations and Several Problems of the Sponge City Construction in Semi-Arid Loess Region, Northwest China. Landsc. Ecol. Eng. 2022, 18, 95–108. [Google Scholar] [CrossRef]
- Yazdi, J. Optimal Operation of Urban Storm Detention Ponds for Flood Management. Water Resour. Manag. 2019, 33, 2109–2121. [Google Scholar] [CrossRef]
- Cui, T.; Long, Y.; Wang, Y. Choosing the LID for Urban Storm Management in the South of Taiyuan Basin by Comparing the Storm Water Reduction Efficiency. Water 2019, 11, 2583. [Google Scholar] [CrossRef]
- Tansar, H.; Li, F.; Zheng, F.; Duan, H.-F. A Critical Review on Optimization and Implementation of Green-Grey Infrastructures for Sustainable Urban Stormwater Management. AQUA Water Infrastruct. Ecosyst. Soc. 2024, 73, 1135–1150. [Google Scholar] [CrossRef]
- Muttil, N.; Nasrin, T.; Sharma, A.K. Impacts of Extreme Rainfalls on Sewer Overflows and WSUD-Based Mitigation Strategies: A Review. Water 2023, 15, 429. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and Implementation of Low Impact Development—A Review. Sci. Total Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef]
- Ngamalieu-Nengoue, U.A.; Martínez-Solano, F.J.; Iglesias-Rey, P.L.; Mora-Meliá, D. Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water 2019, 11, 935. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Li, Y.; Ding, W. Vulnerability Analysis of Urban Drainage Systems: Tree vs. Loop Networks. Sustainability 2017, 9, 397. [Google Scholar] [CrossRef]
- Moeini, R.; Afshar, M.H. Arc Based Ant Colony Optimization Algorithm for Optimal Design of Gravitational Sewer Networks. Ain Shams Eng. J. 2017, 8, 207–223. [Google Scholar] [CrossRef]
- Moeini, R.; Afshar, M.H. Constrained Ant Colony Optimisation Algorithm for the Layout and Size Optimisation of Sanitary Sewer Networks. Urban Water J. 2013, 10, 154–173. [Google Scholar] [CrossRef]
- Duque, N.; Duque, D.; Aguilar, A.; Saldarriaga, J. Sewer Network Layout Selection and Hydraulic Design Using a Mathematical Optimization Framework. Water 2020, 12, 3337. [Google Scholar] [CrossRef]
- Barron, N.J.; Kuller, M.; Yasmin, T.; Castonguay, A.C.; Copa, V.; Duncan-Horner, E.; Gimelli, F.M.; Jamali, B.; Nielsen, J.S.; Ng, K.; et al. Towards Water Sensitive Cities in Asia: An Interdisciplinary Journey. Water Sci. Technol. 2017, 76, 1150–1157. [Google Scholar] [CrossRef]
- Poustie, M.S.; Deletic, A.; Brown, R.R.; Wong, T.; De Haan, F.J.; Skinner, R. Sustainable Urban Water Futures in Developing Countries: The Centralised, Decentralised or Hybrid Dilemma. Urban Water J. 2015, 12, 543–558. [Google Scholar] [CrossRef]
- Duque, N.; Scholten, L.; Maurer, M. Exploring Transitions of Sewer Wastewater Infrastructure towards Decentralisation Using the Modular Model TURN-Sewers. Water Res. 2024, 257, 121640. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Silva, J.D.; Bangura, E.; Helm, B.; Benisch, J.; Krebs, P. The Role of Sewer Network Structure on the Occurrence and Magnitude of Combined Sewer Overflows (CSOs). Water 2020, 12, 2675. [Google Scholar] [CrossRef]
- Bakhshipour, A.E.; Bakhshizadeh, M.; Dittmer, U.; Haghighi, A.; Nowak, W. Hanging Gardens Algorithm to Generate Decentralized Layouts for the Optimization of Urban Drainage Systems. J. Water Resour. Plan. Manag. 2019, 145, 4019034. [Google Scholar] [CrossRef]
- Ren, H.; Liu, S.; Li, M.; Zhang, H.; Wang, H.; Hao, X.; Cui, J. Topological Analysis and Application of Urban Drainage Network. Water 2022, 14, 3732. [Google Scholar] [CrossRef]
- Meijer, D.; Korving, H.; Clemens-Meyer, F. A Topological Characterisation of Looped Drainage Networks. Struct. Infrastruct. Eng. 2024, 20, 1563–1576. [Google Scholar] [CrossRef]
- Haghighi, A. Loop-by-Loop Cutting Algorithm to Generate Layouts for Urban Drainage Systems. J. Water Resour. Plan. Manag. 2013, 139, 693–703. [Google Scholar] [CrossRef]
- Zhang, D.; Dong, X.; Zeng, S. Exploring the Structural Factors of Resilience in Urban Drainage Systems: A Large-Scale Stochastic Computational Experiment. Water Res. 2021, 188, 116475. [Google Scholar] [CrossRef]
- Hesarkazzazi, S.; Bakhshipour, A.E.; Hajibabaei, M.; Dittmer, U.; Haghighi, A.; Sitzenfrei, R. Battle of Centralized and Decentralized Urban Stormwater Networks: From Redundancy Perspective. Water Res. 2022, 222, 118910. [Google Scholar] [CrossRef]
