Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications
Abstract
1. Introduction
2. Key Protein Backbones in Recombinant Hydrogel Systems
2.1. ELPs
2.2. RLPs
2.3. Recombinant SF
2.4. MFPs
2.5. Other Engineered Proteins
3. Classification and Principles of Crosslinking Mechanisms in Recombinant Protein Hydrogels
3.1. Physical Crosslinking Method
3.1.1. One-Component Coiled-Coil Self-Assembly
3.1.2. Stimuli-Responsiveness
3.1.3. Processes Driven by Protein–Protein/Peptide Interaction
3.2. Chemical Crosslinking Method
3.2.1. Chemical Crosslinking Through Side Chains
Tyrosine Residue-Mediated Crosslinking
Lysine Residue-Mediated Crosslinking
Cysteine Residue-Mediated Crosslinking
3.2.2. Enzyme-Mediated Crosslinking
3.2.3. Isopeptide Bond-Based Crosslinking
3.3. Interpenetrating Network (IN) System
3.3.1. Protein–Protein IN System
3.3.2. Protein–Polysaccharide IN System
3.3.3. Protein–Polymer IN System
4. Molecular Engineering Strategy of Recombinant Protein Hydrogels
4.1. Domain-Directed Self-Assembly Design
4.1.1. Self-Assembly Module
Name | Sequence | Class | Reference |
---|---|---|---|
EAK16-II | AEAEAKAKAKAEAEAKAK | PA | [155] |
RADA16 | RADARADARADARADA | PA | [156] |
ELK16 | LELELKLKLELELKLK | PA | [157] |
V2A2D | VVAAD | PA | [158] |
V3A3K3 | VVVAAAKKK | PA | [159] |
V2A2D2 | VVAADD | PA | [160] |
L1 | ARLPRTMVHPKPAQP | PA | [161] |
S1 | ARLPRTMV | PA | |
M1 | ARLPR | PA | |
(AKKARK)2 | AKKARKAKKARK | PA | [162] |
G5F | GGGGGF | PA | [163] |
G5W | GGGGGW | PA | |
SANPA | VVVVKKKKGKKKRAAK | PA | [164] |
EV4 | EVEV | PA | [165] |
R3L12 | RRRLLLLLLLLLLLL | SLP | [166] |
A6R | AAAAAAR | SLP | [167] |
A6D | AAAAAAD | SLP | [168] |
V6D | VVVVVVVD | SLP | |
G8DD | GGGGGGGGDD | SLP | |
K2V6 | KKVVVVVVVVV | SLP | |
P6K | PPPPPPK | SLP | [169] |
P6E | PPPPPPE | SLP | |
KP6E | KPPPPPPE | SLP | |
APK | AAAAAAPKKPAAAAAA | SLP | [170] |
A6K | AAAAAAK | SLP | [171] |
V6D2 | VVVVVVVDD | SLP | [172] |
L6D2 | LLLLLLDD | SLP | |
R3L12 | RRRLLLLLLLLLLLL | SLP | [173] |
A3K | AAAK | SLP | [174] |
4.1.2. Responsive Modules
4.2. Functional Modification Strategies and Biological Activity Regulation
4.2.1. Chemical Modification
4.2.2. Functional Module Integration
5. Application Direction of Recombinant Protein Hydrogel
5.1. Tissue Engineering
5.2. Drug Delivery Systems
5.3. Bone Regeneration Engineering
6. Challenges and Future Trends
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ECM | extracellular matrix |
PAAm | polyacrylamide |
PEG | polyethylene glycol |
3D | three-dimensional |
ELPs | elastin-like polypeptides |
SF | silk fibroin |
RLPs | resilin-like polypeptides |
MFPs | mussel foot proteins |
IDP | intrinsically disordered protein |
LOX | lysyl oxidase |
LCST | lower critical solution temperature |
Tt | transition temperature |
UCST | upper critical solution temperature |
PBS | phosphate-buffered saline |
DOPA | 3,4-dihydroxy-L-phenylalanine |
CLPs | collagen-like peptides |
ASCs | adipose-derived stem cells |
PLA | polylactic acid |
PF | Pluronic F-127 |
Col | collagen |
MNPs | magnetic nanoparticles |
RTX | repeat-in-toxin |
TPR | tetratricopeptide repeat |
HRP | horseradish peroxidase |
H2O2 | hydrogen peroxide |
ROS | reactive oxygen species |
Ru | ruthenium |
SPS | sodium persulfate |
EGCG | (-)-epigallocatechin-3-O-gallate |
GA | glutaraldehyde |
OHA | oxidized hyaluronic acid |
PAs | peptide amphiphiles |
SELPs | silk fibroin–ELPs |
S-Ag | sulfur–silver |
Hyl | hydroxylysine |
CaO2 | calcium peroxide |
SA | silk acid |
LIF | leukemia inhibitory factor |
INs | interpenetrating networks |
mTG | microbial transglutaminase |
HA | hyaluronic acid |
VEGF | vascular endothelial growth factor |
pG | protein G |
SLPs | surfactant-like peptides |
polyD | polyaspartic acid |
bRGD | bone salivary protein-derived RGD peptide |
HUVECs | human umbilical vein endothelial cells |
PTAD | phenyltriazolinedione |
SPAAC | strain-promoted alkyne–azide cycloaddition |
MA | methacrylic anhydride |
SA | succinic anhydride |
BMSCs | bone marrow mesenchymal stem cells |
sGAG | glycosaminoglycan |
PS | photosensitizer |
1O2 | singlet oxygen |
FAK | focal adhesion kinase |
EGF | epidermal growth factor |
MMP-2 | metalloproteinase-2 |
AMPs | antimicrobial peptides |
GelMA | gelatin methacryloyl |
hDPSCs | human dental pulp stem cells |
PPARγ | peroxisome proliferator-activated receptor gamma |
PTT | photothermal therapy |
PDT | photodynamic therapy |
EPL | ε-poly-L-lysine |
LPS | lipopolysaccharides |
CGRP | calcitonin gene-related peptide |
DMPG | 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol |
EVs | extracellular vesicles |
rhCol III | recombinant human type III collagen |
MSC | mesenchymal stem cell |
PAD | peripheral artery disease |
PGRN | progranulin |
DIC | diclofenac |
SFH | silk fibroin hydrogels |
rhBMP-2 | recombinant human bone morphogenetic protein-2 |
CAD/CAM | computer-aided design/manufacturing |
ZrO2 | zirconia |
β-TCP | β-tricalcium phosphate |
THRC | triple-helical recombinant collagen |
BMP-2 | bone morphogenetic protein-2 |
OCMC | oxidized carboxymethyl cellulose |
NSC | N-succinyl chitosan |
hTGF-β1 | human transforming growth factor-β1 |
hBM-MSCs | human bone marrow mesenchymal stem cells |
SF-GMA | glycidyl methacrylate-modified silk fibroin |
CAR-T | Chimeric Antigen Receptor T-Cell Immunotherapy |
RC | collagen-like protein |
RHC | recombinant humanized type III collagen |
MSCs | mesenchymal stem cells |
NT3 | neurotrophin-3 |
SFL | SF light chain |
Col3 | type III collagen |
THPC | tetrakis(hydroxymethyl)phosphonium chloride |
HFF-1 | human foreskin fibroblasts-1 |
ENG | ELP nanogel |
CXB | celecoxib |
TG | transglutaminase |
EISA | enzyme-directed self-assembly |
ALP | alkaline phosphatase |
References
- Alberts, A.; Bratu, A.G.; Niculescu, A.G.; Grumezescu, A.M. Collagen-based wound dressings: Innovations, mechanisms, and clinical applications. Gels 2025, 11, 271. [Google Scholar] [CrossRef]
- Bian, Q.; Fu, L.; Li, H. Engineering shape memory and morphing protein hydrogels based on protein unfolding and folding. Nat. Commun. 2022, 13, 137. [Google Scholar] [CrossRef]
- Lee, K.Z.; Jeon, J.; Jiang, B.; Subramani, S.V.; Li, J.; Zhang, F. Protein-based hydrogels and their biomedical applications. Molecules 2023, 28, 4988. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, L.; Cui, X.; Li, X.; Qian, Z.; Zhou, X.; Ma, Z.; Takriff, M.S.; Li, Z.; Niu, Y.; et al. Silkworm cocoon bionic design in wound dressings: A novel hydrogel with self-healing and antimicrobial properties. Int. J. Biol. Macromol. 2024, 280, 136114. [Google Scholar] [CrossRef]
- Ho, T.C.; Chang, C.C.; Chan, H.P.; Chung, T.W.; Shu, C.W.; Chuang, K.P.; Duh, T.H.; Yang, M.H.; Tyan, Y.C. Hydrogels: Properties and applications in biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Li, M.; Li, Z.; Wang, J.; Li, J.; Guo, B. Polymer applied in hydrogel wound dressing for wound healing: Modification/functionalization method and design strategies. ACS Biomater. Sci. Eng. 2025, 11, 1921–1944. [Google Scholar] [CrossRef]
- Chylińska, N.; Maciejczyk, M. Hyaluronic acid and skin: Its role in aging and wound-healing processes. Gels 2025, 11, 281. [Google Scholar] [CrossRef]
- Li, J.; Zhang, F. Amyloids as building blocks for macroscopic functional materials: Designs, applications and challenges. Int. J. Mol. Sci. 2021, 22, 10698. [Google Scholar] [CrossRef]
- Mantry, S.; Silakabattini, K.; Das, P.K.; Sankaraiah, J.; Barik, C.S.; Panda, S.; Wahab, S.; Khalid, M. Silk fibroin: An innovative protein macromolecule-based hydrogel/scaffold revolutionizing breast cancer treatment and diagnosis—Mechanisms, advancements, and targeting capabilities. Int. J. Biol. Macromol. 2025, 309, 142870. [Google Scholar] [CrossRef]
- Ng, X.J.; Esser, T.U.; Trossmann, V.T.; Rudisch, C.; Fiedler, M.; Roshanbinfar, K.; Lamberger, Z.; Stahlhut, P.; Lang, G.; Scheibel, T.; et al. Enhancing form stability: Shrink-resistant hydrogels made of interpenetrating networks of recombinant spider silk and collagen-I. Adv. Healthc. Mater. 2025, 14, e2500311. [Google Scholar] [CrossRef]
- Britton, D.; Sun, J.; Faizi, H.A.; Yin, L.; Gao, W.; Montclare, J.K. Recombinant fibrous protein gels as rheological modifiers in skin ointments. ACS Appl. Polym. Mater. 2024, 6, 12832–12841. [Google Scholar] [CrossRef]
- He, H.; Wei, N.; Xie, Y.; Wang, L.; Yao, L.; Xiao, J. Self-assembling triple-helix recombinant collagen hydrogel enriched with tyrosine. ACS Biomater. Sci. Eng. 2024, 10, 3268–3279. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, K.Z.; Zhang, X.; Jaeger, J.; Kim, E.; Li, J.; Belaygorod, L.; Arif, B.; Genin, G.M.; Foston, M.B.; et al. Genetically engineered protein-based bioadhesives with programmable material properties. ACS Appl. Mater. Interfaces 2023, 15, 56786–56795. [Google Scholar] [CrossRef]
- Liu, Y.; Gilchrist, A.E.; Heilshorn, S.C. Engineered protein hydrogels as biomimetic cellular scaffolds. Adv. Mater. 2024, 36, e2407794. [Google Scholar] [CrossRef]
- López Barreiro, D.; Houben, K.; Schouten, O.; Koenderink, G.H.; Thies, J.C.; Sagt, C.M.J. Order-disorder balance in silk-elastin-like polypeptides determines their self-assembly into hydrogel networks. ACS Appl. Mater. Interfaces 2025, 17, 650–662. [Google Scholar] [CrossRef]
- Ran, C.; Wang, J.; He, Y.; Ren, Q.; Hu, H.; Zhu, J.; Gu, X.; Li, M.; Zheng, L.; Li, J. Recent advances in bioinspired hydrogels with environment-responsive characteristics for biomedical applications. Macromol. Biosci. 2022, 22, e2100474. [Google Scholar] [CrossRef]
- Wen, F.; Wang, Y.; Tu, B.; Cui, L. Superfast gelation of spider silk-based artificial silk protein. Gels 2024, 10, 69. [Google Scholar] [CrossRef]
- Nealy, E.S.; Reed, S.J.; Adelmund, S.M.; Badeau, B.A.; Shadish, J.A.; Girard, E.J.; Brasel, K.; Pakiam, F.J.; Mhyre, A.J.; Price, J.P.; et al. Versatile tissue-injectable hydrogels capable of the extended hydrolytic release of bioactive protein therapeutics. Bioeng. Transl. Med. 2024, 9, e10668. [Google Scholar] [CrossRef]
