Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (877)

Search Parameters:
Keywords = flexible electrical load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2961 KB  
Article
Quantifying the Capacity Credits of Intermittent Renewables: Implications for Power System Planning
by Marcin Pluta and Artur Wyrwa
Energies 2025, 18(21), 5636; https://doi.org/10.3390/en18215636 (registering DOI) - 27 Oct 2025
Abstract
The European Union’s objective of climate neutrality by 2050 requires a profound transformation of national power systems. In Poland, this transition involves reducing coal-based generation and expanding variable renewable energy sources (VRES), particularly wind and solar. Between 2020 and 2025, onshore wind capacity [...] Read more.
The European Union’s objective of climate neutrality by 2050 requires a profound transformation of national power systems. In Poland, this transition involves reducing coal-based generation and expanding variable renewable energy sources (VRES), particularly wind and solar. Between 2020 and 2025, onshore wind capacity increased from 5.9 GW to nearly 11 GW, and solar from 1.6 GW to over 22 GW, while peak electricity demand in 2024 exceeded 28 GW. Although VRES- are essential for decarbonization, their variability poses challenges for system adequacy. This study assessed the adequacy contribution of onshore wind and solar power plants using capacity credit as a key indicator. Two approaches were applied: a deterministic Load Duration Curve (LDC) method and probabilistic methods—Effective Load Carrying Capability (ELCC) and Equivalent Firm Capacity (EFC)—based on historical data from 2021–2024. The results show that capacity credits for onshore wind ranged from 8.08% to 17.27%, and for solar from 1.82% to 6.60%, depending on the method and year. Despite the presence of 1.7 GW of pumped storage and 4.4 GW of battery storage contracted in the capacity market, the relatively low VRES capacity credits underline the continued need for flexible, dispatchable generation. The findings highlight the importance of accurate capacity credit estimation to guide investment in renewables, storage, and backup capacity, thereby supporting a secure and reliable energy transition in Poland. Full article
Show Figures

Figure 1

12 pages, 5037 KB  
Article
Study on Reheater Tube Wall Temperature in a 1000 MW Ultra-Supercritical Unit Under Flexible Peak-Shaving Conditions
by Liyun Yan, Jiang Pu, Jin Yan and Cai Lv
Processes 2025, 13(11), 3440; https://doi.org/10.3390/pr13113440 - 27 Oct 2025
Abstract
As coal-fired power plants shift from being primary power sources to operating as flexible peak-shaving units, the reheater—a critical component of the boiler’s ‘four tubes’—has attracted significant attention. This study focuses on the tube wall temperature distributions of the reheater at different loads [...] Read more.
As coal-fired power plants shift from being primary power sources to operating as flexible peak-shaving units, the reheater—a critical component of the boiler’s ‘four tubes’—has attracted significant attention. This study focuses on the tube wall temperature distributions of the reheater at different loads and measurement points, analyzing factors that contribute to its uneven heat distribution. The results indicate that the heat distribution across the tubes of the low temperature reheater (LRH) is uneven. From the left to the right side of the tube panel, the tube wall temperatures form two parabolic profiles. The tubes most susceptible to overheating are the first tube of the 91st panel and the first tube of the 181st panel. For the high-temperature reheater (HRH), at an electrical load of 217.7 MW, the maximum temperature difference is higher than that of LRH. At all other electrical loads, however, the maximum temperature difference of the HRH is lower than that of the LRH. The LRH is at a higher risk of tube rupture caused by uneven heating compared to the HRH. Full article
Show Figures