- Hesarkazzazi, S.; Hajibabaei, M.; Bakhshipour, A.E.; Dittmer, U.; Haghighi, A.; Sitzenfrei, R. Generation of Optimal (de) Centralized Layouts for Urban Drainage Systems: A Graph-Theory-Based Combinatorial Multi-Objective Optimization Framework. Sustain. Cities Soc. 2022, 81, 103827. [Google Scholar] [CrossRef]
- Möderl, M.; Butler, D.; Rauch, W. A Stochastic Approach for Automatic Generation of Urban Drainage Systems. Water Sci. Technol. 2009, 59, 1137–1143. [Google Scholar] [CrossRef]
- Butler, D.; Ward, S.; Sweetapple, C.; Astaraie-Imani, M.; Diao, K.; Farmani, R.; Fu, G. Reliable, Resilient and Sustainable Water Management: The Safe & SuRe Approach. Glob. Chall. 2017, 1, 63–77. [Google Scholar] [PubMed]
- Chen, J.; Chen, W.; Huang, G. Assessing Urban Pluvial Flood Resilience Based on a Novel Grid-Based Quantification Method That Considers Human Risk Perceptions. J. Hydrol. 2021, 601, 126601. [Google Scholar] [CrossRef]
- Behzadian, K.; Kapelan, Z.; Morley, M.S. Resilience-Based Performance Assessment of Water-Recycling Schemes in Urban Water Systems. Procedia Eng. 2014, 89, 719–726. [Google Scholar] [CrossRef]
- Meng, F.; Fu, G.; Farmani, R.; Sweetapple, C.; Butler, D. Topological Attributes of Network Resilience: A Study in Water Distribution Systems. Water Res. 2018, 143, 376–386. [Google Scholar] [CrossRef]
- Mohammadiun, S.; Yazdi, J.; Salehi Neyshabouri, S.A.A.; Sadiq, R. Development of a Stochastic Framework to Design/Rehabilitate Urban Stormwater Drainage Systems Based on a Resilient Approach. Urban Water J. 2018, 15, 167–176. [Google Scholar] [CrossRef]
- Sweetapple, C.; Fu, G.; Farmani, R.; Butler, D. General Resilience: Conceptual Formulation and Quantitative Assessment for Intervention Development in the Urban Wastewater System. Water Res. 2022, 211, 118108. [Google Scholar] [CrossRef]
- Nie, L. Enhancing Urban Flood Resilience—A Case Study for Policy Implementation. Proc. Inst. Civ. Eng. Water Manag. 2016, 169, 85–93. [Google Scholar] [CrossRef]
- Li, T.; Tan, Q.; Zhu, S. Characteristics of Combined Sewer Overflows in Shanghai and Selection of Drainage Systems. Water Environ. J. 2010, 24, 74–82. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, G. Integrating Resilience into an Urban Flood Risk Assessment Framework: A Case Study of the Minzhi Region, Shenzhen City. Stoch. Environ. Res. Risk Assess. 2023, 37, 1183–1197. [Google Scholar] [CrossRef]
- Tscheikner-Gratl, F.; Caradot, N.; Cherqui, F.; Leitão, J.P.; Ahmadi, M.; Langeveld, J.G.; Le Gat, Y.; Scholten, L.; Roghani, B.; Rodríguez, J.P.; et al. Sewer Asset Management—State of the Art and Research Needs. Urban Water J. 2019, 16, 662–675. [Google Scholar] [CrossRef]
- Martin, J. Remotely Controlled Sewers. Procedia Eng. 2014, 70, 1084–1093. [Google Scholar] [CrossRef]
- Garofalo, G.; Giordano, A.; Piro, P.; Spezzano, G.; Vinci, A. A Distributed Real-Time Approach for Mitigating CSO and Flooding in Urban Drainage Systems. J. Netw. Comput. Appl. 2017, 78, 30–42. [Google Scholar] [CrossRef]
- Darsono, S.; Labadie, J.W. Neural-Optimal Control Algorithm for Real-Time Regulation of in-Line Storage in Combined Sewer Systems. Environ. Model. Softw. 2007, 22, 1349–1361. [Google Scholar] [CrossRef]
- Joseph-Duran, B.; Ocampo-Martinez, C.; Cembrano, G. Output-Feedback Control of Combined Sewer Networks through Receding Horizon Control with Moving Horizon Estimation. Water Resour. Res. 2015, 51, 8129–8145. [Google Scholar] [CrossRef]
- Li, J.; Sharma, K.; Li, W.; Yuan, Z. Swift Hydraulic Models for Real-Time Control Applications in Sewer Networks. Water Res. 2022, 213, 118141. [Google Scholar] [CrossRef]
- Zhang, D.; Martinez, N.; Lindholm, G.; Ratnaweera, H. Manage Sewer In-Line Storage Control Using Hydraulic Model and Recurrent Neural Network. Water Resour. Manag. 2018, 32, 2079–2098. [Google Scholar] [CrossRef]
- Sufi Karimi, H.; Natarajan, B.; Ramsey, C.L.; Henson, J.; Tedder, J.L.; Kemper, E. Comparison of Learning-Based Wastewater Flow Prediction Methodologies for Smart Sewer Management. J. Hydrol. 2019, 577, 123977. [Google Scholar] [CrossRef]
- Palmitessa, R.; Mikkelsen, P.S.; Borup, M.; Law, A.W.K. Soft Sensing of Water Depth in Combined Sewers Using LSTM Neural Networks with Missing Observations. J. Hydro-Environ. Res. 2021, 38, 106–116. [Google Scholar] [CrossRef]