- Chen, J.; Peng, Q.; Liu, J.; Zeng, H. Mussel-inspired cation-π interactions: Wet adhesion and biomimetic materials. Langmuir 2023, 39, 17600–17610. [Google Scholar] [CrossRef]
- Dura, G.; Waller, H.; Gentile, P.; Lakey, J.H.; Fulton, D.A. Tuneable hydrogels of Caf1 protein fibers. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 93, 88–95. [Google Scholar] [CrossRef]
- Gorb, S.N. Serial elastic elements in the damselfly wing: Mobile vein joints contain resilin. Naturwissenschaften 1999, 86, 552–555. [Google Scholar] [CrossRef]
- Lee, S.; Van Dyke, M.; Kim, M. Recombinant keratin: Comprehensive review of synthesis, hierarchical assembly, properties, and applications. Acta Biomater. 2025, 198, 1–21. [Google Scholar] [CrossRef]
- Sandberg, L.B.; Soskel, N.T.; Leslie, J.G. Elastin structure, biosynthesis, and relation to disease states. N. Engl. J. Med. 1981, 304, 566–579. [Google Scholar] [CrossRef]
- Tytgat, L.; Van Damme, L.; Van Hoorick, J.; Declercq, H.; Thienpont, H.; Ottevaere, H.; Blondeel, P.; Dubruel, P.; Van Vlierberghe, S. Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering. Acta Biomater. 2019, 94, 340–350. [Google Scholar] [CrossRef]
- Zisch, A.H.; Schenk, U.; Schense, J.C.; Sakiyama-Elbert, S.E.; Hubbell, J.A. Covalently conjugated VEGF--fibrin matrices for endothelialization. J. Control. Release 2001, 72, 101–113. [Google Scholar] [CrossRef]
- Roberts, S.; Dzuricky, M.; Chilkoti, A. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett. 2015, 589, 2477–2486. [Google Scholar] [CrossRef]
- Vrhovski, B.; Weiss, A.S. Biochemistry of tropoelastin. Eur. J. Biochem. 1998, 258, 1–18. [Google Scholar] [CrossRef]
- Annabi, N.; Mithieux, S.M.; Boughton, E.A.; Ruys, A.J.; Weiss, A.S.; Dehghani, F. Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. Biomaterials 2009, 30, 4550–4557. [Google Scholar] [CrossRef]
- Meyer, D.E.; Chilkoti, A. Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules 2004, 5, 846–851. [Google Scholar] [CrossRef]
- MacEwan, S.R.; Chilkoti, A. Elastin-like polypeptides: Biomedical applications of tunable biopolymers. Biopolymers 2010, 94, 60–77. [Google Scholar] [CrossRef]
- Bidwell, G.L., 3rd; Fokt, I.; Priebe, W.; Raucher, D. Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. Biochem. Pharmacol. 2007, 73, 620–631. [Google Scholar] [CrossRef]
- Urry, D.W. Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J. Protein Chem. 1988, 7, 1–34. [Google Scholar] [CrossRef]
- Duan, T.; Li, H. In situ phase transition of elastin-Like polypeptide chains regulates thermoresponsive properties of elastomeric protein-based hydrogels. Biomacromolecules 2020, 21, 2258–2267. [Google Scholar] [CrossRef]
- Li, N.K.; García Quiroz, F.; Hall, C.K.; Chilkoti, A.; Yingling, Y.G. Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules 2014, 15, 3522–3530. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, C.; Fossat, M.J.; Ren, P.; Chilkoti, A.; Pappu, R.V. Design of intrinsically disordered proteins that undergo phase transitions with lower critical solution temperatures. APL Mater. 2021, 9, 021119. [Google Scholar] [CrossRef]
- Zhao, B.; Li, N.K.; Yingling, Y.G.; Hall, C.K. LCST behavior is manifested in a single molecule: Elastin-like polypeptide (VPGVG)n. Biomacromolecules 2016, 17, 111–118. [Google Scholar] [CrossRef]
- Appel, E.; Heepe, L.; Lin, C.P.; Gorb, S.N. Ultrastructure of dragonfly wing veins: Composite structure of fibrous material supplemented by resilin. J. Anat. 2015, 227, 561–582. [Google Scholar] [CrossRef]
- Ardell, D.H.; Andersen, S.O. Tentative identification of a resilin gene in Drosophila melanogaster. Insect Biochem. Mol. Biol. 2001, 31, 965–970. [Google Scholar] [CrossRef]
- Elvin, C.M.; Carr, A.G.; Huson, M.G.; Maxwell, J.M.; Pearson, R.D.; Vuocolo, T.; Liyou, N.E.; Wong, D.C.; Merritt, D.J.; Dixon, N.E. Synthesis and properties of crosslinked recombinant pro-resilin. Nature 2005, 437, 999–1002. [Google Scholar] [CrossRef]
- Qin, G.; Rivkin, A.; Lapidot, S.; Hu, X.; Preis, I.; Arinus, S.B.; Dgany, O.; Shoseyov, O.; Kaplan, D.L. Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials 2011, 32, 9231–9243. [Google Scholar] [CrossRef]
- Andersen, S.O. Studies on resilin-like gene products in insects. Insect Biochem. Mol. Biol. 2010, 40, 541–551. [Google Scholar] [CrossRef]
- Su, R.S.; Galas, R.J., Jr.; Lin, C.Y.; Liu, J.C. Redox-responsive resilin-like hydrogels for tissue engineering and drug delivery applications. Macromol. Biosci. 2019, 19, e1900122. [Google Scholar] [CrossRef]
- Lyons, R.E.; Nairn, K.M.; Huson, M.G.; Kim, M.; Dumsday, G.; Elvin, C.M. Comparisons of recombinant resilin-like proteins: Repetitive domains are sufficient to confer resilin-like properties. Biomacromolecules 2009, 10, 3009–3014. [Google Scholar] [CrossRef]
- Li, L.; Luo, T.; Kiick, K.L. Temperature-triggered phase separation of a hydrophilic resilin-like polypeptide. Macromol. Rapid Commun. 2015, 36, 90–95. [Google Scholar] [CrossRef]
- Li, L.; Mahara, A.; Tong, Z.; Levenson, E.A.; McGann, C.L.; Jia, X.; Yamaoka, T.; Kiick, K.L. Recombinant resilin-based bioelastomers for regenerative medicine applications. Adv. Healthc. Mater. 2016, 5, 266–275. [Google Scholar] [CrossRef]
- Cho, Y.; Zhang, Y.; Christensen, T.; Sagle, L.B.; Chilkoti, A.; Cremer, P.S. Effects of Hofmeister anions on the phase transition temperature of elastin-like polypeptides. J. Phys. Chem. B 2008, 112, 13765–13771. [Google Scholar] [CrossRef]
- Meyer, D.E.; Chilkoti, A. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: Examples from the elastin-like polypeptide system. Biomacromolecules 2002, 3, 357–367. [Google Scholar] [CrossRef]
- Kim, M.; Elvin, C.; Brownlee, A.; Lyons, R. High yield expression of recombinant pro-resilin: Lactose-induced fermentation in E. coli and facile purification. Protein Expr. Purif. 2007, 52, 230–236. [Google Scholar] [CrossRef]
- Homma, T.; Terui, S.; Yokoyama, F.; Okino, S.; Ohta, S.; Kato, C.; Haraguchi, N.; Fujisawa, I.; Itsuno, S.; Ang, L.Z.P. Simple production of resilin-like protein hydrogels using the Brevibacillus secretory expression system and column-free purification. Biotechnol. Bioeng. 2023, 120, 194–202. [Google Scholar] [CrossRef]
- Kluge, J.A.; Rabotyagova, O.; Leisk, G.G.; Kaplan, D.L. Spider silks and their applications. Trends Biotechnol. 2008, 26, 244–251. [Google Scholar] [CrossRef]
- DiMarco, R.L.; Heilshorn, S.C. Multifunctional materials through modular protein engineering. Adv. Mater. 2012, 24, 3923–3940. [Google Scholar] [CrossRef]
- Altman, G.H.; Horan, R.L.; Lu, H.H.; Moreau, J.; Martin, I.; Richmond, J.C.; Kaplan, D.L. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 2002, 23, 4131–4141. [Google Scholar] [CrossRef]
- Lee, K.Y.; Kong, S.J.; Park, W.H.; Ha, W.S.; Kwon, I.C. Effect of surface properties on the antithrombogenicity of silk fibroin/S-carboxymethyl kerateine blend films. J. Biomater. Sci. Polym. Ed. 1998, 9, 905–914. [Google Scholar] [CrossRef]
- Scheibel, T. Spider silks: Recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb. Cell Fact. 2004, 3, 14. [Google Scholar] [CrossRef]
- Morita, Y.; Tomita, N.; Aoki, H.; Wakitani, S.; Tamada, Y.; Suguro, T.; Ikeuchi, K. Visco-elastic properties of cartilage tissue regenerated with fibroin sponge. Biomed. Mater. Eng. 2002, 12, 291–298. [Google Scholar]
- Yeo, J.H.; Lee, K.G.; Kim, H.C.; Oh, H.Y.L.; Kim, A.J.; Kim, S.Y. The effects of Pva/chitosan/fibroin (PCF)-blended spongy sheets on wound healing in rats. Biol. Pharm. Bull. 2000, 23, 1220–1223. [Google Scholar] [CrossRef]
- Geng, H.; Zhang, P.; Peng, Q.; Cui, J.; Hao, J.; Zeng, H. Principles of cation-π interactions for engineering mussel-inspired functional materials. Acc. Chem. Res. 2022, 55, 1171–1182. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, B.; Zhou, Y.; Zhou, F.; Liu, W.; Wang, Z. Mussel-inspired hydrogels: From design principles to promising applications. Chem. Soc. Rev. 2020, 49, 3605–3637. [Google Scholar] [CrossRef]
- Yao, L.; Wang, X.; Xue, R.; Xu, H.; Wang, R.; Zhang, L.; Li, S. Comparative analysis of mussel foot protein 3B co-expressed with tyrosinases provides a potential adhesive biomaterial. Int. J. Biol. Macromol. 2022, 195, 229–236. [Google Scholar] [CrossRef]
- Xue, R.; Wang, J.; Huang, W.; Qiu, Y.; Xu, H.; Wang, R.; Li, S. Efficient production of recombinant hybrid mussel proteins with improved adhesion. Int. J. Biol. Macromol. 2025, 289, 139937. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Huang, X.; Chen, Y.; Cheng, J.; Zhan, A. Protein-mediated bioadhesion in marine organisms: A review. Mar. Environ. Res. 2021, 170, 105409. [Google Scholar] [CrossRef]
- Luo, J.; Liu, X.; Yang, Z.; Sun, F. Synthesis of entirely protein-based hydrogels by enzymatic oxidation enabling water-resistant bioadhesion and stem cell encapsulation. ACS Appl. Bio Mater. 2018, 1, 1735–1740. [Google Scholar] [CrossRef]
- Chen, L.; Meng, R.; Qing, R.; Li, W.; Wang, Z.; Hou, Y.; Deng, J.; Pu, W.; Gao, Z.; Wang, B.; et al. Bioinspired robust keratin hydrogels for biomedical applications. Nano Lett. 2022, 22, 8835–8844. [Google Scholar] [CrossRef]
- Van Damme, L.; Blondeel, P.; Van Vlierberghe, S. Reconstructing curves: A bottom-up approach toward adipose tissue regeneration with recombinant biomaterials. Macromol. Biosci. 2024, 24, e2300466. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Fan, D.; Zhu, C.; Deng, J.; Hui, J.; Ma, P. Synthesis and characterization of hyaluronic acid/human-like collagen hydrogels. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 43, 547–554. [Google Scholar] [CrossRef]
- Akhtar, M.F.; Hanif, M.; Ranjha, N.M. Methods of synthesis of hydrogels… A review. Saudi Pharm. J. 2016, 24, 554–559. [Google Scholar] [CrossRef]
- Ali, F.; Khan, I.; Chen, J.; Akhtar, K.; Bakhsh, E.M.; Khan, S.B. Emerging fabrication strategies of hydrogels and its applications. Gels 2022, 8, 205. [Google Scholar] [CrossRef]
