Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (193)

Search Parameters:
Keywords = flexible coil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1421 KiB  
Article
A Learning Design Framework for International Blended and Virtual Activities in Higher Education
by Ania Maria Hildebrandt, Alice Barana, Vasiliki Eirini Chatzea, Kelly Henao, Marina Marchisio Conte, Daniel Samoilovich, Nikolas Vidakis and Georgios Triantafyllidis
Trends High. Educ. 2025, 4(3), 40; https://doi.org/10.3390/higheredu4030040 - 29 Jul 2025
Viewed by 175
Abstract
Blended and virtual learning have become an integral part in international higher education, especially in the wake of the COVID-19 pandemic and the European Union’s Digital Education Action Plan. These modalities have enabled more inclusive, flexible, and sustainable forms of international collaboration, such [...] Read more.
Blended and virtual learning have become an integral part in international higher education, especially in the wake of the COVID-19 pandemic and the European Union’s Digital Education Action Plan. These modalities have enabled more inclusive, flexible, and sustainable forms of international collaboration, such as Collaborative Online International Learning (COIL) and Blended Intensive Programs (BIPs), reshaping the landscape of global academic mobility. This paper introduces the INVITE Learning Design Framework (LDF), developed to support higher education instructors in designing high-quality, internationalized blended and virtual learning experiences. The framework addresses the growing need for structured, theory-informed approaches to course design that foster student engagement, intercultural competence, and motivation in non-face-to-face settings. The INVITE LDF was developed through a rigorous scoping review of existing models and frameworks, complemented by needs-identification analysis and desk research. It integrates Self-Determination Theory, Active Learning principles, and the ADDIE instructional design model to provide a comprehensive, adaptable structure for course development. The framework was successfully implemented in a large-scale online training module for over 1000 educators across Europe. Results indicate that the INVITE LDF enhances educators’ ability to create engaging, inclusive, and pedagogically sound international learning environments. Its application supports institutional goals of internationalization by making global learning experiences more accessible and scalable. The findings suggest that the INVITE LDF can serve as a valuable tool for higher education institutions worldwide, offering a replicable model for fostering intercultural collaboration and innovation in digital education. This contributes to the broader transformation of international higher education, promoting equity, sustainability, and global citizenship through digital pedagogies. Full article
Show Figures

Figure 1

53 pages, 5030 KiB  
Review
Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications
by He Zhang, Jiangning Wang, Jiaona Wei, Xueqi Fu, Junfeng Ma and Jing Chen
Gels 2025, 11(8), 579; https://doi.org/10.3390/gels11080579 - 26 Jul 2025
Viewed by 581
Abstract
Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed [...] Read more.
Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed through a hierarchical crosslinking strategy, these hydrogels integrate reversible physical interactions with covalent crosslinking approaches, collectively endowing the system with mechanical strength, environmental responsiveness, and controlled degradation behavior. Critically, molecular engineering strategies serve as the cornerstone for functional precision: domain-directed self-assembly exploits coiled-coil or β-sheet motifs to orchestrate hierarchical organization, while modular fusion of bioactive motifs through genetic encoding or site-specific conjugation enables dynamic control over cellular interactions and therapeutic release. Such engineered designs underpin advanced applications, including immunomodulatory scaffolds for diabetic wound regeneration, tumor-microenvironment-responsive drug depots, and shear-thinning bioinks for vascularized bioprinting, by synergizing material properties with biological cues. By uniting synthetic biology with materials science, recombinant hydrogels deliver unprecedented flexibility in tuning physical and biological properties. This review synthesizes emerging crosslinking paradigms and molecular strategies, offering a framework for engineering next-generation, adaptive biomaterials poised to address complex challenges in regenerative medicine and beyond. Full article
(This article belongs to the Special Issue Recent Advances in Protein Gels)
Show Figures