- Dai, X.; Xu, G.; Ding, Y.; Zeng, S.; You, L.; Jiang, J.; Zhang, H. Online Storage Technology of the Separate Sewage System: Demonstration Study in a Typical Plain River Network City. Water 2022, 14, 3194. [Google Scholar] [CrossRef]
- Rathnayake, U. Static Optimal Control of Combined Sewer Networks under Enhanced Cost Functions to Minimize the Adverse Environmental Effects. ISH J. Hydraul. Eng. 2021, 27, 210–223. [Google Scholar] [CrossRef]
- Fecarotta, O.; Cimorelli, L. Optimal Scheduling and Control of a Sewer Pump under Stochastic Inflow Pattern. Urban Water J. 2021, 18, 383–393. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, H.; Yu, Z.; Yin, H.; Xu, Z. Abatement of Sewer Overflow Pollution Based on Distributed Optimal Control Approach. ACS EST Water 2024, 4, 859–868. [Google Scholar] [CrossRef]
- Ruggaber, T.P.; Talley, J.W.; Montestruque, L.A. Using Embedded Sensor Networks to Monitor, Control, and Reduce CSO Events: A Pilot Study. Environ. Eng. Sci. 2007, 24, 172–182. [Google Scholar] [CrossRef]
- Rathnayake, U.; Anwar, A.H.M.F. Dynamic Control of Urban Sewer Systems to Reduce Combined Sewer Overflows and Their Adverse Impacts. J. Hydrol. 2019, 579, 124150. [Google Scholar] [CrossRef]
- Luo, X.; Liu, P.; Cheng, L.; Liu, W.; Cheng, Q.; Zhou, C. Optimization of In-Pipe Storage Capacity Use in Urban Drainage Systems with Improved DP Considering the Time Lag of Flow Routing. Water Res. 2022, 227, 119350. [Google Scholar] [CrossRef]
- Kroll, S.; Weemaes, M.; Van Impe, J.; Willems, P. A Methodology for the Design of RTC Strategies for Combined Sewer Networks. Water 2018, 10, 1675. [Google Scholar] [CrossRef]
- Leitão, J.P.; Carbajal, J.P.; Rieckermann, J.; Simões, N.E.; Sá Marques, A.; de Sousa, L.M. Identifying the Best Locations to Install Flow Control Devices in Sewer Networks to Enable In-Sewer Storage. J. Hydrol. 2018, 556, 371–383. [Google Scholar] [CrossRef]
- Muñoz, D.F.; Simões, N.E.; de Sousa, L.M.; Maluf, L.; Sá Marques, A.; Leitão, J.P. Generalizing Multi-Reward Functions Aimed at Identifying the Best Locations to Install Flow Control Devices in Sewer Systems. Urban Water J. 2019, 16, 564–574. [Google Scholar] [CrossRef]
- Eulogi, M.; Ostojin, S.; Skipworth, P.; Shucksmith, J.D.; Schellart, A. Hydraulic Optimisation of Multiple Flow Control Locations for the Design of Local Real Time Control Systems. Urban Water J. 2021, 18, 91–100. [Google Scholar] [CrossRef]
- Eulogi, M.; Ostojin, S.; Skipworth, P.; Kroll, S.; Shucksmith, J.D.; Schellart, A. Optimal Positioning of RTC Actuators and SuDS for Sewer Overflow Mitigation in Urban Drainage Systems. Water 2022, 14, 3839. [Google Scholar] [CrossRef]
- Wang, W.; Leitão, J.P.; Wani, O. Is Flow Control in a Space-Constrained Drainage Network Effective? A Performance Assessment for Combined Sewer Overflow Reduction. Environ. Res. 2021, 202, 111688. [Google Scholar] [CrossRef] [PubMed]
- Jalili, H.; Chevalier, L.; Nicklow, J.W. Optimization of Real-Time Control Approach: Number, Placement, and Proportional–Integral–Derivative Control Rules of Flow Control Devices in Distributed Flood Routing. Water 2024, 16, 3331. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; McIntyre, N.; Díaz-Granados, M.; Quijano, J.P.; Maksimović, Č. Monitoring and Modelling to Support Wastewater System Management in Developing Mega-Cities. Sci. Total Environ. 2013, 445–446, 79–93. [Google Scholar] [CrossRef]
- Heusch, S.; Hanss, H.; Ostrowski, M.; Rosen, R.; Sohr, A. Optimal Control of Sewer Networks Problem Description. In Mathematical Optimization of Water Networks; Martin, A., Klamroth, K., Lang, J., Leugering, G., Morsi, A., Oberlack, M., Ostrowski, M., Rosen, R., Eds.; Springer: Basel, Switzerland, 2012; pp. 69–82. ISBN 978-3-0348-0436-3. [Google Scholar]
- Chen, S.; Qin, H.; Zheng, Y.; Fu, G. Spatial Variations of Pollutants from Sewer Interception System Overflow. J. Environ. Manag. 2019, 233, 748–756. [Google Scholar] [CrossRef]
- Starzec, M.; Dziopak, J.; Słyś, D. An Analysis of Stormwater Management Variants in Urban Catchments. Resources 2020, 9, 19. [Google Scholar] [CrossRef]
- Alam, F.; Mehmood, R.; Katib, I.; Albeshri, A. Analysis of Eight Data Mining Algorithms for Smarter Internet of Things (IoT). Procedia Comput. Sci. 2016, 98, 437–442. [Google Scholar] [CrossRef]