Figure 1

22 pages, 13546 KB  
Article
Energy-Efficient Last-Mile Logistics Using Resistive Grid Path Planning Methodology (RGPPM)
by Carlos Hernández-Mejía, Delia Torres-Muñoz, Carolina Maldonado-Méndez, Sergio Hernández-Méndez, Everardo Inzunza-González, Carlos Sánchez-López and Enrique Efrén García-Guerrero
Energies 2025, 18(21), 5625; https://doi.org/10.3390/en18215625 (registering DOI) - 26 Oct 2025
Viewed by 56
Abstract
Last-mile logistics is a critical operational and environmental challenge in urban areas. This paper introduces an intelligent path planning system using the Resistive Grid Path Planning Methodology (RGPPM) to optimize distribution based on energy and environmental metrics. The foundational innovation is the integration [...] Read more.
Last-mile logistics is a critical operational and environmental challenge in urban areas. This paper introduces an intelligent path planning system using the Resistive Grid Path Planning Methodology (RGPPM) to optimize distribution based on energy and environmental metrics. The foundational innovation is the integration of electrical-circuit analogies, modeling the distribution network as a resistive grid where optimal routes emerge naturally as current flows, offering a paradigm shift from conventional algorithms. Using a multi-connected grid with georeferenced resistances, RGPPM estimates minimum and maximum paths for various starting points and multi-agent scenarios. We introduce five key performance indicators (KPIs)—Percentage of Distance Savings (PDS), Coefficient of Savings (CS), Coefficient of Global Savings (CGS), Percentage of Load Imbalance (PLI), and Percentage of Deviation with Multi-Agent (PDM)—to evaluate system performance. Simulations for textbook delivery to 129 schools in the Veracruz–Boca del Río area show that RGPPM significantly reduces travel distances. This leads to substantial savings in energy consumption, CO2 emissions, and operating costs, particularly with electric vehicles. Finally, the results validate RGPPM as a flexible and scalable strategy for sustainable urban logistics. Full article
27 pages, 6186 KB  
Article
Comparative Analysis of Battery and Thermal Energy Storage for Residential Photovoltaic Heat Pump Systems in Building Electrification
by Mingzhe Liu, Wei-An Chen, Yuan Gao and Zehuan Hu
Sustainability 2025, 17(21), 9497; https://doi.org/10.3390/su17219497 (registering DOI) - 25 Oct 2025
Viewed by 98
Abstract
Buildings with electrified heat pump systems, onsite photovoltaic (PV) generation, and energy storage offer strong potential for demand flexibility. This study compares two storage configurations, thermal energy storage (TES) and battery energy storage (BESS), to evaluate their impact on cooling performance and cost [...] Read more.
Buildings with electrified heat pump systems, onsite photovoltaic (PV) generation, and energy storage offer strong potential for demand flexibility. This study compares two storage configurations, thermal energy storage (TES) and battery energy storage (BESS), to evaluate their impact on cooling performance and cost savings. A Model Predictive Control (MPC) framework was developed to optimize system operations, aiming to minimize costs while maintaining occupant comfort. Results show that both configurations achieve substantial savings relative to a baseline. The TES system reduces daily operating costs by about 50%, while the BESS nearly eliminates them (over 90% reduction) and cuts grid electricity use by more than 65%. The BESS achieves superior performance because it can serve both the controllable heating, ventilation, and air conditioning (HVAC) system and the home’s broader electrical loads, thereby maximizing PV self-consumption. In contrast, the TES primarily influences the thermal load. These findings highlight that the choice between thermal and electrical storage greatly affects system outcomes. While the BESS provides a more comprehensive solution for whole-home energy management by addressing all electrical demands, further techno-economic evaluation is needed to assess the long-term feasibility and trade-offs of each configuration. Full article
Show Figures

Figure 1

33 pages, 2419 KB  
Article
Hybrid Hydropower–PV with Mining Flexibility and Heat Recovery: Article 6-Ready Mitigation Pathways in Central Asia
by Seung-Jun Lee, Tae-Yun Kim, Jun-Sik Cho, Ji-Sung Kim and Hong-Sik Yun
Sustainability 2025, 17(21), 9488; https://doi.org/10.3390/su17219488 (registering DOI) - 24 Oct 2025
Viewed by 153
Abstract
The global transition to renewable energy requires hybrid solutions that address variability while delivering tangible co-benefits and verifiable mitigation outcomes. This study evaluates a novel small hydropower–photovoltaic (SHP–PV) hybrid system in the Kyrgyz Republic that integrates flexible Bitcoin mining loads and waste-heat recovery [...] Read more.
The global transition to renewable energy requires hybrid solutions that address variability while delivering tangible co-benefits and verifiable mitigation outcomes. This study evaluates a novel small hydropower–photovoltaic (SHP–PV) hybrid system in the Kyrgyz Republic that integrates flexible Bitcoin mining loads and waste-heat recovery for greenhouse heating. A techno-economic model was developed for a 10 MW configuration, allocating annual net generation of 57.34 GWh between grid export and on-site mining through a single decision parameter. Mitigation accounting applies a combined margin grid factor of 0.4–0.7 tCO2/MWh for exported electricity and a diesel factor of 0.26–0.27 tCO2/MWh_fuel for heat displacement, yielding Article 6–eligible reductions from both electricity and recovered heat. Waste-heat recovery from mining supplies ≈15 MWh_th/year to a 50 m2 greenhouse, displacing diesel use and demonstrating visible sustainable development co-benefits. Economic analysis reproduces annual revenues of ≈$1.9 million, with a levelized cost of electricity of $48/MWh and an indicative IRR of ~6%, consistent with positive but modest returns under merchant operation and uplift potential under mixed allocations. This study concludes that componentized accounting—exported electricity credited under grid displacement and diesel displacement credited from recovered heat—ensures Article 6 integrity and positions SHP–PV hybrids as replicable, multi-service renewable models for Central Asia. Unlike prior hybrid studies that treat generation, economics, and mitigation separately, our framework integrates allocation (α), financial outcomes, and Article 6 carbon accounting within a unified structure, while explicitly modeling Bitcoin mining as an endogenous flexible load with thermal recovery—advancing methodological approaches for multi-service renewable systems in climate policy contexts. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

