Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (643)

Search Parameters:
Keywords = flexible generation capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1801 KiB  
Article
Territorially Stratified Modeling for Sustainable Management of Free-Roaming Cat Populations in Spain: A National Approach to Urban and Rural Environmental Planning
by Octavio P. Luzardo, Ruth Manzanares-Fernández, José Ramón Becerra-Carollo and María del Mar Travieso-Aja
Animals 2025, 15(15), 2278; https://doi.org/10.3390/ani15152278 - 4 Aug 2025
Abstract
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering [...] Read more.
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering legislation introduces a standardized, nationwide obligation for trap–neuter–return (TNR)-based management of free-roaming cats, defined as animals living freely, territorially attached, and with limited socialization toward humans. The PACF aims to support municipalities in implementing this mandate through evidence-based strategies that integrate animal welfare, biodiversity protection, and public health objectives. Using standardized data submitted by 1128 municipalities (13.9% of Spain’s total), we estimated a baseline population of 1.81 million community cats distributed across 125,000 colonies. These data were stratified by municipal population size and applied to national census figures to generate a model-ready demographic structure. We then implemented a stochastic simulation using Vortex software to project long-term population dynamics over a 25-year horizon. The model integrated eight demographic–environmental scenarios defined by a combination of urban–rural classification and ecological reproductive potential based on photoperiod and winter temperature. Parameters included reproductive output, mortality, sterilization coverage, abandonment and adoption rates, stochastic catastrophic events, and territorial carrying capacity. Under current sterilization rates (~20%), our projections indicate that Spain’s community cat population could surpass 5 million individuals by 2050, saturating ecological and social thresholds within a decade. In contrast, a differentiated sterilization strategy aligned with territorial reproductive intensity (50% in most areas, 60–70% in high-pressure zones) achieves population stabilization by 2030 at approximately 1.5 million cats, followed by a gradual long-term decline. This scenario prioritizes feasibility while substantially reducing reproductive output, particularly in rural and high-intensity contexts. The PACF combines stratified demographic modeling with spatial sensitivity, offering a flexible framework adaptable to local conditions. It incorporates One Health principles and introduces tools for adaptive management, including digital monitoring platforms and standardized welfare protocols. While ecological impacts were not directly assessed, the proposed demographic stabilization is designed to mitigate population-driven risks to biodiversity and public health without relying on lethal control. By integrating legal mandates, stratified modeling, and realistic intervention goals, this study outlines a replicable and scalable framework for coordinated action across administrative levels. It exemplifies how national policy can be operationalized through data-driven, territorially sensitive planning tools. The findings support the strategic deployment of TNR-based programs across diverse municipal contexts, providing a model for other countries seeking to align animal welfare policy with ecological planning under a multi-level governance perspective. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

33 pages, 2015 KiB  
Article
From Development to Regeneration: Insights into Flight Muscle Adaptations from Bat Muscle Cell Lines
by Fengyan Deng, Valentina Peña, Pedro Morales-Sosa, Andrea Bernal-Rivera, Bowen Yang, Shengping Huang, Sonia Ghosh, Maria Katt, Luciana Andrea Castellano, Lucinda Maddera, Zulin Yu, Nicolas Rohner, Chongbei Zhao and Jasmin Camacho
Cells 2025, 14(15), 1190; https://doi.org/10.3390/cells14151190 - 1 Aug 2025
Viewed by 205
Abstract
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular [...] Read more.
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular and molecular mechanisms underlying bat muscle physiology remain largely unknown. To enable mechanistic investigation of these traits, we established the first myoblast cell lines from the pectoralis muscle of Pteronotus mesoamericanus, a highly maneuverable aerial insectivore. Using both spontaneous immortalization and exogenous hTERT/CDK4 gene overexpression, we generated two stable cell lines that retain proliferative capacity and differentiate into contractile myotubes. These cells exhibit frequent spontaneous contractions, suggesting robust functional integrity at the neuromuscular junction. In parallel, we performed transcriptomic and metabolic profiling of native pectoralis tissue in the closely related Pteronotus parnellii to define molecular programs supporting muscle specialization. Gene expression analyses revealed enriched pathways for muscle metabolism, development, and regeneration, highlighting supporting roles in tissue maintenance and repair. Consistent with this profile, the flight muscle is triglyceride-rich, which serves as an important fuel source for energetically demanding processes, including muscle contraction and cellular recovery. Integration of transcriptomic and metabolic data identified three key metabolic modules—glucose utilization, lipid handling, and nutrient signaling—that likely coordinate ATP production and support metabolic flexibility. Together, these complementary tools and datasets provide the first in vitro platform for investigating bat muscle research, enabling direct exploration of muscle regeneration, metabolic resilience, and evolutionary physiology. Full article
27 pages, 3529 KiB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Viewed by 205
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
Show Figures