Figure 1

15 pages, 6089 KiB  
Article
Molecular Fingerprint of Cold Adaptation in Antarctic Icefish PepT1 (Chionodraco hamatus): A Comparative Molecular Dynamics Study
by Guillermo Carrasco-Faus, Valeria Márquez-Miranda and Ignacio Diaz-Franulic
Biomolecules 2025, 15(8), 1058; https://doi.org/10.3390/biom15081058 - 22 Jul 2025
Viewed by 212
Abstract
Cold environments challenge the structural and functional integrity of membrane proteins, requiring specialized adaptations to maintain activity under low thermal energy. Here, we investigate the molecular basis of cold tolerance in the peptide transporter PepT1 from the Antarctic icefish (Chionodraco hamatus, [...] Read more.
Cold environments challenge the structural and functional integrity of membrane proteins, requiring specialized adaptations to maintain activity under low thermal energy. Here, we investigate the molecular basis of cold tolerance in the peptide transporter PepT1 from the Antarctic icefish (Chionodraco hamatus, ChPepT1) using molecular dynamics simulations, binding free energy calculations (MM/GBSA), and dynamic network analysis. We compare ChPepT1 to its human ortholog (hPepT1), a non-cold-adapted variant, to reveal key features enabling psychrophilic function. Our simulations show that ChPepT1 displays enhanced global flexibility, particularly in domains adjacent to the substrate-binding site and the C-terminal domain (CTD). While hPepT1 loses substrate binding affinity as temperature increases, ChPepT1 maintains stable peptide interactions across a broad thermal range. This thermodynamic buffering results from temperature-sensitive rearrangement of hydrogen bond networks and more dynamic lipid interactions. Importantly, we identify a temperature-responsive segment (TRS, residues 660–670) within the proximal CTD that undergoes an α-helix to coil transition, modulating long-range coupling with transmembrane helices. Dynamic cross-correlation analyses further suggest that ChPepT1, unlike hPepT1, reorganizes its interdomain communication in response to temperature shifts. Our findings suggest that cold tolerance in ChPepT1 arises from a combination of structural flexibility, resilient substrate binding, and temperature-sensitive interdomain dynamics. These results provide new mechanistic insight into thermal adaptation in membrane transporters and offer a framework for engineering proteins with enhanced functionality in extreme environments. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

24 pages, 11160 KiB  
Article
Deep Neural Network-Based Design of Planar Coils for Proximity Sensing Applications
by Abderraouf Lalla, Paolo Di Barba, Sławomir Hausman and Maria Evelina Mognaschi
Sensors 2025, 25(14), 4429; https://doi.org/10.3390/s25144429 - 16 Jul 2025
Viewed by 364
Abstract
This study develops a deep learning procedure able to identify a planar coil geometry, given the desired magnetic field map. This approach demonstrates its capability to discover suitable coil designs that produce desired field characteristics with high accuracy and efficiency. The generated coils [...] Read more.
This study develops a deep learning procedure able to identify a planar coil geometry, given the desired magnetic field map. This approach demonstrates its capability to discover suitable coil designs that produce desired field characteristics with high accuracy and efficiency. The generated coils show strong agreement with target magnetic fields, enabling manufacturers to achieve simpler structures and improved performance. This method is suitable for inductive proximity sensors, wireless power transfer systems, and electromagnetic compatibility applications, offering a powerful and flexible tool for advanced planar coil design. Full article
(This article belongs to the Special Issue Magnetic Field Sensing and Measurement Techniques)
Show Figures