18 pages, 2568 KB  
Article
Transmission Network Expansion Planning Method Based on Feasible Region Description of Virtual Power Plant
by Li Guo, Guiyuan Xue, Zheng Xu, Wenjuan Niu, Chenyu Wang, Jiacheng Li, Huixiang Li and Xun Dou
World Electr. Veh. J. 2025, 16(11), 590; https://doi.org/10.3390/wevj16110590 - 23 Oct 2025
Viewed by 239
Abstract
In response to China’s “Dual Carbon” goals, this paper proposes a Transmission Network Expansion Planning (TNEP) model that explicitly incorporates the operational flexibility of Virtual Power Plants (VPPs). Unlike conventional approaches that focus mainly on transmission investment, the proposed method accounts for the [...] Read more.
In response to China’s “Dual Carbon” goals, this paper proposes a Transmission Network Expansion Planning (TNEP) model that explicitly incorporates the operational flexibility of Virtual Power Plants (VPPs). Unlike conventional approaches that focus mainly on transmission investment, the proposed method accounts for the aggregated dispatchable capability of VPPs, providing a more accurate representation of distributed resources. The VPP aggregation model is characterized by the inclusion of electric vehicles, which act not only as load-side demand but also as flexible energy storage units through vehicle-to-grid interaction. By coordinating EV charging/discharging with photovoltaics, wind generation, and other distributed resources, the VPP significantly enhances system flexibility and provides essential support for grid operation. The vertex search method is employed to delineate the boundary of the VPP’s dispatchable feasible region, from which an equivalent model is established to capture its charging, discharging, and energy storage characteristics. This model is then integrated into the TNEP framework, which minimizes the comprehensive cost, including annualized line investment and the operational costs of both the VPP and the power grid. The resulting non-convex optimization problem is solved using the Quantum Particle Swarm Optimization (QPSO) algorithm. A case study based on the Garver-6 bus and Garver-18 bus systems demonstrates the effectiveness of the approach. The results show that, compared with traditional planning methods, strategically located VPPs can save up to 6.65% in investment costs. This VPP-integrated TNEP scheme enhances system flexibility, improves economic efficiency, and strengthens operational security by smoothing load profiles and optimizing power flows, thereby offering a more reliable and sustainable planning solution. Full article
Show Figures

