Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = flexible DC power distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 524
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

16 pages, 4237 KiB  
Article
Solid-State Circuit Breaker Topology Design Methodology for Smart DC Distribution Grids with Millisecond-Level Self-Healing Capability
by Baoquan Wei, Haoxiang Xiao, Hong Liu, Dongyu Li, Fangming Deng, Benren Pan and Zewen Li
Energies 2025, 18(14), 3613; https://doi.org/10.3390/en18143613 - 9 Jul 2025
Viewed by 391
Abstract
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing [...] Read more.
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing an adaptive current-limiting branch topology, the proposed solution reduces the risk of system oscillations induced by current-limiting inductors during normal operation and minimizes steady-state losses in the breaker. Upon fault occurrence, the current-limiting inductor is automatically activated to effectively suppress the transient current rise rate. An energy dissipation circuit (EDC) featuring a resistor as the primary energy absorber and an auxiliary varistor (MOV) for voltage clamping, alongside a snubber circuit, provides an independent path for inductor energy release after faults. This design significantly alleviates the impact of MOV capacity constraints on the fault isolation process compared to traditional schemes where the MOV is the primary energy sink. The proposed topology employs a symmetrical bridge structure compatible with both pole-to-pole and pole-to-ground fault scenarios. Parameter optimization ensures the IGBT voltage withstand capability and energy dissipation efficiency. Simulation and experimental results demonstrate that this scheme achieves fault isolation within 0.1 ms, reduces the maximum fault current-to-rated current ratio to 5.8, and exhibits significantly shorter isolation times compared to conventional approaches. This provides an effective solution for segment switches and tie switches in millisecond-level self-healing systems for both low-voltage (LVDC, e.g., 750 V/1500 V DC) and medium-voltage (MVDC, e.g., 10–35 kV DC) smart DC distribution grids, particularly in applications demanding ultra-fast fault isolation such as data centers, electric vehicle (EV) fast-charging parks, and shipboard power systems. Full article
(This article belongs to the Special Issue AI Solutions for Energy Management: Smart Grids and EV Charging)
Show Figures

Figure 1

22 pages, 3393 KiB  
Article
Stochastic Operation of BESS and MVDC Link in Distribution Networks Under Uncertainty
by Changhee Han, Sungyoon Song and Jaehyeong Lee
Electronics 2025, 14(13), 2737; https://doi.org/10.3390/electronics14132737 - 7 Jul 2025
Viewed by 275
Abstract
This study introduces a stochastic optimization framework designed to effectively manage power flows in flexible medium-voltage DC (MVDC) link systems within distribution networks (DNs). The proposed approach operates in coordination with a battery energy storage system (BESS) to enhance the overall efficiency and [...] Read more.
This study introduces a stochastic optimization framework designed to effectively manage power flows in flexible medium-voltage DC (MVDC) link systems within distribution networks (DNs). The proposed approach operates in coordination with a battery energy storage system (BESS) to enhance the overall efficiency and reliability of the power distribution. Given the inherent uncertain characteristics associated with forecasting errors in photovoltaic (PV) generation and load demand, the study employs a distributionally robust chance-constrained optimization technique to mitigate the potential operational risks. To achieve a cooperative and optimized control strategy for MVDC link systems and BESS, the proposed method incorporates a stochastic relaxation of the reliability constraints on bus voltages. By strategically adjusting the conservativeness of these constraints, the proposed framework seeks to maximize the cost-effectiveness of DN operations. The numerical simulations demonstrate that relaxing the strict reliability constraints enables the distribution system operator to optimize the electricity imports more economically, thereby improving the overall financial performance while maintaining system reliability. Through case studies, we showed that the proposed method improves the operational cost by up to 44.7% while maintaining 96.83% bus voltage reliability under PV and load power output uncertainty. Full article
(This article belongs to the Special Issue Advanced Control Techniques for Power Converter and Drives)
Show Figures