- Hou, S.; Li, D.; Xi, Y.; Cen, L. Energy-Saving Optimization of Urban Drainage System Based on Pump Performance. In Proceedings of the 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 23–25 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 308–313. [Google Scholar]
- Hwang, Y.K.; Kwon, S.H.; Lee, E.H.; Kim, J.H. Development of Optimal Pump Operation Method for Urban Drainage Systems. In Proceedings of the Advances in Harmony Search, Soft Computing and Applications; Kim, J.H., Geem, Z.W., Jung, D., Yoo, D.G., Yadav, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 63–69. [Google Scholar]
- Zhang, Z.; Kusiak, A.; Zeng, Y.; Wei, X. Modeling and Optimization of a Wastewater Pumping System with Data-Mining Methods. Appl. Energy 2016, 164, 303–311. [Google Scholar] [CrossRef]
- Fecarotta, O.; Carravetta, A.; Morani, M.C.; Padulano, R. Optimal Pump Scheduling for Urban Drainage under Variable Flow Conditions. Resources 2018, 7, 73. [Google Scholar] [CrossRef]
- Cimorelli, L.; D’Aniello, A.; Cozzolino, L. Boosting Genetic Algorithm Performance in Pump Scheduling Problems with a Novel Decision-Variable Representation. J. Water Resour. Plan. Manag. 2020, 146, 4020023. [Google Scholar] [CrossRef]
- Carbone, M.; Garofalo, G.; Piro, P. Decentralized Real Time Control in Combined Sewer System by Using Smart Objects. Procedia Eng. 2014, 89, 473–478. [Google Scholar] [CrossRef]
- Newhart, K.B.; Holloway, R.W.; Hering, A.S.; Cath, T.Y. Data-Driven Performance Analyses of Wastewater Treatment Plants: A Review. Water Res. 2019, 157, 498–513. [Google Scholar] [CrossRef]
- Fiorelli, D.; Schutz, G. Real-Time Control of a Sewer Network Using a Multi-Goal Objective Function. In Proceedings of the 2009 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece, 24–26 June 2009; pp. 676–681. [Google Scholar]
- Ryu, J.; Lee, J.; Oh, J. Examination of the Storage Function of Intercepting Sewers Using Long-Term Flow Monitoring Data. Desalin. Water Treat. 2015, 54, 1299–1307. [Google Scholar] [CrossRef]
- Kroll, S.; Dirckx, G.; Donckels, B.M.R.; Van Dorpe, M.; Weemaes, M.; Willems, P. Modelling Real-Time Control of WWTP Influent Flow under Data Scarcity. Water Sci. Technol. 2016, 73, 1637–1643. [Google Scholar] [CrossRef] [PubMed]
- Sakson, G.; Zawilski, M.; Brzezińska, A. Analysis of Combined Sewer Flow Storage Scenarios Prior to Wastewater Treatment Plant. Ecol. Chem. Eng. S 2018, 25, 619–630. [Google Scholar] [CrossRef]
- Langeveld, J.; Van Daal, P.; Schilperoort, R.; Nopens, I.; Flameling, T.; Weijers, S. Empirical Sewer Water Quality Model for Generating Influent Data for WWTP Modelling. Water 2017, 9, 491. [Google Scholar] [CrossRef]
- Wang, R.; Pan, Z.; Chen, Y.; Tan, Z.; Zhang, J. Influent Quality and Quantity Predictionin Wastewater Treatment Plant: ModelConstruction and Evaluation. Pol. J. Environ. Stud. 2021, 30, 4267–4276. [Google Scholar] [CrossRef]
- Li, F.; Vanrolleghem, P.A. An Essential Tool for WRRF Modelling: A Realistic and Complete Influent Generator for Flow Rate and Water Quality Based on Data-Driven Methods. Water Sci. Technol. 2022, 85, 2722–2736. [Google Scholar] [CrossRef]
- Li, F.; Vanrolleghem, P.A. An Influent Generator for WRRF Design and Operation Based on a Recurrent Neural Network with Multi-Objective Optimization Using a Genetic Algorithm. Water Sci. Technol. 2022, 85, 1444–1453. [Google Scholar] [CrossRef]
- Cunha, M.C.; Zeferino, J.A.; Simões, N.E.; Saldarriaga, J.G. Optimal Location and Sizing of Storage Units in a Drainage System. Environ. Model. Softw. 2016, 83, 155–166. [Google Scholar] [CrossRef]
- Baek, H.; Ryu, J.; Oh, J.; Kim, T.-H. Optimal Design of Multi-Storage Network for Combined Sewer Overflow Management Using a Diversity-Guided, Cyclic-Networking Particle Swarm Optimizer—A Case Study in the Gunja Subcatchment Area, Korea. Expert Syst. Appl. 2015, 42, 6966–6975. [Google Scholar] [CrossRef]
- Ryu, J.; Baek, H.; Lee, G.; Kim, T.-H.; Oh, J. Optimal Planning of Decentralised Storage Tanks to Reduce Combined Sewer Overflow Spills Using Particle Swarm Optimisation. Urban Water J. 2017, 14, 202–211. [Google Scholar] [CrossRef]
- Ngo, T.T.; Yazdi, J.; Mousavi, S.J.; Kim, J.H. Linear System Theory-Based Optimization of Detention Basin’s Location and Size at Watershed Scale. J. Hydrol. Eng. 2016, 21, 6016013. [Google Scholar] [CrossRef]