Figure 1

24 pages, 5112 KB  
Article
Power Management for V2G and V2H Operation Modes in Single-Phase PV/BES/EV Hybrid Energy System
by Chayakarn Saeseiw, Kosit Pongpri, Tanakorn Kaewchum, Sakda Somkun and Piyadanai Pachanapan
World Electr. Veh. J. 2025, 16(10), 580; https://doi.org/10.3390/wevj16100580 - 14 Oct 2025
Viewed by 400
Abstract
A multi-port conversion system that connects photovoltaic (PV) arrays, battery energy storage (BES), and an electric vehicle (EV) to a single-phase grid offers a flexible solution for smart homes. By integrating Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) technologies, the system supports bidirectional energy flow, [...] Read more.
A multi-port conversion system that connects photovoltaic (PV) arrays, battery energy storage (BES), and an electric vehicle (EV) to a single-phase grid offers a flexible solution for smart homes. By integrating Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) technologies, the system supports bidirectional energy flow, optimizing usage, improving grid stability, and supplying backup power. The proposed four-port converter consists of an interleaved bidirectional DC-DC converter for high-voltage BES, a bidirectional buck–boost DC-DC converter for EV charging and discharging, a DC-DC boost converter with MPPT for PV, and a grid-tied inverter. Its non-isolated structure ensures high efficiency, compact design, and fewer switches, making it suitable for residential applications. A state-of-charge (SoC)-based power management strategy coordinates operation among PV, BES, and EV in both on-grid and off-grid modes. It reduces reliance on EV energy when supporting V2G and V2H, while SoC balancing between BES and EV extends lifetime and lowers current stress. A 7.5 kVA system was simulated in MATLAB/Simulink to validate feasibility. Two scenarios were studied: PV, BES, and EV with V2G supporting the grid and PV, BES, and EV with V2H providing backup power in off-grid mode. Tests under PV fluctuations and load variations confirmed the effectiveness of the proposed design. The system exhibited a fast transient response of 0.05 s during grid-support operation and maintained stable voltage and frequency in off-grid mode despite PV and load fluctuations. Its protection scheme disconnected overloads within 0.01 s, while harmonic distortions in both cases remained modest and complied with EN50610 standards. Full article
Show Figures

Graphical abstract

21 pages, 4746 KB  
Article
Optimizing Steel Industry and Air Conditioning Clusters Using Coordination-Based Time-Series Fusion Transformer
by Xinyu Luo, Zhaofan Zhou, Bin Li, Yumeng Zhang, Chenle Yi, Kun Shi and Songsong Chen
Processes 2025, 13(10), 3265; https://doi.org/10.3390/pr13103265 - 13 Oct 2025
Viewed by 259
Abstract
The steel industry, a typical energy-intensive sector, experiences significant load power fluctuations, particularly during peak periods, posing challenges to power-grid stability. Traditional studies often overlook its unique production characteristics, limiting a comprehensive understanding of power fluctuations. Meanwhile, air conditioning (AC), as a flexible [...] Read more.
The steel industry, a typical energy-intensive sector, experiences significant load power fluctuations, particularly during peak periods, posing challenges to power-grid stability. Traditional studies often overlook its unique production characteristics, limiting a comprehensive understanding of power fluctuations. Meanwhile, air conditioning (AC), as a flexible load, offers stable regulation with an aggregation effect. This study explores the potential for coordinated load dispatch between the steel industry and air conditioning clusters to enhance power system flexibility. A power characteristic model for steel loads was developed based on energy consumption patterns, while a physical ETP model aggregated air conditioning loads. To improve forecasting accuracy, a parallel LSTM-Transformer model predicts both steel and air conditioning loads. CEEMDAN-VMD decomposition reduces noise in steel-load data, and the QR algorithm computes confidence intervals for load responses. The study further examines interactions between electric-arc furnace control strategies and air conditioning demand response. Case studies using real-world data demonstrate that the proposed model enhances prediction accuracy, peak suppression, and variance reduction. These findings provide insights into steel industry power fluctuations and large-scale air conditioning load adjustments. Full article
Show Figures

Figure 1

19 pages, 3358 KB  
Article
Iterative Genetic Algorithm to Improve Optimization of a Residential Virtual Power Plant
by Anas Abdullah Alvi, Luis Martínez-Caballero, Enrique Romero-Cadaval, Eva González-Romera and Mariusz Malinowski
Energies 2025, 18(20), 5377; https://doi.org/10.3390/en18205377 - 13 Oct 2025
Viewed by 263
Abstract
With the increasing penetration of renewable energy such as solar and wind power into the grid as well as the addition of modern types of versatile loads such as electric vehicles, the grid system is more prone to system failure and instability. One [...] Read more.
With the increasing penetration of renewable energy such as solar and wind power into the grid as well as the addition of modern types of versatile loads such as electric vehicles, the grid system is more prone to system failure and instability. One of the possible solutions to mitigate these conditions and increase the system efficiency is the integration of virtual power plants into the system. Virtual power plants can aggregate distributed energy resources such as renewable energy systems, electric vehicles, flexible loads, and energy storage, thus allowing for better coordination and optimization of these resources. This paper proposes a genetic algorithm-based optimization to coordinate the different elements of the energy management system of a virtual power plant, such as the energy storage system and charging/discharging of electric vehicles. It also deals with the random behavior of the genetic algorithm and its failure to meet certain constraints in the final solution. A novel method is proposed to mitigate these problems that combines a genetic algorithm in the first stage, followed by a gradient-based method in the second stage, consequently reducing the overall electricity bill by 50.2% and the simulation time by almost 95%. The performance is evaluated considering the reference set-points of operation from the obtained solution of the energy storage and electric vehicles by performing tests using a detailed model where power electronics converters and their local controllers are also taken into account. Full article
Show Figures