- Jeon, J.; Subramani, S.V.; Lee, K.Z.; Jiang, B.; Zhang, F. Microbial synthesis of high-molecular-weight, highly repetitive protein polymers. Int. J. Mol. Sci. 2023, 24, 6416. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E.J.; Zhong, Z. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials 2014, 35, 4969–4985. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Zhang, X.; Xu, J.; Kang, J.; Li, B.; Zhao, B.; Wang, L. Cross-linking methods of the silk protein hydrogel in oral and craniomaxillofacial tissue regeneration. Tissue Eng. Regen. Med. 2024, 21, 529–544. [Google Scholar] [CrossRef]
- Lu, L.; Yuan, S.; Wang, J.; Shen, Y.; Deng, S.; Xie, L.; Yang, Q. The formation mechanism of hydrogels. Curr. Stem Cell Res. Ther. 2018, 13, 490–496. [Google Scholar] [CrossRef]
- Matthew, S.A.L.; Seib, F.P. Silk bioconjugates: From chemistry and concept to application. ACS Biomater. Sci. Eng. 2024, 10, 12–28. [Google Scholar] [CrossRef]
- Shigemitsu, H.; Hamachi, I. Design strategies of stimuli-responsive supramolecular hydrogels relying on structural analyses and cell-mimicking approaches. Acc. Chem. Res. 2017, 50, 740–750. [Google Scholar] [CrossRef]
- Van Hoorick, J.; Tytgat, L.; Dobos, A.; Ottevaere, H.; Van Erps, J.; Thienpont, H.; Ovsianikov, A.; Dubruel, P.; Van Vlierberghe, S. (Photo-)crosslinkable gelatin derivatives for biofabrication applications. Acta Biomater. 2019, 97, 46–73. [Google Scholar] [CrossRef]
- Yadav, N.; Chauhan, M.K.; Chauhan, V.S. Short to ultrashort peptide-based hydrogels as a platform for biomedical applications. Biomater. Sci. 2020, 8, 84–100. [Google Scholar] [CrossRef]
- Zottig, X.; Côté-Cyr, M.; Arpin, D.; Archambault, D.; Bourgault, S. Protein supramolecular structures: From self-assembly to nanovaccine design. Nanomaterials 2020, 10, 1008. [Google Scholar] [CrossRef]
- Bueno, V.B.; Petri, D.F. Xanthan hydrogel films: Molecular conformation, charge density and protein carriers. Carbohydr. Polym. 2014, 101, 897–904. [Google Scholar] [CrossRef]
- Wu, H.; Liu, S.; Xiao, L.; Dong, X.; Lu, Q.; Kaplan, D.L. Injectable and pH-responsive silk nanofiber hydrogels for sustained anticancer drug delivery. ACS Appl. Mater. Interfaces 2016, 8, 17118–17126. [Google Scholar] [CrossRef]
- Jiang, X.; Zheng, L.; Zeng, J.; Wu, H.; Zhang, J. Investigations into the role of non-bond interaction on gelation mechanism of silk fibroin hydrogel. Math. Biosci. Eng. 2021, 18, 4071–4083. [Google Scholar] [CrossRef]
- Tong, S.; Xu, D.P.; Liu, Z.M.; Wang, X.K. Construction and in vitro characterization of three-dimensional silk fibroinchitosan scaffolds. Dent. Mater. J. 2015, 34, 475–484. [Google Scholar] [CrossRef]
- Cohen, N.; Eisenbach, C.D. Molecular mechanics of beta-sheets. ACS Biomater. Sci. Eng. 2020, 6, 1940–1949. [Google Scholar] [CrossRef]
- Davydovich, D.; Urban, M.W. Water accelerated self-healing of hydrophobic copolymers. Nat. Commun. 2020, 11, 5743. [Google Scholar] [CrossRef]
- Zhong, T.; Jiang, Z.; Wang, P.; Bie, S.; Zhang, F.; Zuo, B. Silk fibroin/copolymer composite hydrogels for the controlled and sustained release of hydrophobic/hydrophilic drugs. Int. J. Pharm. 2015, 494, 264–270. [Google Scholar] [CrossRef]
- Landschulz, W.H.; Johnson, P.F.; McKnight, S.L. The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science 1988, 240, 1759–1764. [Google Scholar] [CrossRef]
- Petka, W.A.; Harden, J.L.; McGrath, K.P.; Wirtz, D.; Tirrell, D.A. Reversible hydrogels from self-assembling artificial proteins. Science 1998, 281, 389–392. [Google Scholar] [CrossRef]
- Huerta-López, C.; Alegre-Cebollada, J. Protein Hydrogels: The swiss army knife for enhanced mechanical and bioactive properties of biomaterials. Nanomaterials 2021, 11, 1656. [Google Scholar] [CrossRef]
- Cao, Y.; Li, H. Engineering tandem modular protein based reversible hydrogels. Chem. Commun. 2008, 21, 4144–4146. [Google Scholar] [CrossRef]
- Xu, C.; Kopecek, J. Genetically engineered block copolymers: Influence of the length and structure of the coiled-coil blocks on hydrogel self-assembly. Pharm. Res. 2008, 25, 674–682. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, K.; Kornfield, J.A.; Tirrell, D.A. Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat. Mater. 2006, 5, 153–158. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, H.; Chen, H.; Ling, Y.; Xi, Z.; Lv, M.; Chen, J. pH-responsive nanocomposite hydrogel for simultaneous prevention of postoperative adhesion and tumor recurrence. Acta Biomater. 2023, 158, 228–238. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Chen, C.; Cheng, Y. Magnetic-responsive hydrogels: From strategic design to biomedical applications. J. Control. Release 2021, 335, 541–556. [Google Scholar] [CrossRef]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef]
- Wychowaniec, J.K.; Brougham, D.F. Emerging magnetic fabrication technologies provide controllable hierarchically-structured biomaterials and stimulus response for biomedical applications. Adv. Sci. 2022, 9, e2202278. [Google Scholar] [CrossRef]
- Conte, M.P.; Sahoo, J.K.; Abul-Haija, Y.M.; Lau, K.H.A.; Ulijn, R.V. Biocatalytic self-assembly on magnetic nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 3069–3075. [Google Scholar] [CrossRef]
- Bulutoglu, B.; Yang, S.J.; Banta, S. Conditional network assembly and targeted protein retention via environmentally responsive, engineered β-Roll peptides. Biomacromolecules 2017, 18, 2139–2145. [Google Scholar] [CrossRef]
- Lin, C.; Hu, Y.; Lin, Z.; Du, L.; Hu, Y.; Ouyang, L.; Xie, X.; Cheng, P.; Liao, J.; Lu, L.; et al. MMP-9 responsive hydrogel promotes diabetic wound healing by suppressing ferroptosis of endothelial cells. Bioact. Mater. 2025, 43, 240–254. [Google Scholar] [CrossRef]
- Ehrick, J.D.; Deo, S.K.; Browning, T.W.; Bachas, L.G.; Madou, M.J.; Daunert, S. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat. Mater. 2005, 4, 298–302. [Google Scholar] [CrossRef]
- Dooley, K.; Bulutoglu, B.; Banta, S. Doubling the cross-linking interface of a rationally designed beta roll peptide for calcium-dependent proteinaceous hydrogel formation. Biomacromolecules 2014, 15, 3617–3624. [Google Scholar] [CrossRef]
- Yuan, W.; Yang, J.; Kopecková, P.; Kopecek, J. Smart hydrogels containing adenylate kinase: Translating substrate recognition into macroscopic motion. J. Am. Chem. Soc. 2008, 130, 15760–15761. [Google Scholar] [CrossRef]
- Macias, M.J.; Gervais, V.; Civera, C.; Oschkinat, H. Structural analysis of WW domains and design of a WW prototype. Nat. Struct. Biol. 2000, 7, 375–379. [Google Scholar] [CrossRef]
- Wong Po Foo, C.T.; Lee, J.S.; Mulyasasmita, W.; Parisi-Amon, A.; Heilshorn, S.C. Two-component protein-engineered physical hydrogels for cell encapsulation. Proc. Natl. Acad. Sci. USA 2009, 106, 22067–22072. [Google Scholar] [CrossRef]
- Grove, T.Z.; Osuji, C.O.; Forster, J.D.; Dufresne, E.R.; Regan, L. Stimuli-responsive smart gels realized via modular protein design. J. Am. Chem. Soc. 2010, 132, 14024–14026. [Google Scholar] [CrossRef]
- Lu, H.D.; Charati, M.B.; Kim, I.L.; Burdick, J.A. Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism. Biomaterials 2012, 33, 2145–2153. [Google Scholar] [CrossRef]
- Lu, H.D.; Soranno, D.E.; Rodell, C.B.; Kim, I.L.; Burdick, J.A. Secondary photocrosslinking of injectable shear-thinning dock-and-lock hydrogels. Adv. Healthc. Mater. 2013, 2, 1028–1036. [Google Scholar] [CrossRef]
- Topp, S.; Prasad, V.; Cianci, G.C.; Weeks, E.R.; Gallivan, J.P. A genetic toolbox for creating reversible Ca2+-sensitive materials. J. Am. Chem. Soc. 2006, 128, 13994–13995. [Google Scholar] [CrossRef]
- Choi, J.; McGill, M.; Raia, N.R.; Hasturk, O.; Kaplan, D.L. Silk hydrogels crosslinked by the fenton reaction. Adv. Healthc. Mater. 2019, 8, e1900644. [Google Scholar] [CrossRef]
- Tran, H.A.; Maraldo, A.; Ho, T.T.; Thai, M.T.; van Hilst, Q.; Joukhdar, H.; Kordanovski, M.; Sahoo, J.K.; Hartsuk, O.; Santos, M.; et al. Probing the interplay of protein self-assembly and covalent bond formation in photo-crosslinked silk fibroin hydrogels. Small 2025, 21, e2407923. [Google Scholar] [CrossRef]
- Tang, L.; Dang, Y.; Wang, Y.; Zhang, Y.; Hu, T.; Ding, C.; Wu, H.; Ni, Y.; Chen, L.; Huang, L.; et al. Rapid fabrication of bionic pyrogallol-based self-adhesive hydrogel with mechanically tunable, self-healing, antibacterial, wound healing, and hemostatic properties. Biomater. Adv. 2022, 136, 212765. [Google Scholar] [CrossRef]
- Zhao, K.; Li, B.; Sun, Y.; Jia, B.; Chen, J.; Cheng, W.; Zhao, L.; Li, J.; Wang, F.; Su, J.; et al. Engineered bicomponent adhesives with instantaneous and superior adhesion performance for wound sealing and healing applications. Adv. Funct. Mater. 2023, 33, 2303509. [Google Scholar] [CrossRef]
- McGann, C.L.; Dumm, R.E.; Jurusik, A.K.; Sidhu, I.; Kiick, K.L. Thiol-ene photocrosslinking of cytocompatible resilin-like polypeptide-PEG hydrogels. Macromol. Biosci. 2016, 16, 129–138. [Google Scholar] [CrossRef]
- Yang, G.; Lu, Y.; Bomba, H.N.; Gu, Z. Cysteine-rich proteins for drug delivery and diagnosis. Curr. Med. Chem. 2019, 26, 1377–1388. [Google Scholar] [CrossRef]
- Tang, S.; Glassman, M.J.; Li, S.; Socrate, S.; Olsen, B.D. Oxidatively responsive chain extension to entangle engineered protein hydrogels. Macromolecules 2014, 47, 791–799. [Google Scholar] [CrossRef]
- Farajollahi, S.; Dennis, P.B.; Crosby, M.G.; Slocik, J.M.; Pelton, A.T.; Hampton, C.M.; Drummy, L.F.; Yang, S.J.; Silberstein, M.N.; Gupta, M.K.; et al. Disulfide crosslinked hydrogels made from the hydra stinging cell protein, Minicollagen-1. Front. Chem. 2019, 7, 950. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Liu, Q.; Sun, J.; Tao, C.; Jia, B.; Sun, X.; Zhang, H.; Liu, K.; Wang, F. Engineered multifunctional artificial dermis for infected burn wound healing. Adv. Funct. Mater. 2024, 35, 2415514. [Google Scholar] [CrossRef]
- Yamauchi, M.; Taga, Y.; Hattori, S.; Shiiba, M.; Terajima, M. Analysis of collagen and elastin cross-links. Methods Cell Biol. 2018, 143, 115–132. [Google Scholar] [CrossRef]
- Partlow, B.P.; Hanna, C.W.; Rnjak-Kovacina, J.; Moreau, J.E.; Applegate, M.B.; Burke, K.A.; Marelli, B.; Mitropoulos, A.N.; Omenetto, F.G.; Kaplan, D.L. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 2014, 24, 4615–4624. [Google Scholar] [CrossRef]