- Wang, M.; Li, M.; Sweetapple, C. A New Framework for Distributed Storage Tanks Placement Based on a Resilience Characteristic Metric and Reduced Modelling. J. Environ. Manag. 2023, 342, 118098. [Google Scholar] [CrossRef]
- Liang, J.; Melching, C.S. Experimental Evaluation of the Effect of Storm Movement on Peak Discharge. Int. J. Sediment Res. 2015, 30, 167–177. [Google Scholar] [CrossRef]
- Starzec, M.; Dziopak, J.; Słyś, D.; Pochwat, K.; Kordana, S. Dimensioning of Required Volumes of Interconnected Detention Tanks Taking into Account the Direction and Speed of Rain Movement. Water 2018, 10, 1826. [Google Scholar] [CrossRef]
- Jiang, W.; Tan, Y. Overview on Failures of Urban Underground Infrastructures in Complex Geological Conditions due to Heavy Rainfall in China during 1994–2018. Sustain. Cities Soc. 2022, 76, 103509. [Google Scholar] [CrossRef]
- Adelodun, B.; Odey, G.; Lee, S.; Choi, K.S. Investigating the Causal Impacts Relationship between Economic Flood Damage and Extreme Precipitation Indices Based on ARDL-ECM Framework: A Case Study of Chungcheong Region in South Korea. Sustain. Cities Soc. 2023, 95, 104606. [Google Scholar] [CrossRef]
- Lee, E.H.; Kim, J.H. Development of a Reliability Index Considering Flood Damage for Urban Drainage Systems. KSCE J. Civ. Eng. 2019, 23, 1872–1880. [Google Scholar] [CrossRef]
- Jamali, B.; Bach, P.M.; Deletic, A. Rainwater Harvesting for Urban Flood Management—An Integrated Modelling Framework. Water Res. 2020, 171, 115372. [Google Scholar] [CrossRef]
- Choi, H.; Lee, E.H.; Joo, J.G.; Kim, J.H. Determining Optimal Locations for Rainwater Storage Sites with the Goal of Reducing Urban Inundation Damage Costs. KSCE J. Civ. Eng. 2017, 21, 2488–2500. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, C.; Han, Q.; Zhang, X.; Li, J.; Xiao, Y. Coupling Simulation of Pipeline Nodes—Storage Tank Linkage in Urban High-Density Built-up Areas Using Optimization Model. J. Environ. Manag. 2024, 357, 120850. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Y.; Sweetapple, C. Optimization of Storage Tank Locations in an Urban Stormwater Drainage System Using a Two-Stage Approach. J. Environ. Manag. 2017, 204, 31–38. [Google Scholar] [CrossRef]
- Li, H.; Lu, L.; Huang, X.; Shangguan, H.; Wei, Z. An Optimal Design Strategy of Decentralized Storage Tank Locations for Multi-Objective Control of Initial Rainwater Quality. Water Supply 2020, 20, 2069–2081. [Google Scholar] [CrossRef]
- Hermoso, M.; García-Ruiz, M.J.; Osorio, F. Efficiency of Flood Control Measures in a Sewer System Located in the Mediterranean Basin. Water 2018, 10, 1437. [Google Scholar] [CrossRef]
- Xu, Z.; Hua, W.; Xiong, L.; He, Z. Novel Design of Volume of Detention Tanks Assisted by a Multi-Source Pollution Overflow Model towards Pollution Control in Urban Drainage Basins. Environ. Sci. Pollut. Res. 2020, 27, 12781–12791. [Google Scholar] [CrossRef]
- Li, J. A Data-Driven Improved Fuzzy Logic Control Optimization-Simulation Tool for Reducing Flooding Volume at Downstream Urban Drainage Systems. Sci. Total Environ. 2020, 732, 138931. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, Z.K.; Hodges, C.C.; Dymond, R.L. Simulation and Assessment of Long-Term Stormwater Basin Performance under Real-Time Control Retrofits. Urban Water J. 2020, 17, 467–480. [Google Scholar] [CrossRef]
- Shishegar, S.; Duchesne, S.; Pelletier, G. Optimization Methods Applied to Stormwater Management Problems: A Review. Urban Water J. 2018, 15, 276–286. [Google Scholar] [CrossRef]
- Xu, W.D.; Fletcher, T.D.; Burns, M.J.; Cherqui, F. Real Time Control of Rainwater Harvesting Systems: The Benefits of Increasing Rainfall Forecast Window. Water Resour. Res. 2020, 56, e2020WR027856. [Google Scholar] [CrossRef]
- Sun, L.; Xia, J.; She, D.; Guo, Q.; Su, Y.; Wang, W. Integrated Intra-Storm Predictive Analysis and Real-Time Control for Urban Stormwater Storage to Reduce Flooding Risk in Cities. Sustain. Cities Soc. 2023, 92, 104506. [Google Scholar] [CrossRef]
- García, L.; Barreiro-Gomez, J.; Escobar, E.; Téllez, D.; Quijano, N.; Ocampo-Martinez, C. Modeling and Real-Time Control of Urban Drainage Systems: A Review. Adv. Water Resour. 2015, 85, 120–132. [Google Scholar] [CrossRef]