Figure 1

20 pages, 1016 KB  
Article
Low-Carbon Economic Dispatch of Integrated Energy Systems for Electricity, Gas, and Heat Based on Deep Reinforcement Learning
by Xiaojuan Lu, Yaohui Zhang, Duojin Fan, Jiawei Wei and Xiaoying Yu
Sustainability 2025, 17(20), 9040; https://doi.org/10.3390/su17209040 - 13 Oct 2025
Viewed by 304
Abstract
Under the background of “dual-carbon”, the development of energy internet is an inevitable trend for China’s low-carbon energy transition. This paper proposes a hydrogen-coupled electrothermal integrated energy system (HCEH-IES) operation mode and optimizes the source-side structure of the system from the level of [...] Read more.
Under the background of “dual-carbon”, the development of energy internet is an inevitable trend for China’s low-carbon energy transition. This paper proposes a hydrogen-coupled electrothermal integrated energy system (HCEH-IES) operation mode and optimizes the source-side structure of the system from the level of carbon trading policy combined with low-carbon technology, taps the carbon reduction potential, and improves the renewable energy consumption rate and system decarbonization level; in addition, for the operation optimization problem of this electric–gas–heat integrated energy system, a flexible energy system based on electric–gas–heat is proposed. Furthermore, to address the operation optimization problem of the HCEH-IES, a deep reinforcement learning method based on Soft Actor–Critic (SAC) is proposed. This method can adaptively learn control strategies through interactions between the intelligent agent and the energy system, enabling continuous action control of the multi-energy flow system while solving the uncertainties associated with source-load fluctuations from wind power, photovoltaics, and multi-energy loads. Finally, historical data are used to train the intelligent body and compare the scheduling strategies obtained by SAC and DDPG algorithms. The results show that the SAC-based algorithm has better economics, is close to the CPLEX day-ahead optimal scheduling method, and is more suitable for solving the dynamic optimal scheduling problem of integrated energy systems in real scenarios. Full article
Show Figures

Figure 1

19 pages, 4365 KB  
Article
Enhancing Load Stratification in Power Distribution Systems Through Clustering Algorithms: A Practical Study
by Williams Mendoza-Vitonera, Xavier Serrano-Guerrero, María-Fernanda Cabrera, John Enriquez-Loja and Antonio Barragán-Escandón
Energies 2025, 18(19), 5314; https://doi.org/10.3390/en18195314 - 9 Oct 2025
Viewed by 361
Abstract
Accurate load profile identification is crucial for effective and sustainable power system planning. This study proposes a characterization methodology based on clustering techniques applied to consumption data from medium- and low-voltage users, as well as distribution transformers from an electric utility. Three algorithms—K-means, [...] Read more.
Accurate load profile identification is crucial for effective and sustainable power system planning. This study proposes a characterization methodology based on clustering techniques applied to consumption data from medium- and low-voltage users, as well as distribution transformers from an electric utility. Three algorithms—K-means, DBSCAN (Density-Based Spatial Clustering of Applications with Noise), and Gaussian Mixture Models (GMM)—were implemented and compared in terms of their ability to form representative strata using variables such as observation count, projected energy, load factor (LF), and characteristic power levels. The methodology includes data cleaning, normalization, dimensionality reduction, and quality metric analysis to ensure cluster consistency. Results were benchmarked against a prior study conducted by Empresa Eléctrica Regional Centro Sur C.A. (EERCS). Among the evaluated algorithms, GMM demonstrated superior performance in modeling irregular consumption patterns and probabilistically assigning observations, resulting in more coherent and representative segmentations. The resulting clusters exhibited an average LF of 58.82%, indicating balanced demand distribution and operational consistency across the groups. Compared to alternative clustering techniques, GMM demonstrated advantages in capturing heterogeneous consumption patterns, adapting to irregular load behaviors, and identifying emerging user segments such as induction-cooking households. These characteristics arise from its probabilistic nature, which provides greater flexibility in cluster formation and robustness in the presence of variability. Therefore, the findings highlight the suitability of GMM for real-world applications where representativeness, efficiency, and cluster stability are essential. The proposed methodology supports improved transformer sizing, more precise technical loss assessments, and better demand forecasting. Periodic application and integration with predictive models and smart grid technologies are recommended to enhance strategic and operational decision-making, ultimately supporting the transition toward smarter and more resilient power distribution systems. Full article
Show Figures