Figure 1

17 pages, 4423 KiB  
Article
Multivariate Framework of Metabolism in Advanced Prostate Cancer Using Whole Abdominal and Pelvic Hyperpolarized 13C MRI—A Correlative Study with Clinical Outcomes
by Hsin-Yu Chen, Ivan de Kouchkovsky, Robert A. Bok, Michael A. Ohliger, Zhen J. Wang, Daniel Gebrezgiabhier, Tanner Nickles, Lucas Carvajal, Jeremy W. Gordon, Peder E. Z. Larson, John Kurhanewicz, Rahul Aggarwal and Daniel B. Vigneron
Cancers 2025, 17(13), 2211; https://doi.org/10.3390/cancers17132211 - 1 Jul 2025
Cited by 1 | Viewed by 499 | Correction
Abstract
Background: Most of the existing hyperpolarized (HP) 13C MRI analyses use univariate rate maps of pyruvate-to-lactate conversion (kPL), and radiomic-style multiparametric models extracting complex, higher-order features remain unexplored. Purpose: To establish a multivariate framework based on whole abdomen/pelvis HP 13 [...] Read more.
Background: Most of the existing hyperpolarized (HP) 13C MRI analyses use univariate rate maps of pyruvate-to-lactate conversion (kPL), and radiomic-style multiparametric models extracting complex, higher-order features remain unexplored. Purpose: To establish a multivariate framework based on whole abdomen/pelvis HP 13C-pyruvate MRI and evaluate the association between multiparametric features of metabolism (MFM) and clinical outcome measures in advanced and metastatic prostate cancer. Methods: Retrospective statistical analysis was performed on 16 participants with metastatic or local-regionally advanced prostate cancer prospectively enrolled in a tertiary center who underwent HP-pyruvate MRI of abdomen or pelvis between November 2020 and May 2023. Five patients were hormone-sensitive and eleven were castration-resistant. GMP-grade [1-13C]pyruvate was polarized using a 5T clinical-research DNP polarizer, and HP MRI used a set of flexible vest-transmit, array-receive coils, and echo-planar imaging sequences. Three basic metabolic maps (kPL, pyruvate summed-over-time, and mean pyruvate time) were created by semi-automatic segmentation, from which 316 MFMs were extracted using an open-source, radiomic-compliant software package. Univariate risk classifier was constructed using a biologically meaningful feature (kPL,median), and the multivariate classifier used a two-step feature selection process (ranking and clustering). Both were correlated with progression-free survival (PFS) and overall survival (OS) (median follow-up = 22.0 months) using Cox proportional hazards model. Results: In the univariate analysis, patients harboring tumors with lower-kPL,median had longer PFS (11.2 vs. 0.5 months, p < 0.01) and OS (NR vs. 18.4 months, p < 0.05) than their higher-kPL,median counterparts. Using a hypothesis-generating, age-adjusted multivariate risk classifier, the lower-risk subgroup also had longer PFS (NR vs. 2.4 months, p < 0.002) and OS (NR vs. 18.4 months, p < 0.05). By contrast, established laboratory markers, including PSA, lactate dehydrogenase, and alkaline phosphatase, were not significantly associated with PFS or OS (p > 0.05). Key limitations of this study include small sample size, retrospective study design, and referral bias. Conclusions: Risk classifiers derived from select multiparametric HP features were significantly associated with clinically meaningful outcome measures in this small, heterogeneous patient cohort, strongly supporting further investigation into their prognostic values. Full article
Show Figures

Figure 1

17 pages, 14716 KiB  
Article
Research on Electromagnetic Control Technology for the Roll Profile of Wide-Width Electrode Roll Press Rolls
by Chaojian Guo, Hao Chen, Jingna Sun, Huagui Huang, Xuening Fu and Zhijie Yang
Processes 2025, 13(5), 1448; https://doi.org/10.3390/pr13051448 - 9 May 2025
Viewed by 473
Abstract
To address the challenge of transverse thickness consistency in wide-width electrode calendering, this study developed a flexible roll profile regulation technology based on electromagnetic induction heating. An axisymmetric electromagnetic–thermal–structural coupling finite element model is established and validated on a self-built experimental platform. Systematic [...] Read more.
To address the challenge of transverse thickness consistency in wide-width electrode calendering, this study developed a flexible roll profile regulation technology based on electromagnetic induction heating. An axisymmetric electromagnetic–thermal–structural coupling finite element model is established and validated on a self-built experimental platform. Systematic simulations were conducted to investigate the influence of equivalent current density Js, current frequency f, and coil turn n on the roll temperature and roll profile. The maximum temperature of the roll’s inner bore and the roll crown exhibit a positive correlation with Js, f, and n. A cyclic heating strategy was developed to control and stabilize the roll profile. The stable crown CW shows linear correlation with heating durations t1 and a nonlinear trend with Js. Under fixed Js and t1, further optimization of duty cycle and cooling conditions enables long-term stabilization of the roll profile. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