Figure 1

15 pages, 1673 KiB  
Article
Smart Grid Self-Healing Enhancement E-SOP-Based Recovery Strategy for Flexible Interconnected Distribution Networks
by Wanjun Li, Zhenzhen Xu, Meifeng Chen and Qingfeng Wu
Energies 2025, 18(13), 3358; https://doi.org/10.3390/en18133358 - 26 Jun 2025
Viewed by 334
Abstract
With the development of modern power systems, AC distribution networks face increasing demands for supply flexibility and reliability. Energy storage-based soft open points (E-SOPs), which integrate energy storage systems into the DC side of traditional SOP connecting AC distribution networks, not only maintain [...] Read more.
With the development of modern power systems, AC distribution networks face increasing demands for supply flexibility and reliability. Energy storage-based soft open points (E-SOPs), which integrate energy storage systems into the DC side of traditional SOP connecting AC distribution networks, not only maintain power flow control capabilities but also enhance system supply performance, providing a novel approach to AC distribution network fault recovery. To fully leverage the advantages of E-SOPs in handling faults in flexible interconnected AC distribution networks (FIDNs), this paper proposes an E-SOP-based FIDN islanding recovery method. First, the basic structure and control modes of SOPs for AC distribution networks are elaborated, and the E-SOP-based AC distribution network structure is analyzed. Second, with maximizing total load recovery as the objective function, the constraints of E-SOPs are comprehensively considered, and recovery priorities are established based on load importance classification. Then, a multi-dimensional improvement of the dung beetle optimizer (DBO) algorithm is implemented through Logistic chaotic mapping, adaptive parameter adjustment, elite learning mechanisms, and local search strategies, resulting in an efficient solution for AC distribution network power supply restoration. Finally, the proposed FIDN islanding partitioning and fault recovery methods are validated on a double-ended AC distribution network structure. Simulation results demonstrate that the improved DBO (IDBO) algorithm exhibits a superior optimization performance and the proposed method effectively enhances the load recovery capability of AC distribution networks, significantly improving the self-healing ability and operational reliability of AC distribution systems. Full article
(This article belongs to the Special Issue Digital Modeling, Operation and Control of Sustainable Energy Systems)
Show Figures

Figure 1

25 pages, 6573 KiB  
Article
Remote Real-Time Monitoring and Control of Small Wind Turbines Using Open-Source Hardware and Software
by Jesus Clavijo-Camacho, Gabriel Gomez-Ruiz, Reyes Sanchez-Herrera and Nicolas Magro
Appl. Sci. 2025, 15(12), 6887; https://doi.org/10.3390/app15126887 - 18 Jun 2025
Viewed by 624
Abstract
This paper presents a real-time remote-control platform for small wind turbines (SWTs) equipped with a permanent magnet synchronous generator (PMSG). The proposed system integrates a DC–DC boost converter controlled by an Arduino® microcontroller, a Raspberry Pi® hosting a WebSocket server, and [...] Read more.
This paper presents a real-time remote-control platform for small wind turbines (SWTs) equipped with a permanent magnet synchronous generator (PMSG). The proposed system integrates a DC–DC boost converter controlled by an Arduino® microcontroller, a Raspberry Pi® hosting a WebSocket server, and a desktop application developed using MATLAB® App Designer (version R2024b). The platform enables seamless remote monitoring and control by allowing upper layers to select the turbine’s operating mode—either Maximum Power Point Tracking (MPPT) or Power Curtailment—based on real-time wind speed data transmitted via the WebSocket protocol. The communication architecture follows the IEC 61400-25 standard for wind power system communication, ensuring reliable and standardized data exchange. Experimental results demonstrate high accuracy in controlling the turbine’s operating points. The platform offers a user-friendly interface for real-time decision-making while ensuring robust and efficient system performance. This study highlights the potential of combining open-source hardware and software technologies to optimize SWT operations and improve their integration into distributed renewable energy systems. The proposed solution addresses the growing demand for cost-effective, flexible, and remote-control technologies in small-scale renewable energy applications. Full article
Show Figures