- Pierantoni, L.; Ribeiro, V.P.; Costa, L.; Pina, S.; da Silva Morais, A.; Silva-Correia, J.; Kundu, S.C.; Motta, A.; Reis, R.L.; Oliveira, J.M. Horseradish peroxidase-crosslinked calcium-containing silk fibroin hydrogels as artificial matrices for bone cancer research. Macromol. Biosci. 2021, 21, e2000425. [Google Scholar] [CrossRef]
- Sahoo, J.K.; Choi, J.; Hasturk, O.; Laubach, I.; Descoteaux, M.L.; Mosurkal, S.; Wang, B.; Zhang, N.; Kaplan, D.L. Silk degumming time controls horseradish peroxidase-catalyzed hydrogel properties. Biomater. Sci. 2020, 8, 4176–4185. [Google Scholar] [CrossRef]
- Wang, W.; Sun, Z.; Xiao, Y.; Wang, M.; Wang, J.; Guo, C. Silk acid-tyramine hydrogels with rapid gelation properties for 3D cell culture. Acta Biomater. 2024, 187, 138–148. [Google Scholar] [CrossRef]
- Zakeri, B. Synthetic biology: A new tool for the trade. ChemBioChem 2015, 16, 2277–2282. [Google Scholar] [CrossRef]
- Ehrbar, M.; Rizzi, S.C.; Schoenmakers, R.G.; Miguel, B.S.; Hubbell, J.A.; Weber, F.E.; Lutolf, M.P. Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 2007, 8, 3000–3007. [Google Scholar] [CrossRef]
- Hu, B.H.; Messersmith, P.B. Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels. J. Am. Chem. Soc. 2003, 125, 14298–14299. [Google Scholar] [CrossRef]
- Stanfield, R.L.; Wilson, I.A. Protein-peptide interactions. Curr. Opin. Struct. Biol. 1995, 5, 103–113. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, W.B.; Mahdavi, A.; Arnold, F.H.; Tirrell, D.A. Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proc. Natl. Acad. Sci. USA 2014, 111, 11269–11274. [Google Scholar] [CrossRef]
- Zakeri, B.; Fierer, J.O.; Celik, E.; Chittock, E.C.; Schwarz-Linek, U.; Moy, V.T.; Howarth, M. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl. Acad. Sci. USA 2012, 109, E690–E697. [Google Scholar] [CrossRef]
- Ramirez, M.A.; Chen, Z. Synthesis of an intein-mediated artificial protein hydrogel. J. Vis. Exp. 2014, 27, e51202. [Google Scholar] [CrossRef]
- Jian, G.; Li, D.; Ying, Q.; Chen, X.; Zhai, Q.; Wang, S.; Mei, L.; Cannon, R.D.; Ji, P.; Liu, W.; et al. Dual photo-enhanced interpenetrating network hydrogel with biophysical and biochemical signals for infected bone defect healing. Adv. Healthc. Mater. 2023, 12, e2300469. [Google Scholar] [CrossRef]
- Zoratto, N.; Matricardi, P. Semi-IPN- and IPN-based hydrogels. Adv. Exp. Med. Biol. 2018, 1059, 155–188. [Google Scholar] [CrossRef]
- Park, S.; Edwards, S.; Hou, S.; Boudreau, R.; Yee, R.; Jeong, K.J. A multi-interpenetrating network (IPN) hydrogel with gelatin and silk fibroin. Biomater. Sci. 2019, 7, 1276–1280. [Google Scholar] [CrossRef]
- Hou, X.; Lin, L.; Li, K.; Jiang, F.; Qiao, D.; Zhang, B.; Xie, F. Towards superior biopolymer gels by enabling interpenetrating network structures: A review on types, applications, and gelation strategies. Adv. Colloid Interface Sci. 2024, 325, 103113. [Google Scholar] [CrossRef]
- Vorwald, C.E.; Gonzalez-Fernandez, T.; Joshee, S.; Sikorski, P.; Leach, J.K. Tunable fibrin-alginate interpenetrating network hydrogels to support cell spreading and network formation. Acta Biomater. 2020, 108, 142–152. [Google Scholar] [CrossRef]
- Zhang, Y.; Heher, P.; Hilborn, J.; Redl, H.; Ossipov, D.A. Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications. Acta Biomater. 2016, 38, 23–32. [Google Scholar] [CrossRef]
- Anand, R.; Salar Amoli, M.; Huysecom, A.S.; Amorim, P.A.; Agten, H.; Geris, L.; Bloemen, V. A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing. Biomed. Mater. 2022, 17, 045027. [Google Scholar] [CrossRef]
- Li, W.; Wu, D.; Hu, D.; Zhu, S.; Pan, C.; Jiao, Y.; Li, L.; Luo, B.; Zhou, C.; Lu, L. Stress-relaxing double-network hydrogel for chondrogenic differentiation of stem cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110333. [Google Scholar] [CrossRef]
- Madaghiele, M.; Marotta, F.; Demitri, C.; Montagna, F.; Maffezzoli, A.; Sannino, A. Development of semi- and grafted interpenetrating polymer networks based on poly(ethylene glycol) diacrylate and collagen. J. Appl. Biomater. Funct. Mater. 2014, 12, 183–192. [Google Scholar] [CrossRef]
- Mirazul Islam, M.; Cėpla, V.; He, C.; Edin, J.; Rakickas, T.; Kobuch, K.; Ruželė, Ž.; Bruce Jackson, W.; Rafat, M.; Lohmann, C.P.; et al. Functional fabrication of recombinant human collagen-phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomater. 2015, 12, 70–80. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Ahearne, M. Silk fibroin based interpenetrating network hydrogel for corneal stromal regeneration. Int. J. Biol. Macromol. 2022, 223, 583–594. [Google Scholar] [CrossRef]
- Sedighi, M.; Shrestha, N.; Mahmoudi, Z.; Khademi, Z.; Ghasempour, A.; Dehghan, H.; Talebi, S.F.; Toolabi, M.; Préat, V.; Chen, B.; et al. Multifunctional self-assembled peptide hydrogels for biomedical applications. Polymers 2023, 15, 1160. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, C.; Jia, P.; Song, L.; Kang, J.; Han, M.; Yu, W.; Nian, R. Novelin situand rapid self-gelation recombinant collagen-like protein hydrogel for wound regeneration: Mediated by metal coordination crosslinking and reinforced by electro-oxidized tea polyphenols. Biofabrication 2024, 17, 015027. [Google Scholar] [CrossRef]
- Bai, Y.; Luo, Q.; Liu, J. Protein self-assembly via supramolecular strategies. Chem. Soc. Rev. 2016, 45, 2756–2767. [Google Scholar] [CrossRef]
- Fichman, G.; Guterman, T.; Damron, J.; Adler-Abramovich, L.; Schmidt, J.; Kesselman, E.; Shimon, L.J.; Ramamoorthy, A.; Talmon, Y.; Gazit, E. Spontaneous structural transition and crystal formation in minimal supramolecular polymer model. Sci. Adv. 2016, 2, e1500827. [Google Scholar] [CrossRef]
- Acar, H.; Srivastava, S.; Chung, E.J.; Schnorenberg, M.R.; Barrett, J.C.; LaBelle, J.L.; Tirrell, M. Self-assembling peptide-based building blocks in medical applications. Adv. Drug Deliv. Rev. 2017, 110–111, 65–79. [Google Scholar] [CrossRef]
- De Santis, E.; Ryadnov, M.G. Peptide self-assembly for nanomaterials: The old new kid on the block. Chem. Soc. Rev. 2015, 44, 8288–8300. [Google Scholar] [CrossRef]
- Hilderbrand, A.M.; Ford, E.M.; Guo, C.; Sloppy, J.D.; Kloxin, A.M. Hierarchically structured hydrogels utilizing multifunctional assembling peptides for 3D cell culture. Biomater. Sci. 2020, 8, 1256–1269. [Google Scholar] [CrossRef]
- Stephanopoulos, N.; Ortony, J.H.; Stupp, S.I. Self-assembly for the synthesis of functional biomaterials. Acta Mater. 2013, 61, 912–930. [Google Scholar] [CrossRef]
- Thiruvengadathan, R.; Korampally, V.; Ghosh, A.; Chanda, N.; Gangopadhyay, K.; Gangopadhyay, S. Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. Rep. Prog. Phys. 2013, 76, 066501. [Google Scholar] [CrossRef]
- Adak, A.; Castelletto, V.; de Sousa, A.; Karatzas, K.A.; Wilkinson, C.; Khunti, N.; Seitsonen, J.; Hamley, I.W. Self-assembly and antimicrobial activity of lipopeptides containing lysine-rich tripeptides. Biomacromolecules 2024, 25, 1205–1213. [Google Scholar] [CrossRef]
- Castelletto, V.; Edwards-Gayle, C.J.C.; Greco, F.; Hamley, I.W.; Seitsonen, J.; Ruokolainen, J. Self-assembly, tunable hydrogel properties, and selective anti-cancer activity of a carnosine-derived lipidated peptide. ACS Appl. Mater. Interfaces 2019, 11, 33573–33580. [Google Scholar] [CrossRef]
- Castelletto, V.; Kaur, A.; Kowalczyk, R.M.; Hamley, I.W.; Reza, M.; Ruokolainen, J. Supramolecular hydrogel formation in a series of self-assembling lipopeptides with varying lipid chain length. Biomacromolecules 2017, 18, 2013–2023. [Google Scholar] [CrossRef]
- Hamley, I.W. Lipopeptides: From self-assembly to bioactivity. Chem. Commun. 2015, 51, 8574–8583. [Google Scholar] [CrossRef]
- Rosa, E.; de Mello, L.; Castelletto, V.; Dallas, M.L.; Accardo, A.; Seitsonen, J.; Hamley, I.W. Cell adhesion motif-functionalized lipopeptides: Nanostructure and selective myoblast cytocompatibility. Biomacromolecules 2023, 24, 213–224. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, X.; Sun, S.; Zhao, C.; Shi, L.; Cheng, H.; Liu, Y.; Shi, C.; Ao, X. Vascular endothelial growth factor-mimetic peptide and mitochondria-targeted antioxidant-loaded hydrogel system improves repair of myocardial infarction in mice. J. Biomed. Mater. Res. A 2025, 113, e37924. [Google Scholar] [CrossRef]
- Liu, W.; Wong-Noonan, S.; Pham, N.B.; Pradhan, I.; Spigelmyer, A.; Funk, R.; Nedzesky, J.; Cohen, H.; Gawalt, E.S.; Fan, Y.; et al. A genetically engineered Fc-binding amphiphilic polypeptide for congregating antibodies in vivo. Acta Biomater. 2019, 88, 211–223. [Google Scholar] [CrossRef]
- Chen, J.X.; Wang, H.Y.; Li, C.; Han, K.; Zhang, X.Z.; Zhuo, R.X. Construction of surfactant-like tetra-tail amphiphilic peptide with RGD ligand for encapsulation of porphyrin for photodynamic therapy. Biomaterials 2011, 32, 1678–1684. [Google Scholar] [CrossRef]
- Bawa, R.; Fung, S.Y.; Shiozaki, A.; Yang, H.; Zheng, G.; Keshavjee, S.; Liu, M. Self-assembling peptide-based nanoparticles enhance cellular delivery of the hydrophobic anticancer drug ellipticine through caveolae-dependent endocytosis. Nanomedicine 2012, 8, 647–654. [Google Scholar] [CrossRef]
- Gelain, F.; Luo, Z.; Zhang, S. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem. Rev. 2020, 120, 13434–13460. [Google Scholar] [CrossRef]
- Zhou, B.; Xing, L.; Wu, W.; Zhang, X.E.; Lin, Z. Small surfactant-like peptides can drive soluble proteins into active aggregates. Microb. Cell Fact. 2012, 11, 10. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, X.; Feng, F.; Xu, J.; Wu, C.; Dai, G.; Yue, W.; Zhong, W.; Xu, K. Molecular design of peptide amphiphiles for controlled self-assembly and drug release. J. Mater. Chem. B 2021, 9, 3326–3334. [Google Scholar] [CrossRef]
- Cappelletti, D.; Lancia, F.; Basagni, A.; Đorđević, L. ATP-regulated formation of transient peptide amphiphiles superstructures. Small 2025, 21, e2410850. [Google Scholar] [CrossRef]