11 pages, 1934 KiB  
Article
Self-Assembling Peptide–Co-PPIX Complex Catalyzes Photocatalytic Hydrogen Evolution and Forms Hydrogels
by Nicholas Ryan Halloran, Abesh Banerjee and Giovanna Ghirlanda
Molecules 2025, 30(8), 1707; https://doi.org/10.3390/molecules30081707 - 10 Apr 2025
Viewed by 577
Abstract
The sustainable production of carbon-free fuels such as hydrogen is an important goal in the search for alternative energy sources. Herein, we report a peptide-based system for light-driven hydrogen evolution from water under neutral conditions. The M1 peptide is an ABC triblock polymer [...] Read more.
The sustainable production of carbon-free fuels such as hydrogen is an important goal in the search for alternative energy sources. Herein, we report a peptide-based system for light-driven hydrogen evolution from water under neutral conditions. The M1 peptide is an ABC triblock polymer featuring two coiled-coil alpha-helical regions flanking a water-soluble, polyanionic, intrinsically disordered region. M1 formed a hydrogel at high concentrations upon binding to cobalt protoporphyrin IX. This process is driven by the terminal regions, which coordinate the metalloporphyrin through histidine residues and form helical oligomers interconnected by flexible, intrinsically disordered regions, resulting in network formation. Co-M1 catalyzes hydrogen production upon irradiation in the presence of a photosensitizer and a sacrificial electron donor; the activity of Co-M1 is eight times higher than that of free Co-PPIX. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis—2nd Edition)
Show Figures

Figure 1

14 pages, 2949 KiB  
Article
Photo-Responsive Liquid Crystal Elastomer Coils Inspired by Tropism Movements of Plants
by Xiyun Zhan, Zhiyu Ran, Jiajun Li, Jiaqi Zhu, Zhibo Zhang and Kun-Lin Yang
Actuators 2025, 14(4), 171; https://doi.org/10.3390/act14040171 - 31 Mar 2025
Viewed by 677
Abstract
Plant tendrils exhibit intriguing tropism motions like bending, twisting, and coiling. Herein, we report the application of a liquid crystal elastomer (LCE) to make a light-sensitive and biomimetic coil to replicate behaviors of plant tendrils. The LCE coil consists of diacrylate azobenzene, diacrylate [...] Read more.
Plant tendrils exhibit intriguing tropism motions like bending, twisting, and coiling. Herein, we report the application of a liquid crystal elastomer (LCE) to make a light-sensitive and biomimetic coil to replicate behaviors of plant tendrils. The LCE coil consists of diacrylate azobenzene, diacrylate mesogens, and thiol-based spacers. These components are first mixed to form a highly viscous prepolymer solution through a thiol-acrylate Michael addition reaction. Subsequently, an extrusion–rolling process is developed to draw the viscous solution into a coil, which is mechanically stretched in a single direction to align mesogens in the LCE. Finally, the coil is photopolymerized under UV light to form an LCE coil with a diameter of 375 µm. The LCE coil possesses good rigidity and flexibility and shows movement upon light exposure. For example, the LCE coil shows a reversible bending up to 120° to 365 nm UV and 30% contraction to 455 nm visible light, respectively, due to trans-cis photoisomerization of azobenzene derivatives. When the coil is irradiated with UV light with an intensity up to 10 mW cm−2, it can twist and coil up. It can also wrap around the UV light tube in 6 s, similar to a plant tendril. This type of light-responsive coil has great potential in making biomimetic plants or soft robotics. Full article
(This article belongs to the Special Issue Smart Responsive Materials for Sensors and Actuators)
Show Figures

Figure 1

24 pages, 5530 KiB  
Article
Microgel with a Core—Shell Particulate Structure Formed via Spinodal Decomposition of a Diblock Ionomer Containing a Doped Hydrophobic Moiety
by David Julius, Jim Yang Lee and Liang Hong
Gels 2025, 11(4), 231; https://doi.org/10.3390/gels11040231 - 22 Mar 2025
Viewed by 448
Abstract
This study explored the formation of soft colloidal particles from a diblock ionomer (DI) with the monomeric composition (acrylonitrile)x-co-(glycidyl methacrylate)y-b-(3-sulfopropyl methacrylate potassium)z—abbreviated as (AxGy)Sz, where x >> z > y. A [...] Read more.
This study explored the formation of soft colloidal particles from a diblock ionomer (DI) with the monomeric composition (acrylonitrile)x-co-(glycidyl methacrylate)y-b-(3-sulfopropyl methacrylate potassium)z—abbreviated as (AxGy)Sz, where x >> z > y. A colloidal dispersion was generated by introducing water into the pre-prepared DMSO solutions of DI, which led to micelle formation and subsequent coagulation. The assembly of the hydrophobic (AxGy) blocks was influenced by water content and chain conformational flexibility (the ability to adopt various forms of conformation). The resulting microgel structure (in particle form) consists of coagulated micelles characterized by discrete internal hydrophobic gel domains and continuous external hydrophilic gel layers. Characterization methods included light scattering, zeta potential analysis, and particle size distribution measurements. In contrast, the copolymer (AxGy) chains form random coil aggregates in DMSO–H2O mixtures, displaying a chain packing state distinct from the hydrophobic gel domains as aforementioned. Additionally, the amphiphilic glycidyl methacrylate (G) units within the (AxGy) block were found to modulate the microgel dimensions. Notably, the nanoscale hydrogel corona exhibits high accessibility to reactive species in aqueous media. The typical microgel has a spherical shape with a diameter ranging from 50 to 120 nm. It exhibits a zeta potential of −65 mV in a neutral aqueous medium; however, it may precipitate if the metastable colloidal dispersion state cannot be maintained. Its properties could be tailored through adjusting the internal chain conformation, highlighting its potential for diverse applications. Full article
Show Figures