- Mounce, S.R.; Shepherd, W.; Ostojin, S.; Abdel-Aal, M.; Schellart, A.N.A.; Shucksmith, J.D.; Tait, S.J. Optimisation of a Fuzzy Logic-Based Local Real-Time Control System for Mitigation of Sewer Flooding Using Genetic Algorithms. J. Hydroinformatics 2020, 22, 281–295. [Google Scholar] [CrossRef]
- Zug, M.; Faure, D.; De Belly, B.; Phan, L. Use of Real Time Control Modelling on the Urban Sewage System of Nancy. Water Sci. Technol. 2001, 44, 261–268. [Google Scholar] [CrossRef]
- Akin, A.A.; Hathaway, J.M.; Khojandi, A. Turbidity Informed Real-Time Control of a Dry Extended Detention Basin: A Case Study. Environ. Sci. Water Res. Technol. 2022, 8, 2040–2051. [Google Scholar] [CrossRef]
- Sharior, S.; McDonald, W.; Parolari, A.J. Improved Reliability of Stormwater Detention Basin Performance through Water Quality Data-Informed Real-Time Control. J. Hydrol. 2019, 573, 422–431. [Google Scholar] [CrossRef]
- West, C.; Kenway, S.; Hassall, M.; Yuan, Z. Expert Opinion on Risks to the Long-Term Viability of Residential Recycled Water Schemes: An Australian Study. Water Res. 2017, 120, 133–145. [Google Scholar] [CrossRef]
- Roman, D.; Braga, A.; Shetty, N.; Culligan, P. Design and Modeling of an Adaptively Controlled Rainwater Harvesting System. Water 2017, 9, 974. [Google Scholar] [CrossRef]
- Altobelli, M.; Evangelisti, M.; Maglionico, M. Multi-Objective Performance of Detention Basins and Rainwater Harvesting Systems Using Real-Time Controls with Rainfall Forecasts. Water 2023, 16, 71. [Google Scholar] [CrossRef]
- Carp, D.; Barbu, M.; Mînzu, V. Network Discharge Control Using a Fuzzy Logic Approach. In Proceedings of the 2013 4th International Symposium on Electrical and Electronics Engineering (ISEEE), Galati, Romania, 11–13 October 2013; pp. 1–4. [Google Scholar]
- Barbu, M.; Vilanova, R.; Santin, I. Fuzzy Control Applied on a Benchmark Simulation Model for Sewer Networks. In Proceedings of the 2016 20th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 13–15 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 180–185. [Google Scholar]
- Liang, R.; Maier, H.R.; Thyer, M.A.; Dandy, G.C.; Tan, Y.; Chhay, M.; Sau, T.; Lam, V. Calibration-Free Approach to Reactive Real-Time Control of Stormwater Storages. J. Hydrol. 2022, 614, 128559. [Google Scholar] [CrossRef]
- Oh, J.; Bartos, M. Model Predictive Control of Stormwater Basins Coupled with Real-Time Data Assimilation Enhances Flood and Pollution Control under Uncertainty. Water Res. 2023, 235, 119825. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Guan, Z.; Liu, Z.; Yang, D. Influence of Short-Term Rainfall Forecast Error on Flood Forecast Operation: A Risk Assessment Based on Bayesian Theory. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 2447–2461. [Google Scholar] [CrossRef]
- Cai, C.; Wang, J.; Li, Z.; Shen, X.; Wen, J.; Wang, H.; Zhou, X. Evaluating and Modeling the Reliability of Continuous No-Rain Forecast from TIGGE Based on the First-Passage Problem and Fuzzy Mathematics. J. Hydrometeorol. 2023, 26, 1119–1135. [Google Scholar] [CrossRef]
- Freni, G.; Liuzzo, L. Effectiveness of Rainwater Harvesting Systems for Flood Reduction in Residential Urban Areas. Water 2019, 11, 1389. [Google Scholar] [CrossRef]
- Di Chiano, M.G.; Marchioni, M.; Raimondi, A.; Sanfilippo, U.; Becciu, G. Probabilistic Approach to Tank Design in Rainwater Harvesting Systems. Hydrology 2023, 10, 59. [Google Scholar] [CrossRef]
- Di Matteo, M.; Liang, R.; Maier, H.R.; Thyer, M.A.; Simpson, A.R.; Dandy, G.C.; Ernst, B. Controlling Rainwater Storage as a System: An Opportunity to Reduce Urban Flood Peaks for Rare, Long Duration Storms. Environ. Model. Softw. 2019, 111, 34–41. [Google Scholar] [CrossRef]
- Mullapudi, A.; Lewis, M.J.; Gruden, C.L.; Kerkez, B. Deep Reinforcement Learning for the Real Time Control of Stormwater Systems. Adv. Water Resour. 2020, 140, 103600. [Google Scholar] [CrossRef]
- Sun, L.; Xia, J.; She, D.; Ding, W.; Jiang, J.; Liu, B.; Zhao, F. A Predictive Fuzzy Logic and Rule-Based Control Approach for Practical Real-Time Operation of Urban Stormwater Storage System. Water Res. 2024, 266, 122437. [Google Scholar] [CrossRef]
- Vasiliev, I.; Luca, L.; Barbu, M.; Vilanova, R.; Caraman, S. Reducing the Environmental Impact of Sewer Network Overflows Using Model Predictive Control Strategy. Water Resour. Res. 2024, 60, e2023WR035448. [Google Scholar] [CrossRef]