Figure 1

31 pages, 3024 KiB  
Review
Synthetic and Functional Engineering of Bacteriophages: Approaches for Tailored Bactericidal, Diagnostic, and Delivery Platforms
by Ola Alessa, Yoshifumi Aiba, Mahmoud Arbaah, Yuya Hidaka, Shinya Watanabe, Kazuhiko Miyanaga, Dhammika Leshan Wannigama and Longzhu Cui
Molecules 2025, 30(15), 3132; https://doi.org/10.3390/molecules30153132 - 25 Jul 2025
Viewed by 375
Abstract
Bacteriophages (phages), the most abundant biological entities on Earth, have long served as both model systems and therapeutic tools. Recent advances in synthetic biology and genetic engineering have revolutionized the capacity to tailor phages with enhanced functionality beyond their natural capabilities. This review [...] Read more.
Bacteriophages (phages), the most abundant biological entities on Earth, have long served as both model systems and therapeutic tools. Recent advances in synthetic biology and genetic engineering have revolutionized the capacity to tailor phages with enhanced functionality beyond their natural capabilities. This review outlines the current landscape of synthetic and functional engineering of phages, encompassing both in-vivo and in-vitro strategies. We describe in-vivo approaches such as phage recombineering systems, CRISPR-Cas-assisted editing, and bacterial retron-based methods, as well as synthetic assembly platforms including yeast-based artificial chromosomes, Gibson, Golden Gate, and iPac assemblies. In addition, we explore in-vitro rebooting using TXTL (transcription–translation) systems, which offer a flexible alternative to cell-based rebooting but are less effective for large genomes or structurally complex phages. Special focus is given to the design of customized phages for targeted applications, including host range expansion via receptor-binding protein modifications, delivery of antimicrobial proteins or CRISPR payloads, and the construction of biocontained, non-replicative capsid systems for safe clinical use. Through illustrative examples, we highlight how these technologies enable the transformation of phages into programmable bactericidal agents, precision diagnostic tools, and drug delivery vehicles. Together, these advances establish a powerful foundation for next-generation antimicrobial platforms and synthetic microbiology. Full article
Show Figures

Figure 1

18 pages, 687 KiB  
Article
A Low-Carbon and Economic Optimal Dispatching Strategy for Virtual Power Plants Considering the Aggregation of Diverse Flexible and Adjustable Resources with the Integration of Wind and Solar Power
by Xiaoqing Cao, He Li, Di Chen, Qingrui Yang, Qinyuan Wang and Hongbo Zou
Processes 2025, 13(8), 2361; https://doi.org/10.3390/pr13082361 - 24 Jul 2025
Viewed by 241
Abstract
Under the dual-carbon goals, with the rapid increase in the proportion of fluctuating power sources such as wind and solar energy, the regulatory capacity of traditional thermal power generation can no longer meet the demand for intra-day fluctuations. There is an urgent need [...] Read more.
Under the dual-carbon goals, with the rapid increase in the proportion of fluctuating power sources such as wind and solar energy, the regulatory capacity of traditional thermal power generation can no longer meet the demand for intra-day fluctuations. There is an urgent need to tap into the potential of flexible load-side regulatory resources. To this end, this paper proposes a low-carbon economic optimal dispatching strategy for virtual power plants (VPPs), considering the aggregation of diverse flexible and adjustable resources with the integration of wind and solar power. Firstly, the method establishes mathematical models by analyzing the dynamic response characteristics and flexibility regulation boundaries of adjustable resources such as photovoltaic (PV) systems, wind power, energy storage, charging piles, interruptible loads, and air conditioners. Subsequently, considering the aforementioned diverse adjustable resources and aggregating them into a VPP, a low-carbon economic optimal dispatching model for the VPP is constructed with the objective of minimizing the total system operating costs and carbon costs. To address the issue of slow convergence rates in solving high-dimensional state variable optimization problems with the traditional plant growth simulation algorithm, this paper proposes an improved plant growth simulation algorithm through elite selection strategies for growth points and multi-base point parallel optimization strategies. The improved algorithm is then utilized to solve the proposed low-carbon economic optimal dispatching model for the VPP, aggregating diverse adjustable resources. Simulations conducted on an actual VPP platform demonstrate that the proposed method can effectively coordinate diverse load-side adjustable resources and achieve economically low-carbon dispatching, providing theoretical support for the optimal aggregation of diverse flexible resources in new power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