- Mei, L.; He, S.; Zhang, L.; Xu, K.; Zhong, W. Supramolecular self-assembly of fluorescent peptide amphiphiles for accurate and reversible pH measurement. Org. Biomol. Chem. 2019, 17, 939–944. [Google Scholar] [CrossRef]
- Hüttl, C.; Hettrich, C.; Miller, R.; Paulke, B.R.; Henklein, P.; Rawel, H.; Bier, F.F. Self-assembled peptide amphiphiles function as multivalent binder with increased hemagglutinin affinity. BMC Biotechnol. 2013, 13, 51. [Google Scholar] [CrossRef]
- Chang, R.; Subramanian, K.; Wang, M.; Webster, T.J. Enhanced antibacterial properties of self-assembling peptide amphiphiles functionalized with heparin-binding cardin-motifs. ACS Appl. Mater. Interfaces 2017, 9, 22350–22360. [Google Scholar] [CrossRef]
- Redondo-Gómez, C.; Padilla-Lopátegui, S.; Mata, A.; Azevedo, H.S. Peptide amphiphile hydrogels based on homoternary cucurbit[8]uril Host-Guest Complexes. Bioconjug. Chem. 2022, 33, 111–120. [Google Scholar] [CrossRef]
- Gao, M.; Chang, R.; Wang, D.; Li, Y.; Sun, L.; Lustig, S.R.; Webster, T.J. Short communication: Fructose-enhanced antibacterial activity of self-assembled nano-peptide amphiphiles for treating antibiotic-resistant bacteria. Int. J. Nanomed. 2020, 15, 513–519. [Google Scholar] [CrossRef]
- Sasselli, I.R.; Syrgiannis, Z.; Sather, N.A.; Palmer, L.C.; Stupp, S.I. Modeling interactions within and between peptide amphiphile supramolecular filaments. J. Phys. Chem. B 2022, 126, 650–659. [Google Scholar] [CrossRef]
- Castelletto, V.; Seitsonen, J.; Ruokolainen, J.; Piras, C.; Cramer, R.; Edwards-Gayle, C.J.C.; Hamley, I.W. Peptide nanotubes self-assembled from leucine-rich alpha helical surfactant-like peptides. Chem. Commun. 2020, 56, 11977–11980. [Google Scholar] [CrossRef]
- Castelletto, V.; Barnes, R.H.; Karatzas, K.A.; Edwards-Gayle, C.J.C.; Greco, F.; Hamley, I.W.; Rambo, R.; Seitsonen, J.; Ruokolainen, J. Arginine-containing surfactant-like peptides: Interaction with lipid membranes and antimicrobial activity. Biomacromolecules 2018, 19, 2782–2794. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, S. Fabrication of molecular materials using peptide construction motifs. Trends Biotechnol. 2004, 22, 470–476. [Google Scholar] [CrossRef]
- Hamley, I.W.; Castelletto, V.; Dehsorkhi, A.; Torras, J.; Aleman, C.; Portnaya, I.; Danino, D. The conformation and aggregation of proline-rich surfactant-like peptides. J. Phys. Chem. B 2018, 122, 1826–1835. [Google Scholar] [CrossRef]
- Peng, F.; Chen, Y.; Liu, J.; Xing, Z.; Fan, J.; Zhang, W.; Qiu, F. Facile design of gemini surfactant-like peptide for hydrophobic drug delivery and antimicrobial activity. J. Colloid Interface Sci. 2021, 591, 314–325. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, C.; Zhang, J.; Gong, M.; Su, B.; Qiu, F. Self-assembling surfactant-like peptide A6K as potential delivery system for hydrophobic drugs. Int. J. Nanomed. 2015, 10, 847–858. [Google Scholar] [CrossRef]
- Vauthey, S.; Santoso, S.; Gong, H.; Watson, N.; Zhang, S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. USA 2002, 99, 5355–5360. [Google Scholar] [CrossRef]
- Castelletto, V.; Seitsonen, J.; de Mello, L.R.; Hamley, I.W. Interaction of arginine-rich surfactant-like peptide nanotubes with liposomes. Biomacromolecules 2024, 25, 7410–7420. [Google Scholar] [CrossRef]
- Ganesan, V.; Priya, M.H. Revealing the key packing features determining the stability of peptide bilayer membrane. ACS Appl. Bio Mater. 2024, 7, 564–578. [Google Scholar] [CrossRef]
- Huang, W.; Tarakanova, A.; Dinjaski, N.; Wang, Q.; Xia, X.; Chen, Y.; Wong, J.Y.; Buehler, M.J.; Kaplan, D.L. Design of multistimuli responsive hydrogels using integrated modeling and genetically engineered silk-elastin-like proteins. Adv. Funct. Mater. 2016, 26, 4113–4123. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, Y.; Zhu, Y.; Zhao, J.; Ren, K.; Lu, Z.; Li, J.; Hao, Z. Stimuli-responsive protein hydrogels: Their design, properties, and biomedical applications. Polymers 2023, 15, 4652. [Google Scholar] [CrossRef]
- Thambi, T.; Jung, J.M.; Lee, D.S. Recent strategies to develop pH-sensitive injectable hydrogels. Biomater. Sci. 2023, 11, 1948–1961. [Google Scholar] [CrossRef]
- Burdick, J.A.; Murphy, W.L. Moving from static to dynamic complexity in hydrogel design. Nat. Commun. 2012, 3, 1269. [Google Scholar] [CrossRef]
- Cheng, C.; Sun, Q.; Wang, X.; He, B.; Jiang, T. Enzyme-manipulated hydrogelation of small molecules for biomedical applications. Acta Biomater. 2022, 151, 88–105. [Google Scholar] [CrossRef]
- El-Husseiny, H.M.; Mady, E.A.; Hamabe, L.; Abugomaa, A.; Shimada, K.; Yoshida, T.; Tanaka, T.; Yokoi, A.; Elbadawy, M.; Tanaka, R. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater. Today Bio 2022, 13, 100186. [Google Scholar] [CrossRef]
- Sun, M.; Shi, Y.; Lei, B.; Zhang, W.; Feng, J.; Ge, S.; Yuan, W.; Zhao, K. A pH-triggered self-releasing humic acid hydrogel loaded with porcine interferon α/γ achieves anti-pseudorabies virus effects by oral administration. Vet. Res. 2024, 55, 153. [Google Scholar] [CrossRef]
- Mithieux, S.M.; Tu, Y.; Korkmaz, E.; Braet, F.; Weiss, A.S. In situ polymerization of tropoelastin in the absence of chemical cross-linking. Biomaterials 2009, 30, 431–435. [Google Scholar] [CrossRef]
- Hollingshead, S.; Liu, J.C. pH-sensitive mechanical properties of elastin-based hydrogels. Macromol. Biosci. 2020, 20, e1900369. [Google Scholar] [CrossRef]
- Meco, E.; Lampe, K.J. Impact of elastin-like protein temperature transition on PEG-ELP hybrid hydrogel properties. Biomacromolecules 2019, 20, 1914–1925. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Mashimo, Y.; Mie, M.; Kobatake, E. Temperature-responsive multifunctional protein hydrogels with elastin-like polypeptides for 3-D angiogenesis. Biomacromolecules 2020, 21, 1126–1135. [Google Scholar] [CrossRef]
- Hemalatha, T.; Aarthy, M.; Sundarapandiyan, A.; Ayyadurai, N. Bioengineered silk fibroin hydrogel reinforced with collagen-like protein chimeras for improved wound healing. Macromol. Biosci. 2025, 25, e2400346. [Google Scholar] [CrossRef]
- Narayan, O.P.; Mu, X.; Hasturk, O.; Kaplan, D.L. Dynamically tunable light responsive silk-elastin-like proteins. Acta Biomater. 2021, 121, 214–223. [Google Scholar] [CrossRef]
- Cool, S.K.; Geers, B.; Roels, S.; Stremersch, S.; Vanderperren, K.; Saunders, J.H.; De Smedt, S.C.; Demeester, J.; Sanders, N.N. Coupling of drug containing liposomes to microbubbles improves ultrasound triggered drug delivery in mice. J. Control. Release 2013, 172, 885–893. [Google Scholar] [CrossRef]
- Westhaus, E.; Messersmith, P.B. Triggered release of calcium from lipid vesicles: A bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels. Biomaterials 2001, 22, 453–462. [Google Scholar] [CrossRef]
- Yan, F.; Li, L.; Deng, Z.; Jin, Q.; Chen, J.; Yang, W.; Yeh, C.K.; Wu, J.; Shandas, R.; Liu, X.; et al. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J. Control. Release 2013, 166, 246–255. [Google Scholar] [CrossRef]
- Nele, V.; Schutt, C.E.; Wojciechowski, J.P.; Kit-Anan, W.; Doutch, J.J.; Armstrong, J.P.K.; Stevens, M.M. Ultrasound-triggered enzymatic gelation. Adv. Mater. 2020, 32, e1905914. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Meng, C.; Xie, X.; Cui, W.; Zuo, K. Tissue-penetrating ultrasound-triggered hydrogel for promoting microvascular network reconstruction. Adv. Sci. 2024, 11, e2401368. [Google Scholar] [CrossRef]
- Ahmadi, Z.; Yadav, S.; Kar, A.K.; Jha, D.; Gautam, H.K.; Patnaik, S.; Kumar, P.; Sharma, A.K. An injectable self-assembling hydrogel based on RGD peptidomimetic β-sheets as multifunctional biomaterials. Biomater. Adv. 2022, 133, 112633. [Google Scholar] [CrossRef]
- Roy, T.; James, B.D.; Allen, J.B. Anti-VEGF-R2 aptamer and RGD peptide synergize in a bifunctional hydrogel for enhanced angiogenic potential. Macromol. Biosci. 2021, 21, e2000337. [Google Scholar] [CrossRef]
- Xu, J.; Liu, X.; Liang, P.; Yuan, H.; Yang, T. In situ preparation of tannic acid-modified poly(N-isopropylacrylamide) hydrogel coatings for boosting cell response. Pharmaceutics 2024, 16, 538. [Google Scholar] [CrossRef]
- Fisher, S.A.; Baker, A.E.G.; Shoichet, M.S. Designing peptide and protein modified hydrogels: Selecting the optimal conjugation strategy. J. Am. Chem. Soc. 2017, 139, 7416–7427. [Google Scholar] [CrossRef]
- Saha, S.; Banskota, S.; Roberts, S.; Kirmani, N.; Chilkoti, A. Engineering the architecture of elastin-like polypeptides: From unimers to hierarchical self-assembly. Adv. Ther. 2020, 3, 1900164. [Google Scholar] [CrossRef]
- Shen, Y.; Levin, A.; Kamada, A.; Toprakcioglu, Z.; Rodriguez-Garcia, M.; Xu, Y.; Knowles, T.P.J. From protein building blocks to functional materials. ACS Nano 2021, 15, 5819–5837. [Google Scholar] [CrossRef]
- Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 2012, 336, 1124–1128. [Google Scholar] [CrossRef]
- Wang, H.; Heilshorn, S.C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 2015, 27, 3717–3736. [Google Scholar] [CrossRef]
- Carrico, I.S.; Maskarinec, S.A.; Heilshorn, S.C.; Mock, M.L.; Liu, J.C.; Nowatzki, P.J.; Franck, C.; Ravichandran, G.; Tirrell, D.A. Lithographic patterning of photoreactive cell-adhesive proteins. J. Am. Chem. Soc. 2007, 129, 4874–4875. [Google Scholar] [CrossRef]
- Madl, C.M.; Heilshorn, S.C. Tyrosine-selective functionalization for bio-orthogonal cross-linking of engineered protein hydrogels. Bioconjug. Chem. 2017, 28, 724–730. [Google Scholar] [CrossRef]
- Falcucci, T.; Radke, M.; Sahoo, J.K.; Hasturk, O.; Kaplan, D.L. Multifunctional silk vinyl sulfone-based hydrogel scaffolds for dynamic material-cell interactions. Biomaterials 2023, 300, 122201. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, Y.; Tang, Z.; Luo, Z.; Li, D.; Wang, Q.; Zhang, X. The negatively charged microenvironment of collagen hydrogels regulates the chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J. Mater. Chem. B 2020, 8, 4680–4693. [Google Scholar] [CrossRef]