Figure 1

24 pages, 2174 KiB  
Article
Diode Rectifier-Based Low-Cost Delivery System for Marine Medium Frequency Wind Power Generation
by Tao Xia, Yangtao Zhou, Qifu Zhang, Haitao Liu and Lei Huang
J. Mar. Sci. Eng. 2025, 13(6), 1062; https://doi.org/10.3390/jmse13061062 - 28 May 2025
Viewed by 414
Abstract
Offshore wind power has a broad development prospect, but with the development of offshore wind farms to the deep sea, the traditional high-voltage AC transmission has been difficult to adapt to the offshore wind power transmission distance and transmission capacity needs. A flexible [...] Read more.
Offshore wind power has a broad development prospect, but with the development of offshore wind farms to the deep sea, the traditional high-voltage AC transmission has been difficult to adapt to the offshore wind power transmission distance and transmission capacity needs. A flexible DC transmission system applying modular multilevel converter is a common scheme for offshore wind power, which has been put into use in actual projects, but it is still facing the problems of high cost of offshore converter station platforms and high loss of collector systems. In order to improve the economy and reliability of the medium- and long-distance offshore wind power delivery systems, this paper proposes a diode rectifier-based medium-frequency AC pooling soft-direct low-cost delivery system for medium- and long-distance offshore wind power. Firstly, the mid-frequency equivalent model of the diode converter is established, and the influence of topology and frequency enhancement on the parameters of the main circuit equipment is analysed; then, the distribution parameters and transmission capacity of the mid-frequency cable are calculated based on the finite element modelling of the marine cable, and the transmission losses of the mid-frequency AC pooling system are then calculated, including the collector losses, converter valve losses, and transformer losses, etc. Finally, an economic analysis is carried out based on a specific example, comparing with the Jiangsu Rudong offshore wind power transmission project, in order to verify the economy of the medium-frequency AC flexible and direct transmission system of the medium- and long-distance offshore wind power using diode rectifier technology. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

19 pages, 6402 KiB  
Article
Modular Multilevel Converter-Based Hybrid Energy Storage System Integrating Supercapacitors and Batteries with Hybrid Synchronous Control Strategy
by Chuan Yuan, Jing Gou, Jiao You, Bo Li, Xinwei Du, Yifeng Fu, Weixuan Zhang, Xi Wang and Peng Shi
Processes 2025, 13(5), 1580; https://doi.org/10.3390/pr13051580 - 19 May 2025
Viewed by 577
Abstract
This paper proposes a hybrid synchronization control modular multilevel converter-based hybrid energy storage system (HSC-MMC-HESS) that innovatively integrates battery units within MMC submodules (SMs) while connecting a supercapacitor (SC) to the DC bus. The configuration synergistically combines the high energy density of batteries [...] Read more.
This paper proposes a hybrid synchronization control modular multilevel converter-based hybrid energy storage system (HSC-MMC-HESS) that innovatively integrates battery units within MMC submodules (SMs) while connecting a supercapacitor (SC) to the DC bus. The configuration synergistically combines the high energy density of batteries with the high power density of SCs through distinct energy/power pathways. The operational principles and control architecture are systematically analyzed, incorporating a hybrid synchronization control (HSC) strategy to deliver system inertia, primary frequency regulation, fault-tolerant mode transition capabilities, and isolation control. A hierarchical control framework implements power distribution through filtering mechanisms and state-of-charge (SOC) balancing control for battery management. Hardware-in-the-loop experimental validation confirms the topology’s effectiveness in providing inertial support, enabling flexible operational mode switching and optimizing hybrid energy storage utilization. The demonstrated capabilities indicate strong application potential for medium-voltage distribution networks requiring dynamic grid support. Full article
Show Figures