- Meneses, E.J.; Gaussens, M.; Jakobsen, C.; Mikkelsen, P.S.; Grum, M.; Vezzaro, L. Coordinating Rule-Based and System-Wide Model Predictive Control Strategies to Reduce Storage Expansion of Combined Urban Drainage Systems: The Case Study of Lundtofte, Denmark. Water 2018, 10, 76. [Google Scholar] [CrossRef]
- Shishegar, S.; Duchesne, S.; Pelletier, G. An Integrated Optimization and Rule-Based Approach for Predictive Real Time Control of Urban Stormwater Management Systems. J. Hydrol. 2019, 577, 124000. [Google Scholar] [CrossRef]
- Bilodeau, K.; Pelletier, G.; Duchesne, S. Real-Time Control of Stormwater Detention Basins as an Adaptation Measure in Mid-Size Cities. Urban Water J. 2018, 15, 858–867. [Google Scholar] [CrossRef]
- Mannina, G.; Viviani, G. An Urban Drainage Stormwater Quality Model: Model Development and Uncertainty Quantification. J. Hydrol. 2010, 381, 248–265. [Google Scholar] [CrossRef]
- Dastgir, A.; Satish, R.; Hajibabaei, M.; Oberascher, M.; Sitzenfrei, R. Modeling Multiple-Pipe Failures in Stormwater Networks Using Graph Theory. J. Hydroinformatics 2024, 26, 3027–3040. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems 30 (nips 2017); Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Neural Information Processing Systems (nips): La Jolla, CA, USA, 2017; Volume 30. [Google Scholar]
- Lu, P.; Zhu, F.; Li, P.; Kim, J.; Sheng, B.; Mao, L. Hierarchical Rendering System Based on Viewpoint Prediction in Virtual Reality. In Proceedings of the Advances in Computer Graphics; Magnenat-Thalmann, N., Stephanidis, C., Wu, E., Thalmann, D., Sheng, B., Kim, J., Papagiannakis, G., Gavrilova, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 24–32. [Google Scholar]
- Hu, R.; Fang, F.; Salinas, P.; Pain, C.C. Unstructured Mesh Adaptivity for Urban Flooding Modelling. J. Hydrol. 2018, 560, 354–363. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Zheng, S.; Chen, G.; Zhao, P.; Wang, C. High Efficiency Integrated Urban Flood Inundation Simulation Based on the Urban Hydrologic Unit. J. Hydrol. 2024, 630, 130724. [Google Scholar] [CrossRef]
- Dong, X.; Guo, H.; Zeng, S. Enhancing Future Resilience in Urban Drainage System: Green versus Grey Infrastructure. Water Res. 2017, 124, 280–289. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Liu, J.; Liu, L.; Tao, S. Determination of the Cost-Benefit Efficient Interval for Sponge City Construction by a Multi-Objective Optimization Model. Front. Environ. Sci. 2023, 10, 1072505. [Google Scholar] [CrossRef]
- Lund, N.S.V.; Borup, M.; Madsen, H.; Mark, O.; Arnbjerg-Nielsen, K.; Mikkelsen, P.S. Integrated Stormwater Inflow Control for Sewers and Green Structures in Urban Landscapes. Nat. Sustain. 2019, 2, 1003–1010. [Google Scholar] [CrossRef]
- Xu, C.; Tang, T.; Jia, H.; Xu, M.; Xu, T.; Liu, Z.; Long, Y.; Zhang, R. Benefits of Coupled Green and Grey Infrastructure Systems: Evidence Based on Analytic Hierarchy Process and Life Cycle Costing. Resour. Conserv. Recycl. 2019, 151, 104478. [Google Scholar] [CrossRef]
- Jin, Z.; Wu, W.; Li, J.; Yang, F.; Zhou, B. Simulation and Engineering Demonstration of the Advanced Treatment of Rainy Overflow Wastewater Using a Combined System of Storage Tank-wastewater Treatment Plant-wetland. Water Environ. Res. 2020, 92, 1057–1069. [Google Scholar] [CrossRef]
- Cavadini, G.B.; Rodriguez, M.; Cook, L.M. Connecting Blue-Green Infrastructure Elements to Reduce Combined Sewer Overflows. J. Environ. Manag. 2024, 365, 121465. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Zhang, D.; Zheng, Y.; Li, S.; Tan, S.K. Life-Cycle Cost Analysis and Resilience Consideration for Coupled Grey Infrastructure and Low-Impact Development Practices. Sustain. Cities Soc. 2021, 75, 103358. [Google Scholar] [CrossRef]
- Bakhshipour, A.E.; Dittmer, U.; Haghighi, A.; Nowak, W. Hybrid Green-Blue-Gray Decentralized Urban Drainage Systems Design, a Simulation-Optimization Framework. J. Environ. Manag. 2019, 249, 109364. [Google Scholar] [CrossRef]
- Sun, C.; Rao, Q.; Xiong, Z.; Liu, M.; Liu, Y.; Fan, C.; Li, J.; Tan, S.K.; Wang, M.; Zhang, D. Optimized Resilience Coupled with Cost-Effectiveness for Grey and Green Infrastructure: A Case Study in a Historical and Cultural Area, Guangzhou, China. Ecol. Indic. 2024, 167, 112684. [Google Scholar] [CrossRef]