Figure 1

25 pages, 5136 KB  
Article
A Data-Driven Battery Energy Storage Regulation Approach Integrating Machine Learning Forecasting Models for Enhancing Building Energy Flexibility—A Case Study of a Net-Zero Carbon Building in China
by Zesheng Yang, Dezhou Kong, Zhexuan Chen, Zhiang Zhang, Dengfeng Du and Ziyue Zhu
Buildings 2025, 15(19), 3611; https://doi.org/10.3390/buildings15193611 - 8 Oct 2025
Viewed by 619
Abstract
Building energy flexibility is essential for integrating renewables, optimizing energy use, and ensuring grid stability. While renewable and storage systems are increasingly used in buildings, poorly designed storage strategies often cause supply-demand mismatches, and a comprehensive, indicator-based assessment approach for quantifying flexibility remains [...] Read more.
Building energy flexibility is essential for integrating renewables, optimizing energy use, and ensuring grid stability. While renewable and storage systems are increasingly used in buildings, poorly designed storage strategies often cause supply-demand mismatches, and a comprehensive, indicator-based assessment approach for quantifying flexibility remains lacking. Therefore, this study designs customized energy storage regulation strategies and constructs a comprehensive energy flexibility assessment scheme to address key issues in supply-demand coordination and energy flexibility evaluation. LSTM and Rolling-XGB methods are used to predict building energy consumption and PV generation, respectively. Based on battery safety constraints, a data-driven battery energy storage system (BESS) model simulates battery behavior to evaluate and compare building energy flexibility under two scenarios: (1) uncoordinated PV-BESS, and (2) coordinated PV-BESS with load forecasting. A practical validation was conducted using a net-zero-carbon building as the case study. Simulation results show that the data-driven BESS model improves building energy flexibility and reduces electricity costs through optimized battery sizing, tailored storage strategies, and consideration of local time-of-use tariffs. In the case study, local energy coverage reached 62.75%, surplus time increased to 34.77%, and costs were cut by nearly 40% compared to the PV-only scenario, demonstrating the significant benefits brought by the proposed BESS model that integrates load forecasting and PV generation prediction features. Full article
(This article belongs to the Special Issue Big Data and Machine/Deep Learning in Construction)
Show Figures

Figure 1

21 pages, 5727 KB  
Article
Multi-Objective Energy Management System in Smart Homes with Inverter-Based Air Conditioner Considering Costs, Peak-Average Ratio, and Battery Discharging Cycles of ESS and EV
by Moslem Dehghani, Seyyed Mohammad Bornapour, Felipe Ruiz and Jose Rodriguez
Energies 2025, 18(19), 5298; https://doi.org/10.3390/en18195298 - 7 Oct 2025
Viewed by 406
Abstract
The smart home contributions in energy management systems can help the microgrid operator overcome technical problems and ensure economically viable operation by flattening the load profile. The purpose of this paper is to propose a smart home energy management system (SHEMS) that enables [...] Read more.
The smart home contributions in energy management systems can help the microgrid operator overcome technical problems and ensure economically viable operation by flattening the load profile. The purpose of this paper is to propose a smart home energy management system (SHEMS) that enables smart homes to monitor, store, and manage energy efficiently. SHEMS relies heavily on energy storage systems (ESSs) and electric vehicles (EVs), which enable smart homes to be more flexible and enhance the reliability and efficiency of renewable energy sources. It is vital to study the optimal operation of batteries in SHEMS; hence, a multi-objective optimization approach for SHEMS and demand response programs is proposed to simultaneously reduce the daily bills, the peak-to-average ratio, and the number of battery discharging cycles of ESSs and EVs. An inverter-based air conditioner, photovoltaic system, ESS, and EV, shiftable and non-shiftable equipment are considered in the suggested smart home. In addition, the amount of energy purchased and sold throughout the day is taken into account in the suggested mathematical formulation based on the real-time market pricing. The suggested multi-objective problem is solved by an improved gray wolf optimizer, and various weather conditions, including rainy, sunny, and cloudy days, are also analyzed. Additionally, simulations indicate that the proposed method achieves optimal results, with three objectives shown on the Pareto front of the optimal solutions. Full article
(This article belongs to the Topic Smart Energy Systems, 2nd Edition)
Show Figures