31 pages, 15881 KiB  
Article
Fused Space in Architecture via Multi-Material 3D Printing Using Recycled Plastic: Design, Fabrication, and Application
by Jiangjing Mao, Lawrence Hsu and Mai Altheeb
Buildings 2025, 15(15), 2588; https://doi.org/10.3390/buildings15152588 - 22 Jul 2025
Viewed by 357
Abstract
The innovation of multi-material offers significant benefits to architectural systems. The fusion of multiple materials, transitioning from one to another in a graded manner, enables the creation of fused space without the need for mechanical connections. Given that plastic is a major contributor [...] Read more.
The innovation of multi-material offers significant benefits to architectural systems. The fusion of multiple materials, transitioning from one to another in a graded manner, enables the creation of fused space without the need for mechanical connections. Given that plastic is a major contributor to ecological imbalance, this research on fused space aims to recycle plastic and use it as a multi-material for building applications, due to its capacity for being 3D printed and fused with other materials. Furthermore, to generate diverse properties for the fused space, several nature-inspired forming algorithms are employed, including Swarm Behavior, Voronoi, Game of Life, and Shortest Path, to shape the building enclosure. Subsequently, digital analyses, such as daylight analysis, structural analysis, porosity analysis, and openness analysis, are conducted on the enclosure, forming the color mapping digital diagram, which determines the distribution of varying thickness, density, transparency, and flexibility gradation parameters, resulting in spatial diversity. During the fabrication process, Dual Force V1 and Dual Force V2 were developed to successfully print multi-material gradations with fused plastic following an upgrade to the cooling system. Finally, three test sites in London were chosen to implement the fused space concept using multi-material. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 246 KiB  
Article
Adaptive Epistemology: Embracing Generative AI as a Paradigm Shift in Social Science
by Gabriella Punziano
Societies 2025, 15(7), 205; https://doi.org/10.3390/soc15070205 - 21 Jul 2025
Viewed by 787
Abstract
This paper examines the epistemological transformation prompted by the integration of generative artificial intelligence technologies into social science research, proposing the “adaptive epistemology” paradigm. In today’s post-digital era—characterized by pervasive infrastructures and non-human agents endowed with generative capabilities—traditional research approaches have become inadequate. [...] Read more.
This paper examines the epistemological transformation prompted by the integration of generative artificial intelligence technologies into social science research, proposing the “adaptive epistemology” paradigm. In today’s post-digital era—characterized by pervasive infrastructures and non-human agents endowed with generative capabilities—traditional research approaches have become inadequate. Through a critical review of historical and discursive paradigms (positivism, interpretivism, critical realism, pragmatism, transformative paradigms, mixed and digital methods), here I show how the advent of digital platforms and large language models reconfigures the boundaries between data collection, analysis, and interpretation. Employing a theoretical–conceptual framework that draws on sociotechnical systems theory, platform studies, and the philosophy of action, the core features of adaptive epistemology are identified: dynamism, co-construction of meaning between researcher and system, and the capacity to generate methodological solutions in response to rapidly evolving contexts. The findings demonstrate the need for reasoning in terms of an adaptive epistemology that could offer a robust theoretical and methodological framework for guiding social science research in the post-digital society, emphasizing flexibility, reflexivity, and ethical sensitivity in the deployment of generative tools. Full article
32 pages, 907 KiB  
Article
A New Exponentiated Power Distribution for Modeling Censored Data with Applications to Clinical and Reliability Studies
by Kenechukwu F. Aforka, H. E. Semary, Sidney I. Onyeagu, Harrison O. Etaga, Okechukwu J. Obulezi and A. S. Al-Moisheer
Symmetry 2025, 17(7), 1153; https://doi.org/10.3390/sym17071153 - 18 Jul 2025
Viewed by 893
Abstract
This paper presents the exponentiated power shanker (EPS) distribution, a fresh three-parameter extension of the standard Shanker distribution with the ability to extend a wider class of data behaviors, from right-skewed and heavy-tailed phenomena. The structural properties of the distribution, namely complete and [...] Read more.
This paper presents the exponentiated power shanker (EPS) distribution, a fresh three-parameter extension of the standard Shanker distribution with the ability to extend a wider class of data behaviors, from right-skewed and heavy-tailed phenomena. The structural properties of the distribution, namely complete and incomplete moments, entropy, and the moment generating function, are derived and examined in a formal manner. Maximum likelihood estimation (MLE) techniques are used for estimation of parameters, as well as a Monte Carlo simulation study to account for estimator performance across varying sample sizes and parameter values. The EPS model is also generalized to a regression paradigm to include covariate data, whose estimation is also conducted via MLE. Practical utility and flexibility of the EPS distribution are demonstrated through two real examples: one for the duration of repairs and another for HIV/AIDS mortality in Germany. Comparisons with some of the existing distributions, i.e., power Zeghdoudi, power Ishita, power Prakaamy, and logistic-Weibull, are made through some of the goodness-of-fit statistics such as log-likelihood, AIC, BIC, and the Kolmogorov–Smirnov statistic. Graphical plots, including PP plots, QQ plots, TTT plots, and empirical CDFs, further confirm the high modeling capacity of the EPS distribution. Results confirm the high goodness-of-fit and flexibility of the EPS model, making it a very good tool for reliability and biomedical modeling. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