- Dong, X.; Yi, W.; Yuan, P.; Song, Y. Optimization and Trade-off Framework for Coupled Green-Grey Infrastructure Considering Environmental Performance. J. Environ. Manag. 2023, 329, 117041. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Fu, G.; Jin, Y.; Sun, S.; Yuan, Z.; Butler, D. The Role of Deep Learning in Urban Water Management: A Critical Review. Water Res. 2022, 223, 118973. [Google Scholar] [CrossRef]
- Iqbal, U.; Perez, P.; Li, W.; Barthelemy, J. How Computer Vision Can Facilitate Flood Management: A Systematic Review. Int. J. Disaster Risk Reduct. 2021, 53, 102030–102047. [Google Scholar] [CrossRef]
- Du, B.; Zhou, Q.; Guo, J.; Guo, S.; Wang, L. Deep Learning with Long Short-Term Memory Neural Networks Combining Wavelet Transform and Principal Component Analysis for Daily Urban Water Demand Forecasting. Expert Syst. Appl. 2021, 171, 114571–114584. [Google Scholar] [CrossRef]
- Tian, W.; Fu, G.; Xin, K.; Zhang, Z.; Liao, Z. Improving the Interpretability of Deep Reinforcement Learning in Urban Drainage System Operation. Water Res. 2024, 249, 120912. [Google Scholar] [CrossRef] [PubMed]
Control Object | Method | Control Objective | Effect | Source |
---|---|---|---|---|
In-pipe storage | Cyclic Jordan-based ANN architecture | Control of CSO | Specific numerical data not provided | [45] |
Network, storage tank | Hybrid linear control model | Control of CSO | Maximum CSO reduction of 58.95% | [46] |
/ | two swift hydraulic models | Prediction of sewage flow and cross-sectional area | Average computation time: 0.04 s (four orders of magnitude faster than traditional Saint-Venant equations) | [47] |
Network | Three RNN architectures | Increased storage capacity of drainage networks, reduce overflow of WWTP | CSO reduction of 82% | [48] |
/ | ANN, LSTM and LASSO | Flow prediction under storm events | ANN, LSTM, and LASSO achieved 0.813, 0.817, and 0.732, respectively | [49] |
/ | LSTM integrated with rainfall intensity and other data | Prediction of pipe network water depth | Minimum RMSE of 5.1 cm | [50] |
Pump station control | RBC + rainfall forecast | Groundwater infiltration affecting pipe storage capacity | 96% reduction in pump station start-stop frequency, maximum water level decreased by 56 cm | [51] |
Pump | Developed a generalized cost function for pump optimization | CSO reduction + pump cost reduction | Specific numerical data not provided | [52] |
Pump station | ARMA-generated random inflow patterns | Reduced energy consumption in pump scheduling | Average energy consumption reduced by 18%~50% | [53] |
Distributed pump stations | Rank-based differential evolution algorithm (rank-DE) | CSO reduction | Overflow volume reduced by 32.3% | [54] |
Valve, storage tank | Embedded sensors for distributed data collection | Maximize sewer storage to reduce CSO events | Storage capacity increased by 110% | [55] |
Valve | Real-time optimal valve opening control using GA and NSGA-II | CSO reduction + cost reduction | Total pollution load and cost reduced to 176 tons and €11,617 | [56] |
Gates | gossip-based algorithm | Optimized sewer storage capacity to reduce CSO | CSO reduced by 13–99% | [44] |
multiple FCDs | Dynamic programing + MPC | optimized sewer capacity utilization | maximum CSO reduction of 16.5% | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Qiang, W.; Lin, Y.; Huang, Y.; Xu, K.-Q.; Zheng, D.; Chen, S.; Pei, Y.; Fan, G. Enhancing Urban Drainage Resilience Through Holistic Stormwater Regulation: A Review. Water 2025, 17, 1536. https://doi.org/10.3390/w17101536
Xie J, Qiang W, Lin Y, Huang Y, Xu K-Q, Zheng D, Chen S, Pei Y, Fan G. Enhancing Urban Drainage Resilience Through Holistic Stormwater Regulation: A Review. Water. 2025; 17(10):1536. https://doi.org/10.3390/w17101536
Chicago/Turabian StyleXie, Jiankun, Wei Qiang, Yiyuan Lin, Yuzhou Huang, Kai-Qin Xu, Dangshi Zheng, Shengzhen Chen, Yanyan Pei, and Gongduan Fan. 2025. "Enhancing Urban Drainage Resilience Through Holistic Stormwater Regulation: A Review" Water 17, no. 10: 1536. https://doi.org/10.3390/w17101536
APA StyleXie, J., Qiang, W., Lin, Y., Huang, Y., Xu, K.-Q., Zheng, D., Chen, S., Pei, Y., & Fan, G. (2025). Enhancing Urban Drainage Resilience Through Holistic Stormwater Regulation: A Review. Water, 17(10), 1536. https://doi.org/10.3390/w17101536