- Ibrahimova, V.; González-Delgado, J.A.; Levêque, M.; Torres, T.; Garanger, E.; Lecommandoux, S. Photooxidation responsive elastin-like polypeptide conjugates for photodynamic therapy application. Bioconjug. Chem. 2021, 32, 1719–1728. [Google Scholar] [CrossRef]
- Hammer, N.; Brandl, F.P.; Kirchhof, S.; Goepferich, A.M. Cleavable carbamate linkers for controlled protein delivery from hydrogels. J. Control. Release 2014, 183, 67–76. [Google Scholar] [CrossRef]
- Mehta, G.; Williams, C.M.; Alvarez, L.; Lesniewski, M.; Kamm, R.D.; Griffith, L.G. Synergistic effects of tethered growth factors and adhesion ligands on DNA synthesis and function of primary hepatocytes cultured on soft synthetic hydrogels. Biomaterials 2010, 31, 4657–4671. [Google Scholar] [CrossRef]
- Cambria, E.; Renggli, K.; Ahrens, C.C.; Cook, C.D.; Kroll, C.; Krueger, A.T.; Imperiali, B.; Griffith, L.G. Covalent modification of synthetic hydrogels with bioactive proteins via sortase-mediated ligation. Biomacromolecules 2015, 16, 2316–2326. [Google Scholar] [CrossRef]
- Seliktar, D.; Zisch, A.H.; Lutolf, M.P.; Wrana, J.L.; Hubbell, J.A. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J. Biomed. Mater. Res. A 2004, 68, 704–716. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, W.; Guo, M.; Zhang, X.; Zhang, Q.; Peng, F.; Yan, L.; Hu, Z.; Tangthianchaichana, J.; Shen, Y.; et al. MMP-2 responsive peptide hydrogel-based nanoplatform for multimodal tumor therapy. Int. J. Nanomed. 2024, 19, 53–71. [Google Scholar] [CrossRef]
- Xie, Z.; Jiang, W.; Liu, H.; Chen, L.; Xuan, C.; Wang, Z.; Shi, X.; Lin, Z.; Gao, X. Antimicrobial peptide- and dentin matrix-functionalized hydrogel for vital pulp therapy via synergistic bacteriostasis, immunomodulation, and dentinogenesis. Adv. Healthc. Mater. 2024, 13, e2303709. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, D.; Li, Y.; Zhou, X.; Hui, Z.; Lei, X.; Qiu, L.; Bai, Y.; Wang, C.; Xia, J.; et al. Collagen hydrogel with multiple antimicrobial mechanisms as anti-bacterial wound dressing. Int. J. Biol. Macromol. 2023, 232, 123413. [Google Scholar] [CrossRef]
- Sundaran, S.; Kok, L.C.; Chang, H.Y. Fabrication andin vitroevaluation of photo cross-linkable silk fibroin-epsilon-poly-L-lysine hydrogel for wound repair. Biomed. Mater. 2023, 18, 055021. [Google Scholar] [CrossRef]
- Li, X.; Yi, M.; Song, Z.; Ni, T.; Tu, L.; Yu, M.; Zhang, L.; Shi, J.; Gao, W.; Zhang, Q.; et al. A calcitonin gene-related peptide co-crosslinked hydrogel promotes diabetic wound healing by regulating M2 macrophage polarization and angiogenesis. Acta Biomater. 2025, 196, 109–122. [Google Scholar] [CrossRef]
- Nam, K.; Maruyama, C.L.; Wang, C.S.; Trump, B.G.; Lei, P.; Andreadis, S.T.; Baker, O.J. Laminin-111-derived peptide conjugated fibrin hydrogel restores salivary gland function. PLoS ONE 2017, 12, e0187069. [Google Scholar] [CrossRef]
- Aregueta-Robles, U.A.; Martens, P.J.; Poole-Warren, L.A.; Green, R.A. Tissue engineered hydrogels supporting 3D neural networks. Acta Biomater. 2019, 95, 269–284. [Google Scholar] [CrossRef]
- Chambre, L.; Martín-Moldes, Z.; Parker, R.N.; Kaplan, D.L. Bioengineered elastin- and silk-biomaterials for drug and gene delivery. Adv. Drug Deliv. Rev. 2020, 160, 186–198. [Google Scholar] [CrossRef]
- Hu, X.Q.; Zhu, J.Z.; Hao, Z.; Tang, L.; Sun, J.; Sun, W.R.; Hu, J.; Wang, P.Y.; Basmadji, N.P.; Pedraz, J.L.; et al. Renewable electroconductive hydrogels for accelerated diabetic wound healing and motion monitoring. Biomacromolecules 2024, 25, 3566–3582. [Google Scholar] [CrossRef]
- Lee, S.; Yoon, C.H.; Oh, D.H.; Anh, T.Q.; Jeon, K.H.; Chae, I.H.; Park, K.D. Gelatin microgel-coated balloon catheter with enhanced delivery of everolimus for long-term vascular patency. Acta Biomater. 2024, 173, 314–324. [Google Scholar] [CrossRef]
- Mu, R.; Zhu, D.; Abdulmalik, S.; Wijekoon, S.; Wei, G.; Kumbar, S.G. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact. Mater. 2024, 35, 181–207. [Google Scholar] [CrossRef]
- Tyagi, K.; Venkatesh, V. Emerging potential approaches in alkaline phosphatase (ALP) activatable cancer theranostics. RSC Med. Chem. 2024, 15, 1148–1160. [Google Scholar] [CrossRef]
- Li, Y.; Xia, Y.; Liu, X.; Wang, J.; Sun, Y.; Huang, J.; Guo, Z.; Jia, S.; Chen, Y.; Wang, J.; et al. Rational design of bioengineered recombinant collagen-like protein enhances GelMA hydrogel for diabetic wound healing. Int. J. Biol. Macromol. 2024, 280, 136012. [Google Scholar] [CrossRef]
- Hu, M.; Li, Z.; Liu, Y.; Feng, Y.; Wang, Z.; Huang, R.; Li, L.; Huang, X.; Shao, Q.; Lin, W.; et al. Multifunctional hydrogel of recombinant humanized collagen loaded with MSCs and MnO2 accelerates chronic diabetic wound healing. ACS Biomater. Sci. Eng. 2024, 10, 3188–3202. [Google Scholar] [CrossRef]
- Yan, Y.; Li, M.; Guo, L.; Zhang, W.; Wu, R.; Guan, T.; Ling, J.; Yang, Y.; Liu, M.; Gu, X.; et al. Silk fibroin hydrogel with recombinant silk fibroin/NT3 protein enhances wound healing by promoting type III collagen synthesis and hair follicle regeneration in skin injury. Mater. Today Bio 2025, 33, 101957. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, H.; Yao, L.; Xie, Y.; Liu, P.; Xiao, J. A highly bioactive THPC-crosslinked recombinant collagen hydrogel implant for aging skin rejuvenation. Int. J. Biol. Macromol. 2024, 266, 131276. [Google Scholar] [CrossRef]
- Arndt, T.; Chatterjee, U.; Shilkova, O.; Francis, J.; Lundkvist, J.; Johansson, D.; Schmuck, B.; Greco, G.; Nordberg, Å.E.; Li, Y.; et al. Tuneable recombinant spider silk protein hydrogels for drug release and 3D cell culture. Adv. Funct. Mater. 2024, 34, 2303622. [Google Scholar] [CrossRef]
- Xu, L.; Li, S.; Wan, S.; Liu, Z.; Zhong, Y.; Qian, X.; Qin, J.; Cai, L.; Huang, H. Poly-lysine-modified recombinant protein nanocages for effective delivery of small activating RNA. J. Control. Release 2025, 382, 113638. [Google Scholar] [CrossRef]
- Chen, K.; Wang, J.; Cao, J.; Liu, F.; Fang, J.; Zheng, W.; Liu, S.; Zhao, Y.; Shuai, X.; Huang, J.; et al. Enzyme-responsive microgel with controlled drug release, lubrication and adhesion capability for osteoarthritis attenuation. Acta Biomater. 2024, 190, 191–204. [Google Scholar] [CrossRef]
- Wagner, J.; Bayer, L.; Loger, K.; Acil, Y.; Kurz, S.; Spille, J.; Ahlhelm, M.; Ingwersen, L.C.; Jonitz-Heincke, A.; Sedaghat, S.; et al. In vivo endocultivation of CAD/CAM hybrid scaffolds in the omentum majus in miniature pigs. J. Cranio-Maxillofac. Surg. 2024, 52, 1259–1266. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, Z.; Chen, J.; Zhang, Z.; Liu, Q.; Li, J.; Yang, J.; Ma, Z.; Zhao, J.; Hu, J.; et al. Injectable TG-linked recombinant human collagen hydrogel loaded with bFGF for rat cranial defect repair. Int. J. Biol. Macromol. 2023, 236, 123864. [Google Scholar] [CrossRef]
- Schloss, A.C.; Williams, D.M.; Regan, L.J. Protein-based hydrogels for tissue engineering. Adv. Exp. Med. Biol. 2016, 940, 167–177. [Google Scholar] [CrossRef]
- Chu, S.; Wang, A.L.; Bhattacharya, A.; Montclare, J.K. Protein based biomaterials for therapeutic and diagnostic applications. Prog. Biomed. Eng. 2022, 4, 012003. [Google Scholar] [CrossRef]
- Garcia Garcia, C.; Patkar, S.S.; Wang, B.; Abouomar, R.; Kiick, K.L. Recombinant protein-based injectable materials for biomedical applications. Adv. Drug Deliv. Rev. 2023, 193, 114673. [Google Scholar] [CrossRef]
- Geckil, H.; Xu, F.; Zhang, X.; Moon, S.; Demirci, U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine 2010, 5, 469–484. [Google Scholar] [CrossRef]
- Li, H.; Kong, N.; Laver, B.; Liu, J. Hydrogels constructed from engineered proteins. Small 2016, 12, 973–987. [Google Scholar] [CrossRef]
- Wang, Y.; Katyal, P.; Montclare, J.K. Protein-engineered functional materials. Adv. Healthc. Mater. 2019, 8, e1801374. [Google Scholar] [CrossRef]
- Humenik, M.; Pawar, K.; Scheibel, T. Nanostructured, self-assembled spider silk materials for biomedical applications. Adv. Exp. Med. Biol. 2019, 1174, 187–221. [Google Scholar] [CrossRef]
- Kapoor, S.; Kundu, S.C. Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater. 2016, 31, 17–32. [Google Scholar] [CrossRef]
- Spiess, K.; Lammel, A.; Scheibel, T. Recombinant spider silk proteins for applications in biomaterials. Macromol. Biosci. 2010, 10, 998–1007. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, D.; Zhang, Y.; Li, M.; Chai, R. Silk fibroin hydrogels for biomedical applications. Smart Med. 2022, 1, e20220011. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Y.; Tang, L.; Xiao, H.; Yang, Z.; Wang, S. Preparation of recombinant human collagen III protein hydrogels with sustained release of extracellular vesicles for skin wound healing. Int. J. Mol. Sci. 2022, 23, 6289. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Luo, T.; Hu, C.; Li, H.; Fan, X.; Wang, K.; Liang, J.; Chen, Y.; Fan, Y. Advanced wound healing and scar reduction using an innovative anti-ROS polysaccharide hydrogel with recombinant human collagen type III. ACS Appl. Mater. Interfaces 2024, 16, 50305–50320. [Google Scholar] [CrossRef]
- Bennett, J.I.; Boit, M.O.; Gregorio, N.E.; Zhang, F.; Kibler, R.D.; Hoye, J.W.; Prado, O.; Rapp, P.B.; Murry, C.E.; Stevens, K.R.; et al. Genetically encoded XTEN-based hydrogels with tunable viscoelasticity and biodegradability for injectable cell therapies. Adv. Sci. 2024, 11, e2301708. [Google Scholar] [CrossRef]
- Gregorio, N.E.; DeForest, C.A. PhoCoil: An injectable and photodegradable single-component recombinant protein hydrogel for localized therapeutic cell delivery. bioRxiv 2024. [Google Scholar] [CrossRef]
- Huang, A.; Liu, D.; Qi, X.; Yue, Z.; Cao, H.; Zhang, K.; Lei, X.; Wang, Y.; Kong, D.; Gao, J.; et al. Self-assembled GFFYK peptide hydrogel enhances the therapeutic efficacy of mesenchymal stem cells in a mouse hindlimb ischemia model. Acta Biomater. 2019, 85, 94–105. [Google Scholar] [CrossRef]
- Yaylaci, S.; Dinç, E.; Aydın, B.; Tekinay, A.B.; Guler, M.O. Peptide Nanofiber System for Sustained Delivery of Anti-VEGF Proteins to the Eye Vitreous. Pharmaceutics 2023, 15, 1264. [Google Scholar] [CrossRef]