12 pages, 1891 KiB  
Article
Full-Space Three-Dimensional Holograms Enabled by a Reflection–Transmission Integrated Reconfigurable Metasurface
by Rui Feng, Yaokai Yu, Dongyang Wu, Qiulin Tan and Shah Nawaz Burokur
Nanomaterials 2025, 15(14), 1120; https://doi.org/10.3390/nano15141120 - 18 Jul 2025
Viewed by 271
Abstract
A metasurface capable of flexibly manipulating electromagnetic waves to realize holograms presents significant potential in millimeter-wave imaging systems and data storage domains. In this study, full-space three-dimensional holograms are realized from a reflection–transmission integrated reconfigurable metasurface, which can achieve nearly 360° phase coverage [...] Read more.
A metasurface capable of flexibly manipulating electromagnetic waves to realize holograms presents significant potential in millimeter-wave imaging systems and data storage domains. In this study, full-space three-dimensional holograms are realized from a reflection–transmission integrated reconfigurable metasurface, which can achieve nearly 360° phase coverage in reflection space and 180° phase coverage in transmission space. By adjusting the voltage applied to the constituting electronically tunable meta-atoms of the metasurface, an octahedron hologram constituted by three hologram images in different focal planes is generated in the reflection space at 6.25 GHz. Moreover, a diamond hologram, also composed of three hologram images in different focal planes, is achieved in the transmission space at 6.75 GHz. Both the numerical simulation and experimental measurement are performed to validate the full-space holograms implemented by the modified weighted Gerchberg–Saxton (WGS) algorithm with specific phase distribution in different imaging planes. The obtained results pave the way for a wide range of new applications, such as next-generation three-dimensional displays for immersive viewing experiences, high-capacity optical communication systems with enhanced data encoding capabilities, and ultra-secure anti-counterfeiting solutions that are extremely difficult to replicate. Full article
Show Figures

Graphical abstract

20 pages, 2768 KiB  
Article
Flexible Operation of High-Temperature Heat Pumps Through Sizing and Control of Energy Stored in Integrated Steam Accumulators
by Andrea Vecchi, Jose Hector Bastida Hernandez and Adriano Sciacovelli
Energies 2025, 18(14), 3806; https://doi.org/10.3390/en18143806 - 17 Jul 2025
Viewed by 248
Abstract
Steam networks are widely used for industrial heat supply. High-temperature heat pumps (HTHPs) are an increasingly attractive low-emission solution to traditional steam generation, which could also improve the operational efficiency and energy demand flexibility of industrial processes. This work characterises 4-bar steam supply [...] Read more.
Steam networks are widely used for industrial heat supply. High-temperature heat pumps (HTHPs) are an increasingly attractive low-emission solution to traditional steam generation, which could also improve the operational efficiency and energy demand flexibility of industrial processes. This work characterises 4-bar steam supply via HTHPs and aims to assess how variations in power input that result from flexible HTHP operation may affect steam flow and temperature, both with and without a downstream steam accumulator (SA). First, steady-state modelling is used for system design. Then, dynamic component models are developed and used to simulate the system response to HTHP power input variations. The performance of different SA integration layouts and sizes is evaluated. Results demonstrate that steam supply fluctuations closely follow changes in HTHP operation. A downstream SA is shown to mitigate these variations to an extent that depends on its capacity. Practical SA sizing recommendations are derived, which allow for the containment of steam supply fluctuations within acceptability. By providing a basis for evaluating the financial viability of flexible HTHP operation for steam provision, the results support clean technology’s development and uptake in industrial steam and district heating networks. Full article
(This article belongs to the Special Issue Trends and Developments in District Heating and Cooling Technologies)
Show Figures