Graphical abstract

21 pages, 5078 KiB  
Article
Innovative Approach Integrating Machine Learning Models for Coiled Tubing Fatigue Modeling
by Khalil Moulay Brahim, Ahmed Hadjadj, Aissa Abidi Saad, Elfakeur Abidi Saad and Hichem Horra
Appl. Sci. 2025, 15(6), 2899; https://doi.org/10.3390/app15062899 - 7 Mar 2025
Viewed by 911
Abstract
Coiled tubing (CT) plays a pivotal role in oil and gas well intervention operations due to its advantages, such as flexibility, fast mobilization, safety, low cost, and its wide range of applications, including well intervention, cleaning, stimulation, fluid displacement, cementing, and drilling. However, [...] Read more.
Coiled tubing (CT) plays a pivotal role in oil and gas well intervention operations due to its advantages, such as flexibility, fast mobilization, safety, low cost, and its wide range of applications, including well intervention, cleaning, stimulation, fluid displacement, cementing, and drilling. However, CT is subject to fatigue and mechanical damage caused by repeated bending cycles, internal pressure, and environmental factors, which can lead to premature failure, high operational costs, and production downtime. With the development of CT properties and modes of application, traditional fatigue life prediction methods based on analytical models integrated in the tracking process showed, in some cases, an underestimate or overestimate of the actual fatigue life of CT, particularly when complex factors like welding type, corrosive environment, and high-pressure variation are involved. This study addresses this limitation by introducing a comprehensive machine learning-based approach to improve the accuracy of CT fatigue life prediction, using a dataset derived from both lab-scale and full-scale fatigue tests. We incorporated the impact of different parameters such as CT grades, wall thickness, CT diameter, internal pressure, and welding types. By using advanced machine learning techniques such as artificial neural networks (ANNs) and Gradient Boosting Regressor, we obtained a more precise estimation of the number of cycles to failure than traditional models. The results from our machine learning analysis demonstrated that CatBoost and XGBoost are the most suitable models for fatigue life prediction. These models exhibited high predictive accuracy, with R2 values exceeding 0.94 on the test set, alongside relatively low error metrics (MSE, MAE and MAPE), indicating strong generalization capability. The results of this study show the importance of the integration of machine learning for CT fatigue life analysis and demonstrate its capacity to enhance prediction accuracy and reduce uncertainty. A detailed machine learning model is presented, emphasizing the capability to handle complex data and improve prediction under diverse operational conditions. This study contributes to more reliable CT management and safer, more cost-efficient well intervention operations. Full article
Show Figures