- Kass, L.E.; Nguyen, J. Nanocarrier-hydrogel composite delivery systems for precision drug release. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1756. [Google Scholar] [CrossRef]
- Madappura, A.P.; Madduri, S. A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine. Comput. Struct. Biotechnol. J. 2023, 21, 4868–4886. [Google Scholar] [CrossRef]
- Pollini, M.; Paladini, F. The emerging role of silk fibroin for the development of novel drug delivery systems. Biomimetics 2024, 9, 295. [Google Scholar] [CrossRef]
- Sharpe, L.A.; Daily, A.M.; Horava, S.D.; Peppas, N.A. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin. Drug Deliv. 2014, 11, 901–915. [Google Scholar] [CrossRef]
- Zhao, N.; Suzuki, A.; Zhang, X.; Shi, P.; Abune, L.; Coyne, J.; Jia, H.; Xiong, N.; Zhang, G.; Wang, Y. Dual aptamer-functionalized in situ injectable fibrin hydrogel for promotion of angiogenesis via codelivery of vascular endothelial growth factor and platelet-derived growth factor-BB. ACS Appl. Mater. Interfaces 2019, 11, 18123–18132. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Montclare, J.K. Free-standing photocrosslinked protein polymer hydrogels for sustained drug release. Biomacromolecules 2021, 22, 1509–1522. [Google Scholar] [CrossRef]
- Wang, Y.; Delgado-Fukushima, E.; Fu, R.X.; Doerk, G.S.; Monclare, J.K. Controlling drug absorption, release, and erosion of photopatterned protein engineered hydrogels. Biomacromolecules 2020, 21, 3608–3619. [Google Scholar] [CrossRef]
- Yang, C.Y.; Song, B.; Ao, Y.; Nowak, A.P.; Abelowitz, R.B.; Korsak, R.A.; Havton, L.A.; Deming, T.J.; Sofroniew, M.V. Biocompatibility of amphiphilic diblock copolypeptide hydrogels in the central nervous system. Biomaterials 2009, 30, 2881–2898. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Z.; Yang, X.; He, Y.; Lin, R. Construction and characterization of a pure protein hydrogel for drug delivery application. Int. J. Biol. Macromol. 2017, 95, 294–298. [Google Scholar] [CrossRef]
- Akrami-Hasan-Kohal, M.; Eskandari, M.; Solouk, A. Silk fibroin hydrogel/dexamethasone sodium phosphate loaded chitosan nanoparticles as a potential drug delivery system. Colloids Surf. B Biointerfaces 2021, 205, 111892. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhang, Y.Q.; Wei, Z.G. Excess acetone extraction in silk protein solution greatly accelerates the regeneration progress of silk fibroin for desalting and purification. Int. J. Biol. Macromol. 2020, 146, 588–595. [Google Scholar] [CrossRef]
- Mao, Y.; Zhao, B.; Xu, L.; Wang, Y.; Qiu, X.; Sun, Y.; Yang, C. Protein-polysaccharide based nanogel/hydrogel composite with controlled continuous delivery of drug for enhanced wound healing. Carbohydr. Polym. 2025, 356, 123407. [Google Scholar] [CrossRef]
- Rather, G.A.; Selvakumar, P.; Srinivas, K.S.; Natarajan, K.; Kaushik, A.; Rajan, P.; Lee, S.R.; Sing, W.L.; Alkhamees, M.; Lian, S.; et al. Facile synthesis of elastin nanogels encapsulated decursin for castrated resistance prostate cancer therapy. Sci. Rep. 2024, 14, 15095. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Luan, T.; Shi, P.; Guo, L.; Zhang, Q.; Shi, G.; Hao, Z.; Chen, T.; Zhang, L.; et al. Hydrogel and microgel collaboration for satiotemporal delivery of biofactors to awaken nucleus pulposus-derived stem cells for endogenous repair of disc. Small 2024, 20, e2404732. [Google Scholar] [CrossRef]
- Tang, L.; Xie, S.; Wang, D.; Wei, Y.; Ji, X.; Wang, Y.; Zhao, N.; Mou, Z.; Li, B.; Sun, W.R.; et al. Astragalus polysaccharide/carboxymethyl chitosan/sodium alginate based electroconductive hydrogels for diabetic wound healing and muscle function assessment. Carbohydr. Polym. 2025, 350, 123058. [Google Scholar] [CrossRef]
- Advincula, R.C.; Dizon, J.R.C.; Caldona, E.B.; Viers, R.A.; Siacor, F.D.C.; Maalihan, R.D.; Espera, A.H., Jr. On the progress of 3D-printed hydrogels for tissue engineering. MRS Commun. 2021, 11, 539–553. [Google Scholar] [CrossRef]
- Busra, M.F.M.; Lokanathan, Y. Recent development in the fabrication of collagen scaffolds for tissue engineering applications: A review. Curr. Pharm. Biotechnol. 2019, 20, 992–1003. [Google Scholar] [CrossRef]
- Chansoria, P.; Etter, E.L.; Nguyen, J. Regenerating dynamic organs using biomimetic patches. Trends Biotechnol. 2022, 40, 338–353. [Google Scholar] [CrossRef]
- Malekmohammadi, S.; Sedghi Aminabad, N.; Sabzi, A.; Zarebkohan, A.; Razavi, M.; Vosough, M.; Bodaghi, M.; Maleki, H. Smart and biomimetic 3D and 4D printed composite hydrogels: Opportunities for different biomedical applications. Biomedicines 2021, 9, 1537. [Google Scholar] [CrossRef]
- Unal, A.Z.; West, J.L. Synthetic ECM: Bioactive synthetic hydrogels for 3D tissue engineering. Bioconjug. Chem. 2020, 31, 2253–2271. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Z.; Zhang, F.; Wan, C. Hydrogel-based 3D bioprinting technology for articular cartilage regenerative engineering. Gels 2024, 10, 430. [Google Scholar] [CrossRef]
- Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351. [Google Scholar] [CrossRef]
- Glassman, M.J.; Avery, R.K.; Khademhosseini, A.; Olsen, B.D. Toughening of thermoresponsive arrested networks of elastin-like polypeptides to engineer cytocompatible tissue scaffolds. Biomacromolecules 2016, 17, 415–426. [Google Scholar] [CrossRef]
- Huang, C.C.; Ravindran, S.; Yin, Z.; George, A. 3-D self-assembling leucine zipper hydrogel with tunable properties for tissue engineering. Biomaterials 2014, 35, 5316–5326. [Google Scholar] [CrossRef]
- Łabowska, M.B.; Cierluk, K.; Jankowska, A.M.; Kulbacka, J.; Detyna, J.; Michalak, I. A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials 2021, 14, 858. [Google Scholar] [CrossRef]
- Nettles, D.L.; Kitaoka, K.; Hanson, N.A.; Flahiff, C.M.; Mata, B.A.; Hsu, E.W.; Chilkoti, A.; Setton, L.A. In situ crosslinking elastin-like polypeptide gels for application to articular cartilage repair in a goat osteochondral defect model. Tissue Eng. Part A 2008, 14, 1133–1140. [Google Scholar] [CrossRef]
- Neves, S.C.; Moroni, L.; Barrias, C.C.; Granja, P.L. Leveling up hydrogels: Hybrid systems in tissue engineering. Trends Biotechnol. 2020, 38, 292–315. [Google Scholar] [CrossRef]
- Park, Y.; Lin, S.; Bai, Y.; Moeinzadeh, S.; Kim, S.; Huang, J.; Lee, U.; Huang, N.F.; Yang, Y.P. Dual delivery of BMP2 and IGF1 through injectable hydrogel promotes cranial bone defect healing. Tissue Eng. Part A 2022, 28, 760–769. [Google Scholar] [CrossRef]
- Włodarczyk-Biegun, M.K.; Del Campo, A. 3D bioprinting of structural proteins. Biomaterials 2017, 134, 180–201. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Wang, S.; Ma, J.; Yang, X.; Chen, H.; Xiao, J. Ferrous/Ferric ions crosslinked type II collagen multifunctional hydrogel for advanced osteoarthritis treatment. Adv. Healthc. Mater. 2024, 13, e2302833. [Google Scholar] [CrossRef]
- He, H.; Yang, F.; Zhang, S.; Liu, Z.; Liu, Z.; Yu, L.; Xiao, J. Bone morphogenetic protein-2 loaded triple helix recombinant collagen-based hydrogels for enhancing bone defect healing. Biomed. Mater. 2024, 19, 035029. [Google Scholar] [CrossRef]
- Ciardulli, M.C.; Marino, L.; Lovecchio, J.; Giordano, E.; Forsyth, N.R.; Selleri, C.; Maffulli, N.; Porta, G.D. Tendon and cytokine marker expression by human bone marrow mesenchymal stem cells in a hyaluronate/poly-lactic-co-glycolic acid (PLGA)/fibrin three-dimensional (3D) scaffold. Cells 2020, 9, 1268. [Google Scholar] [CrossRef]
- Lamparelli, E.P.; Lovecchio, J.; Ciardulli, M.C.; Giudice, V.; Dale, T.P.; Selleri, C.; Forsyth, N.; Giordano, E.; Maffulli, N.; Della Porta, G. Chondrogenic commitment of human bone marrow mesenchymal stem cells in a perfused collagen hydrogel functionalized with hTGF-β1-releasing PLGA microcarrier. Pharmaceutics 2021, 13, 399. [Google Scholar] [CrossRef]
- Palazzo, I.; Lamparelli, E.P.; Ciardulli, M.C.; Scala, P.; Reverchon, E.; Forsyth, N.; Maffulli, N.; Santoro, A.; Della Porta, G. Supercritical emulsion extraction fabricated PLA/PLGA micro/nano carriers for growth factor delivery: Release profiles and cytotoxicity. Int. J. Pharm. 2021, 592, 120108. [Google Scholar] [CrossRef]
- Feng, F.; Song, X.; Tan, Z.; Tu, Y.; Xiao, L.; Xie, P.; Ma, Y.; Sun, X.; Ma, J.; Rong, L.; et al. Cooperative assembly of a designer peptide and silk fibroin into hybrid nanofiber gels for neural regeneration after spinal cord injury. Sci. Adv. 2023, 9, eadg0234. [Google Scholar] [CrossRef]
- Wu, D.; Li, J.; Wang, C.; Su, Z.; Su, H.; Chen, Y.; Yu, B. Injectable silk fibroin peptide nanofiber hydrogel composite scaffolds for cartilage regeneration. Mater. Today Bio 2024, 25, 100962. [Google Scholar] [CrossRef]
- Zhang, Y.; Sheng, R.; Chen, J.; Wang, H.; Zhu, Y.; Cao, Z.; Zhao, X.; Wang, Z.; Liu, C.; Chen, Z.; et al. Silk fibroin and sericin differentially potentiate the paracrine and regenerative functions of stem cells through multiomics analysis. Adv. Mater. 2023, 35, e2210517. [Google Scholar] [CrossRef]
- Yuan, T.; Li, Z.; Zhang, Y.; Shen, K.; Zhang, X.; Xie, R.; Liu, F.; Fan, W. Injectable ultrasonication-induced silk fibroin hydrogel for cartilage repair and regeneration. Tissue Eng. Part A 2021, 27, 1213–1224. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J.; Youn, J.; Lee, Y.; Kim, W.; Choe, S.; Song, J.; Reis, R.L.; Khang, G. Development and evaluation of gellan gum/silk fibroin/chondroitin sulfate ternary injectable hydrogel for cartilage tissue engineering. Biomolecules 2021, 11, 1184. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, X.; Cai, D.; Li, J.; Mu, Q.; Zhang, W.; Zhu, S.; Jiang, Y.; Shen, W.; Zhang, S.; et al. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Acta Biomater. 2017, 63, 64–75. [Google Scholar] [CrossRef]