Figure 1

32 pages, 3289 KiB  
Article
Optimal Spot Market Participation of PV + BESS: Impact of BESS Sizing in Utility-Scale and Distributed Configurations
by Andrea Scrocca, Roberto Pisani, Diego Andreotti, Giuliano Rancilio, Maurizio Delfanti and Filippo Bovera
Energies 2025, 18(14), 3791; https://doi.org/10.3390/en18143791 - 17 Jul 2025
Viewed by 339
Abstract
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, [...] Read more.
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, using Monte Carlo PV production scenarios, optimizes day-ahead and intra-day market offers while incorporating PV forecast updates. In real time, battery flexibility reduces imbalances. Here we show that, to ensure dispatchability—defined as keeping annual imbalances below 5% of PV output—a 1 MW PV system requires 220 kWh of storage for utility-scale and 50 kWh for distributed systems, increasing the levelized cost of electricity by +13.1% and +1.94%, respectively. Net present value is negative for BESSs performing imbalance netting only. Therefore, a multiple service strategy, including imbalance netting and energy arbitrage, is introduced. Performing arbitrage while keeping dispatchability reaches an economic optimum with a 1.7 MWh BESS for utility-scale systems and 1.1 MWh BESS for distributed systems. These results show lower PV firming costs than previous studies, and highlight that under a multiple-service strategy, better economic outcomes are obtained with larger storage capacities. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

9 pages, 2042 KiB  
Communication
A 1 × 4 Silica-Based GMZI Thermo-Optic Switch with a Wide Bandwidth and Low Crosstalk
by Yanshuang Wang
Photonics 2025, 12(7), 721; https://doi.org/10.3390/photonics12070721 - 16 Jul 2025
Viewed by 212
Abstract
The growing demand for communication capacity has driven advancements in optical switches. However, measurement procedures for large-scale switching arrays become more complex as the number of units increases. Multi-port optical switches can reduce the measurement complexity. In this work, we demonstrate a 1 [...] Read more.
The growing demand for communication capacity has driven advancements in optical switches. However, measurement procedures for large-scale switching arrays become more complex as the number of units increases. Multi-port optical switches can reduce the measurement complexity. In this work, we demonstrate a 1 × 4 thermo-optic switch fabricated on a silica platform, based on a Generalized Mach–Zehnder Interferometer (GMZI) structure with a wide bandwidth and low crosstalk. The device enables flexible switching among four output channels, achieving a crosstalk below −15 dB over the 1500–1580 nm wavelength range and an insertion loss of −6.51 dB at 1550 nm. Full article
(This article belongs to the Special Issue Advances in Integrated Photonics)
Show Figures

Figure 1

19 pages, 1006 KiB  
Article
Optimization of Multi-Day Flexible EMU Routing Plan for High-Speed Rail Networks
by Xiangyu Su, Yixiang Yue, Bin Guo and Zanyang Cui
Appl. Sci. 2025, 15(14), 7914; https://doi.org/10.3390/app15147914 - 16 Jul 2025
Viewed by 297
Abstract
With the continuous expansion and increasing operational complexity of high-speed railway networks, there is a growing need for more flexible and efficient EMU (Electric Multiple Unit) routing strategies. To address these challenges, in this paper, we propose a multi-day flexible circulation model that [...] Read more.
With the continuous expansion and increasing operational complexity of high-speed railway networks, there is a growing need for more flexible and efficient EMU (Electric Multiple Unit) routing strategies. To address these challenges, in this paper, we propose a multi-day flexible circulation model that minimizes total connection time and deadheading mileage. A multi-commodity network flow model is formulated, incorporating constraints such as first-level maintenance intervals, storage capacity, train coupling/decoupling operations, and train types, with across-day consistency. To solve this complex model efficiently, a heuristic decomposition algorithm is designed to separate the problem into daily service chain generation and EMU assignment. A real-world case study in the Beijing–Baotou high-speed corridor demonstrates the effectiveness of the proposed approach. Compared to a fixed strategy, the flexible strategy reduces EMU usage by one unit, lowers deadheading mileage by up to 16.4%, and improves maintenance workload balance. These results highlight the practical value of flexible EMU deployment for large-scale, multi-day railway operations. Full article
Show Figures