Figure 1

20 pages, 5404 KiB  
Article
Design and Optimization of the Bionic Flexible Gripper Based on Magnetically Sensitive Rubber
by Xianhua Bian, Yu Ding, Rui Li, Mengjie Shou and Pingan Yang
Actuators 2025, 14(3), 124; https://doi.org/10.3390/act14030124 - 5 Mar 2025
Viewed by 820
Abstract
Flexible grippers based on magnetically sensitive rubber have garnered significant research attention due to their high gripping adaptability and ease of control. However, current research designs often separate the excitation device from the flexible finger, which can lead to potential interference or damage [...] Read more.
Flexible grippers based on magnetically sensitive rubber have garnered significant research attention due to their high gripping adaptability and ease of control. However, current research designs often separate the excitation device from the flexible finger, which can lead to potential interference or damage to other electronic components in the working environment and an inability to simultaneously ensure safety and gripping performance. In this paper, we propose an integrated magnetically controlled bionic flexible gripper that combines the excitation device and the flexible finger. We derive a formula for calculating the magnetic field generated by the excitation device, model and simulate the device, and find that the optimal magnetic field effect is achieved when the core-to-coil size ratio is 1:5. Additionally, we fabricated flexible fingers with different NdFeB volume ratios and experimentally determined that a volume ratio of 20% yields relatively better bending performance. The integrated magnetically controlled bionic flexible gripper described in this paper can adaptively grasp items such as rubber, column foam, and electrical tape, achieving maximum grasping energy efficiency of 0.524 g per millitesla (g/mT). These results highlight its potential advantages in applications such as robotic end-effectors and industrial automatic sorting. Full article
Show Figures

Figure 1

16 pages, 5193 KiB  
Article
Reduced Heating Wireless Energy Transmission System for Powering Implanted Circulatory Assist Devices: Benchtop and In-Vivo Studies
by Mohammad L. Karim, Rachel Grimes, Harry Larkin, Antonio M. Bosnjak, James McLaughlin, Paul Crawford, David McEneaney and Omar J. Escalona
Sensors 2025, 25(5), 1311; https://doi.org/10.3390/s25051311 - 21 Feb 2025
Viewed by 964
Abstract
This study aimed to develop a novel Transdermal Energy Transmission System (TETS) device that addresses the driveline complications faced by patients with advanced heart failure (HF). Our TETS device utilizes a two-channel configuration with a very-low duty cycle and a pulsed RF power [...] Read more.
This study aimed to develop a novel Transdermal Energy Transmission System (TETS) device that addresses the driveline complications faced by patients with advanced heart failure (HF). Our TETS device utilizes a two-channel configuration with a very-low duty cycle and a pulsed RF power transmission technique, along with elliptically shaped flexible coil inductive coupling elements. We integrated a battery charging controller module into the TETS, enabling it to recharge an implanted Lithium-Ion (Li-Ion) battery that powers low-power-rated Circulatory Assist Devices, or left ventricular assist devices (LVADs). Benchtop measurements demonstrated that the TETS delivered energy from the implanted coils to the battery charging module, at a charging rate of up to 2900 J/h, presented an average temperature increase (ΔT) of 3 °C. We conducted in vivo measurements using four porcine models followed by histopathological analysis of the skin tissue in the implanted coils areas. The thermal profile analysis from the in vivo measurements and the calculated charging rates from the current and voltage waveforms, in porcine models, indicated that the charging rate and temperature varied for each model. The maximum energy charging rate observed was 2200 J/h, with an average ΔT of 3 °C. The exposed skin tissue histopathological analysis results showed no evidence of tissue thermal damage in the in vivo measurements. These results demonstrate the feasibility of our developed TETS device for wireless driving implanted low-power-rated LVADs and Li-Ion charging. Full article
(This article belongs to the Special Issue Biomedical Sensors for Cardiology)
Show Figures

Figure 1

22 pages, 15628 KiB  
Article
A Novel Non-Resonant Full-Bridge Multi-Output Topology for Domestic Induction Heating Applications
by Sezer Aslan, Ulas Oktay and Nihan Altintas
Electronics 2025, 14(3), 596; https://doi.org/10.3390/electronics14030596 - 3 Feb 2025
Cited by 2 | Viewed by 1389
Abstract
Induction heating technology plays a significant role in heating applications with its high efficiency, fast response, and precise control ability. Traditional resonant inverter-based systems face problems such as complexity, lack of flexibility, and low efficiency in multi-load situations. To overcome these issues, a [...] Read more.
Induction heating technology plays a significant role in heating applications with its high efficiency, fast response, and precise control ability. Traditional resonant inverter-based systems face problems such as complexity, lack of flexibility, and low efficiency in multi-load situations. To overcome these issues, a new non-resonant full-bridge multiple-output inverter topology using silicon carbide (SiC) semiconductor devices is presented. While the system is simplified by eliminating resonant components, efficiency is increased thanks to SiC devices. In the study, a coil design methodology focusing on coil resistance and inductance is presented to optimize energy transfer and maximize system performance. Load-sensing and advanced frequency-modulation techniques are integrated to provide precise and independent power regulation in multi-loads. Thus, the efficiency of energy distribution and system robustness are increased. The proposed topology offers heating performance that provides homogeneous heat distribution. The developed prototype was proven to operate reliably with high efficiency under different load conditions and was suitably applied for domestic induction heating applications. An efficiency of 96.78% was achieved at a 50 kHz operating frequency and 2000 W power level. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