- Kim, W.; Choi, J.H.; Kim, P.; Youn, J.; Song, J.E.; Motta, A.; Migliaresi, C.; Khang, G. Preparation and evaluation of gellan gum hydrogel reinforced with silk fibers with enhanced mechanical and biological properties for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 2021, 15, 936–947. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, H.; Chen, X.; Xu, B. Self-assembling ability determines the activity of enzyme-instructed self-assembly for inhibiting cancer cells. J. Am. Chem. Soc. 2017, 139, 15377–15384. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Zhang, Y.; Yang, Z.; Gao, J.; Shi, Y. Enzyme-instructed self-assembly (EISA) assists the self-assembly and hydrogelation of hydrophobic peptides. J. Mater. Chem. B 2022, 10, 3242–3247. [Google Scholar] [CrossRef]
- Kopecek, J.; Yang, J. Peptide-directed self-assembly of hydrogels. Acta Biomater. 2009, 5, 805–816. [Google Scholar] [CrossRef]
- Mohammadi, M.; Karimi, M.; Malaekeh-Nikouei, B.; Torkashvand, M.; Alibolandi, M. Hybrid in situ- forming injectable hydrogels for local cancer therapy. Int. J. Pharm. 2022, 616, 121534. [Google Scholar] [CrossRef]
- van de Looij, S.M.; de Jong, O.G.; Vermonden, T.; Lorenowicz, M.J. Injectable hydrogels for sustained delivery of extracellular vesicles in cartilage regeneration. J. Control. Release 2023, 355, 685–708. [Google Scholar] [CrossRef]
- Wu, H.; Zheng, B. Hydrogel-based multi-enzymatic system for biosynthesis. Adv. Biochem. Eng. Biotechnol. 2023, 186, 51–76. [Google Scholar] [CrossRef]
- Yang, C.; Li, S.; Huang, X.; Chen, X.; Shan, H.; Chen, X.; Tao, L.; Zhang, M. Silk fibroin hydrogels could be therapeutic biomaterials for neurological diseases. Oxid. Med. Cell. Longev. 2022, 2022, 2076680. [Google Scholar] [CrossRef]
Category | Mechanism | Principle | Advantages | Disadvantages | Recent Examples | References |
---|---|---|---|---|---|---|
Physical Crosslinking | One-component coiled-coil self-assembly | Oligomerization via hydrophobic residues in α-helices | Tunable stiffness, viscoelasticity, degradation | Prone to intramolecular cyclization; low strength | Leucine zipper substitutions coupled at both termini of the GB1 protein to engineer an A(G)8A motif | [85,86,87,88,89] |
Stimulus-responsive | Conformational changes triggered by temperature/pH/magnetic field | Spatiotemporal control; injectability | Complex synthesis; potential cytotoxicity | Physical blending of PF and SF; collagen–PEG–cysteine conjugate | [33,90,91,92,93,94] | |
Protein–protein/peptide interaction | Biomolecular recognition | High specificity; dynamic self-assembly | Limited mechanical strength | TPR-DESVD protease-responsive cleavage system; complementary WW domain/proline-rich peptide recognition motif | [100,101,102] | |
Chemical Crosslinking | Tyrosine-mediated crosslinking | Oxidative coupling forming dityrosine bonds | Biocompatible; enzyme/light-triggered | Slow gelation; requires aerobic environment | Recombinant spider silk protein; tyrosine-rich resilin-mimetic protein | [106,107] |
Lysine-mediated crosslinking | Schiff base/Michael addition reactions | Rapid gelation; tunable crosslink density | Crosslinker toxicity | Site-specific conjugation of EGCG to recombinant SF; lysine-rich recombinant ELP | [108,109] | |
Cysteine-mediated crosslinking | Disulfide bonds/thiol reactions | Dynamic reversibility; photoresponsiveness | Sensitive to oxidative environments | Recombinant SF-ELP fusion protein; Cys-P4-Cys β-sheet forming protein; S-Ag coordination in recombinant ELPs | [111,112,113] | |
Enzyme-mediated crosslinking | LOX/HRP catalytic oxidation crosslinking | Biospecific; mild conditions | High enzyme cost; batch variability | Lysine/hydroxylysine residues in collagen and elastin; tyrosine residues in SF | [115,117,119] | |
Isopeptide bond ligation | Covalent conjugation via SpyTag/SpyCatcher or split intein | Bioorthogonal; modular design | Genetic engineering complexity | SpyCatcher/SpyTag-mediated fusion of fluorescent tags, RGD motifs, and LIF | [121,122,126] | |
Interpenetrating Networks | Protein–protein/polysaccharide/polymer | Physical interpenetration of multiple networks | Mechanical reinforcement; multifunctionality | Complex fabrication; potential phase separation | Type I collagen/recombinant spider silk eADF4(C16)-RGD composite; fibrin–alginate covalent conjugate; PEGylated collagen conjugate | [10,128,129,130,131,132,135,136] |
Category | Mechanism | Principle | Advantages | Disadvantages | Recent Examples | References |
---|---|---|---|---|---|---|
Self-Assembly Module | Peptide amphiphiles | Assembly driven by hydrophobic/hydrophilic domain segregation | Spontaneous formation; high bioactivity | Low mechanical strength | Conjugation of A2G2 peptide to VEGF-mimetic QK peptide; V2A2 peptide coupled to mitochondria-targeting SS-31 peptide | [152,153] |
Surfactant-like peptides | Surfactant-mimetic structure (hydrophilic head/hydrophobic tail) | High biocompatibility; membrane permeability | Low stiffness | Amphiphilic recombinant protein [(C(18))2K]2KR8GRGDS | [154] | |
Responsive Module | pH-responsive | Charge switching via protonation/deprotonation | Targeted delivery | Narrow operational pH range | Recombinant humic acid-mimetic hydrogel | [181,182] |
Thermoresponsive | LCST/UCST phase transition | Injectable; controllable gelation | Hysteresis effects | PEG/ELP hybrid hydrogel | [178,185] | |
Photoresponsive | Photo-triggered crosslinking | Spatiotemporally precise control | Limited tissue penetration depth | Recombinant SF/collagen composite hydrogel | [186,187] | |
Ultrasound-responsive | Ion release/enzyme activation via cavitation | Deep tissue penetration | External equipment dependency | Fibrinogen-based hydrogel | [191,192] | |
Chemical Modification Module | Site-specific modification | Targeted chemical conjugation to specific residues (e.g., Tyr, Lys) | Precise functional group introduction | Potential protein folding interference | Collagen hydrogel modified with MA and SA; tyrosine-selective modification of ELPs with PTAD | [202,204] |
Photosensitive group incorporation | Photocleavable groups/photosensitizer conjugation | Light-controlled drug release/degradation | Potential phototoxicity | ELP scaffold with PS-conjugated hydrogels via methionine-specific oxidation | [205] | |
Cleavable linkers | Hydrolysis-sensitive bond design | Controlled protein drug release | Synthetic complexity | Lysozyme–PEG hybrid hydrogel | [206] | |
Functionalization Module | Adhesive motifs | Fusion of bioactive peptides (e.g., RGD) | Enhanced cell proliferation/angiogenesis | High cost; stability issues | Fibronectin-derived ligand (RGD/HB) and EGF-conjugated hydrogel | [207,208] |
Dynamic remodeling | Integration of matrix metalloproteinase-2 (MMP-2) | Spatiotemporally controlled remodeling | Long-term safety undetermined | MMP-2-cleavable PEG hydrogel | [209,210] | |
Antimicrobial components | Incorporation of antimicrobial peptides/proteins | Broad-spectrum antibiofilm activity | Potential resistance development | Tet213 antimicrobial peptide-grafted GelMA | [211,212,213] | |
Immunomodulatory elements | Conjugation of immune factors | Macrophage polarization/anti-inflammatory regulation | Complex in vivo mechanisms | CGRP-functionalized GelMA hydrogel | [214,215] |
Application Field | Clinical Application | Protein Scaffold | Functionalization Strategy | Key Outcomes | Reference |
---|---|---|---|---|---|
Tissue Engineering | Skin regeneration | SF/sericin composite hydrogel | DMPG crosslinking | Enhanced antibacterial efficacy, accelerated wound closure | [4] |
Wound healing | Collagen-like protein | RC conjugated with GelMA to form GelMA-RC hydrogel | Enhanced cell viability and migration, accelerated wound healing | [222] | |
Skin wound regeneration | Recombinant humanized type III collagen | Composite hydrogel composed of SA@MnO2 nanoparticles, RHC, and MSCs | Enhanced cell proliferation/migration, accelerated re-epithelialization, improved collagen deposition, promoted neovascularization | [223] | |
Scar elimination in skin wounds | Silk fibroin | Recombinant NT3 hydrogel fused with SFL | Accelerated wound healing with induced folliculogenesis | [224] | |
Skin aging | Recombinant collagen | THPC-crosslinked recombinant collagen | Enhanced proliferation, adhesion, and migration of HFF-1; increased dermal density, improved skin elasticity, reduced transepidermal water loss | [225] | |
Drug Delivery Systems | Long-term protein delivery | Recombinant spider silk protein | Encapsulation of ARPE-19 cells | Sustained delivery of therapeutic cellular secretions | [226] |
Drug delivery | Apoferritin | Polylysine-modified apoferritin with four lysine residues | Suppressed chondrocyte apoptosis, enhanced cell migration, improved cartilage protection, alleviated osteoarthritis symptoms | [227] | |
TME-responsive delivery | Collagen/hyaluronic acid | pH-sensitive Schiff base bonds | Targeted drug release in acidic environments, significant tumor suppression | [90] | |
Bone Regeneration Engineering | Osteoarthritis therapy | MMP-2/collagen II | Methacrylation | Inhibited macrophage activation, reduced pro-inflammatory cytokines, protected chondrocytes | [228] |
Personalized bone defects | Collagen | rhBMP-2 loading | Significant osteogenic effects, enhanced osseointegration | [229] | |
Bone regeneration acceleration | Recombinant human collagen | rhCol/bFGF hydrogel prepared via TG crosslinking | Achieved sustained bFGF release, accelerated bone regeneration | [230] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, J.; Wei, J.; Fu, X.; Ma, J.; Chen, J. Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications. Gels 2025, 11, 579. https://doi.org/10.3390/gels11080579
Zhang H, Wang J, Wei J, Fu X, Ma J, Chen J. Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications. Gels. 2025; 11(8):579. https://doi.org/10.3390/gels11080579
Chicago/Turabian StyleZhang, He, Jiangning Wang, Jiaona Wei, Xueqi Fu, Junfeng Ma, and Jing Chen. 2025. "Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications" Gels 11, no. 8: 579. https://doi.org/10.3390/gels11080579
APA StyleZhang, H., Wang, J., Wei, J., Fu, X., Ma, J., & Chen, J. (2025). Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications. Gels, 11(8), 579. https://doi.org/10.3390/gels11080579