Figure 1

17 pages, 2066 KiB  
Article
A Mid-Term Scheduling Method for Cascade Hydropower Stations to Safeguard Against Continuous Extreme New Energy Fluctuations
by Huaying Su, Yupeng Li, Yan Zhang, Yujian Wang, Gang Li and Chuntian Cheng
Energies 2025, 18(14), 3745; https://doi.org/10.3390/en18143745 - 15 Jul 2025
Viewed by 191
Abstract
Continuous multi-day extremely low or high new energy outputs have posed significant challenges in relation to power supply and new energy accommodations. Conventional reservoir hydropower, with the advantage of controllability and the storage ability of reservoirs, can represent a reliable and low-carbon flexibility [...] Read more.
Continuous multi-day extremely low or high new energy outputs have posed significant challenges in relation to power supply and new energy accommodations. Conventional reservoir hydropower, with the advantage of controllability and the storage ability of reservoirs, can represent a reliable and low-carbon flexibility resource to safeguard against continuous extreme new energy fluctuations. This paper proposes a mid-term scheduling method for reservoir hydropower to enhance our ability to regulate continuous extreme new energy fluctuations. First, a data-driven scenario generation method is proposed to characterize the continuous extreme new energy output by combining kernel density estimation, Monte Carlo sampling, and the synchronized backward reduction method. Second, a two-stage stochastic hydropower–new energy complementary optimization scheduling model is constructed with the reservoir water level as the decision variable, ensuring that reservoirs have a sufficient water buffering capacity to free up transmission channels for continuous extremely high new energy outputs and sufficient water energy storage to compensate for continuous extremely low new energy outputs. Third, the mathematical model is transformed into a tractable mixed-integer linear programming (MILP) problem by using piecewise linear and triangular interpolation techniques on the solution, reducing the solution complexity. Finally, a case study of a hydropower–PV station in a river basin is conducted to demonstrate that the proposed model can effectively enhance hydropower’s regulation ability, to mitigate continuous extreme PV outputs, thereby improving power supply reliability in this hybrid renewable energy system. Full article
(This article belongs to the Special Issue Optimal Schedule of Hydropower and New Energy Power Systems)
Show Figures

Figure 1

18 pages, 1945 KiB  
Article
Research on an Active Distribution Network Planning Strategy Considering Diversified Flexible Resource Allocation
by Minglei Jiang, Youqing Xu, Dachi Zhang, Yuanqi Liu, Qiushi Du, Xiaofeng Gao, Shiwei Qi and Hongbo Zou
Processes 2025, 13(7), 2254; https://doi.org/10.3390/pr13072254 - 15 Jul 2025
Viewed by 279
Abstract
When planning distributed intelligent power distribution networks, it is necessary to take into account the interests of various distributed generation (DG) operators and power supply enterprises, thereby diversifying and complicating planning models. Additionally, the integration of a high proportion of distributed resources has [...] Read more.
When planning distributed intelligent power distribution networks, it is necessary to take into account the interests of various distributed generation (DG) operators and power supply enterprises, thereby diversifying and complicating planning models. Additionally, the integration of a high proportion of distributed resources has triggered a transformation in the power flow pattern of active distribution networks, shifting from the traditional unidirectional flow mode to a bidirectional interactive mode. The intermittent and fluctuating operation modes of distributed photovoltaic and wind power generation have also increased the difficulty of distribution network planning. To address the aforementioned challenges, this paper proposes an active distribution network planning strategy that considers the allocation of diverse flexible resources, exploring scheduling flexibility from both the power supply side and the load side. Firstly, a bi-level optimization model integrating planning and operation is constructed, where the upper-level model determines the optimal capacity of investment and construction equipment, and the lower-level model formulates an economic dispatching scheme. Through iterative solving of the upper and lower levels, the final planning strategy is determined. Meanwhile, to reduce the complexity of problem-solving, this paper employs an improved PSO-CS hybrid algorithm for iterative optimization. Finally, the effectiveness and feasibility of the proposed algorithm are demonstrated through validation using an improved IEEE-33-bus test system. Compared with conventional algorithms, the convergence speed of the method proposed in this paper can be improved by up to 21.4%, and the total investment cost can be reduced by up to 3.26%. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

Back to TopTop