32 pages, 15959 KiB  
Article
A Quasi-Uniform Magnetic Coupling Array for a Multiload Wireless Power Transfer System with Flexible Configuration Strategies
by Dong Liu, Jin Yang, Yuntao Yue, Ruofan Li and Xinwei Song
Electronics 2025, 14(3), 463; https://doi.org/10.3390/electronics14030463 - 23 Jan 2025
Viewed by 927
Abstract
The coupling problem between the transmitter coils (Tx) and receiving coils (Rx) is influenced by the transmission power and efficiency for a multiload wireless power transfer (WPT) system. In order to solve this problem, a novel array WPT system with quasi-uniform coupling (QC) [...] Read more.
The coupling problem between the transmitter coils (Tx) and receiving coils (Rx) is influenced by the transmission power and efficiency for a multiload wireless power transfer (WPT) system. In order to solve this problem, a novel array WPT system with quasi-uniform coupling (QC) is proposed in this paper. Owing to the comprehensive design of the Tx and its mutual positional relationship, the proposed system supports simultaneous activation of multiple and even adjacent Tx while maintaining QC. In addition, the structure of Tx is simple and can be obtained with a low-cost optimization procedure, and the compact Rx coil provides sufficient misalignment transmission tolerance for one or two Rx within the Tx and overlapping areas. Furthermore, a parity-time (PT) symmetry-based Rx position detection method is adopted to support flexible unit operation strategies without additional communication procedures. Each Tx unit is equipped with an ingenious dynamic compensation circuit to solve the frequency detuning problem caused by adjacent Tx cross-coupling. Finally, the effectiveness of the design is proved by the prototype; the Tx can provide a QC area that is 1.44 times or 4.44 times the Rx coil area for each receiver in independent and composite modes, and it can match the operation strategy to achieve optimal configuration of the charging area. Full article
Show Figures

Figure 1

10 pages, 3747 KiB  
Article
Non-FFP-Based Magnetic Particle Imaging (NFMPI) with an Open-Type RF Coil System: A Feasibility Study
by Chan Kim, Jiyun Nan, Kim Tien Nguyen, Jong-Oh Park, Eunpyo Choi and Jayoung Kim
Sensors 2025, 25(3), 665; https://doi.org/10.3390/s25030665 - 23 Jan 2025
Viewed by 1058
Abstract
Active drug delivery systems for cancer therapy are gaining attention for their biocompatibility and enhanced efficacy compared to conventional chemotherapy and surgery. To improve precision in targeted drug delivery (TDD), actuating devices using external magnetic fields are employed. However, a key challenge is [...] Read more.
Active drug delivery systems for cancer therapy are gaining attention for their biocompatibility and enhanced efficacy compared to conventional chemotherapy and surgery. To improve precision in targeted drug delivery (TDD), actuating devices using external magnetic fields are employed. However, a key challenge is the inability to visually track magnetic drug carriers in blood vessels, complicating navigation to the target. Magnetic particle imaging (MPI) systems can localize magnetic carriers (MCs) but rely on bulky electromagnetic coils to generate a static magnetic field gradient, creating a field-free point (FFP) within the field of view (FOV). Also, additional coils are required to move the FFP across the FOV, limiting flexibility and increasing the system size. To address these issues, we propose a non-FFP-based, open-type RF coil system with a simplified structure composed of a Tx/Rx coil and a permanent magnet at the coil center, eliminating the need for an FFP. Furthermore, integrating a robotic arm for coil assembly enables easy adjustment of the FOV size and location. Finally, imaging tests with magnetic nanoparticles (MNPs) confirmed the system’s ability to detect and localize a minimum mass of 0.3 mg (Fe) in 80 × 80 mm2. Full article
(This article belongs to the Section State-of-the-Art Sensors Technologies)
Show Figures

Figure 1

Back to TopTop