Figure 1

26 pages, 2330 KB  
Article
Research on Multi-Timescale Optimization Scheduling of Integrated Energy Systems Considering Sustainability and Low-Carbon Characteristics
by He Jiang and Xingyu Liu
Sustainability 2025, 17(19), 8899; https://doi.org/10.3390/su17198899 - 7 Oct 2025
Viewed by 435
Abstract
The multi-timescale optimization dispatch method for integrated energy systems proposed in this paper balances sustainability and low-carbon characteristics. It first incorporates shared energy storage resources such as electric vehicles into system dispatch, fully leveraging their spatiotemporal properties to enhance dispatch flexibility and rapid [...] Read more.
The multi-timescale optimization dispatch method for integrated energy systems proposed in this paper balances sustainability and low-carbon characteristics. It first incorporates shared energy storage resources such as electric vehicles into system dispatch, fully leveraging their spatiotemporal properties to enhance dispatch flexibility and rapid response capabilities for integrating renewable energy and enabling clean power generation. Second, an incentive-penalty mechanism enables effective interaction between the system and the green certificate–carbon joint trading market. Penalties are imposed for failing to meet renewable energy consumption targets or exceeding carbon quotas, while rewards are granted for meeting or exceeding targets. This regulates the system’s renewable energy consumption level and carbon emissions, ensuring robust low-carbon performance. Third, this strategy considers the close coordination between heating, cooling, and electricity demand response measures with the integrated energy system, smoothing load fluctuations to achieve peak shaving and valley filling. Finally, through case study simulations and analysis, the advantages of the multi-timescale dispatch strategy proposed in this paper, in terms of economic feasibility, low-carbon characteristics, and sustainability, are verified. Full article
Show Figures

Figure 1

26 pages, 2280 KB  
Article
Day-Ahead Coordinated Scheduling of Distribution Networks Considering 5G Base Stations and Electric Vehicles
by Lin Peng, Aihua Zhou, Junfeng Qiao, Qinghe Sun, Zhonghao Qian, Min Xu and Sen Pan
Electronics 2025, 14(19), 3940; https://doi.org/10.3390/electronics14193940 - 4 Oct 2025
Viewed by 291
Abstract
The rapid growth of 5G base stations (BSs) and electric vehicles (EVs) introduces significant challenges for distribution network operation due to high energy consumption and variable loads. This paper proposes a coordinated day-ahead scheduling framework that integrates 5G BS task migration, storage utilization, [...] Read more.
The rapid growth of 5G base stations (BSs) and electric vehicles (EVs) introduces significant challenges for distribution network operation due to high energy consumption and variable loads. This paper proposes a coordinated day-ahead scheduling framework that integrates 5G BS task migration, storage utilization, and EV charging or discharging with mobility constraints. A mixed-integer second-order cone programming (MISOCP) model is formulated to optimize network efficiency while ensuring reliable power supply and maintaining service quality. The proposed approach enables dynamic load adjustment via 5G computing task migration and coordinated operation between 5G BSs and EVs. Case studies demonstrate that the proposed method can effectively generate an optimal day-ahead scheduling strategy for the distribution network. By employing the task migration strategy, the computational workloads of heavily loaded 5G BSs are dynamically redistributed to neighboring stations, thereby alleviating computational stress and reducing their associated power consumption. These results highlight the potential of leveraging the joint flexibility of 5G infrastructures and EVs to support more efficient and reliable distribution network operation. Full article
Show Figures

Figure 1

Back to TopTop