Figure 1

17 pages, 6137 KiB  
Article
Research on the Thermal Aging Characteristics of Cured Epoxy Resin Insulating Materials for DC Bushings
by Daijun Liu, Xiaobang Tong, Libao Liu, Tao Chen, Jiarong Tang, Wenkai Tang, Liming Wang, Bin Cao and Zimin Luo
Polymers 2025, 17(8), 1064; https://doi.org/10.3390/polym17081064 - 15 Apr 2025
Viewed by 1040
Abstract
High-temperature-resistant epoxy composites play a crucial role in enhancing the operational reliability and service life of devices such as DC bushings, which is of great significance for the long-term stable operation of ultra-high voltage and flexible power transmission and distribution systems. In this [...] Read more.
High-temperature-resistant epoxy composites play a crucial role in enhancing the operational reliability and service life of devices such as DC bushings, which is of great significance for the long-term stable operation of ultra-high voltage and flexible power transmission and distribution systems. In this study, the epoxy composite was prepared, and long-term thermal aging tests were conducted at 250 °C and 270 °C. The changes in physical properties, electrical characteristics, and bending strength of epoxy composite were systematically investigated, and the thermal aging mechanism of these materials was elucidated. The experimental results revealed that with the progression of thermal aging, the epoxy composites exhibited volume shrinkage due to the breaking of chemical bonds. After 10 thermal aging cycles at 270 °C, the mass loss rate of the epoxy composite reached 20.52%. At 250 °C, the breakdown strength decreased by 9.9% compared to the unaged state. After aging at 250 °C and 270 °C, the volume resistivity decreased by a maximum of 53.75% and 76.94%, respectively, while the dielectric constant decreased by a maximum of 50.34% and 41.94%, respectively. After 10 aging cycles at 250 °C and 270 °C, the bending strength of the cured epoxy composite decreased by 39.79% and 53.91%, respectively. These findings provide valuable insights into the thermal aging characteristics of epoxy composites used in DC bushings and other electrical devices, offering a scientific basis for material selection and reliability assessment in high-voltage insulation applications. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Figure 1

21 pages, 7842 KiB  
Article
A Non-Stop Ice-Melting Method for Icing Lines in Distribution Network Based on a Flexible Grounding Device
by Yabing Zhou, Fang Yang, Jiaxin Xu, Xiaoliang Tang, Jiangyun Wang and Dayi Li
Energies 2025, 18(8), 1886; https://doi.org/10.3390/en18081886 - 8 Apr 2025
Viewed by 360
Abstract
Icing on transmission lines poses a serious threat to the power grid. Existing de-icing solutions have limitations in short-distance distribution networks with multiple branches. We propose a method that utilizes a flexible grounding device to adjust the zero-sequence reactive current in the distribution [...] Read more.
Icing on transmission lines poses a serious threat to the power grid. Existing de-icing solutions have limitations in short-distance distribution networks with multiple branches. We propose a method that utilizes a flexible grounding device to adjust the zero-sequence reactive current in the distribution network, enabling de-icing of lines without power interruption. Simulation and experimental results validate the feasibility and effectiveness of the proposed method and control scheme. The method can accurately regulate the de-icing current to achieve de-icing under various conditions, with the actual de-icing current deviating from the set value by less than 0.3%. During de-icing, the line voltage on the load side remains essentially stable, with an error of less than 0.5%, ensuring that the normal supply voltage of the distribution network is not affected, and the entire network load does not require a power outage. The de-icing device interacts only with reactive power in the distribution network, saving capacity for the DC voltage stabilizing power supply and demonstrating good economic efficiency. Full article
(This article belongs to the Special Issue Advanced Technologies in Power Quality and Solutions—2nd Edition)
Show Figures

Figure 1

17 pages, 4321 KiB  
Article
A Time- and Space-Integrated Expansion Planning Method for AC/DC Hybrid Distribution Networks
by Yao Guo, Shaorong Wang and Dezhi Chen
Sensors 2025, 25(7), 2276; https://doi.org/10.3390/s25072276 - 3 Apr 2025
Cited by 2 | Viewed by 534
Abstract
The rapid growth of renewable energy and increasing electricity demand pose challenges to the reliability and flexibility of traditional distribution networks. To address these issues, the construction of AC/DC hybrid distribution networks (AC/DC-HDNs) based on existing AC grids has become a promising solution. [...] Read more.
The rapid growth of renewable energy and increasing electricity demand pose challenges to the reliability and flexibility of traditional distribution networks. To address these issues, the construction of AC/DC hybrid distribution networks (AC/DC-HDNs) based on existing AC grids has become a promising solution. However, planning the expansion of such networks faces challenges like complex device and line topologies, dynamic fluctuations in distributed generation (DG) and load, and high power electronics costs. This paper proposes a time- and space-integrated expansion planning method for AC/DC-HDNs. The approach builds a distribution grid model based on graph theory, integrating the spatial layouts of AC distribution lines, DGs, main grids, and loads, while capturing dynamic load and renewable energy generation characteristics through time-series analysis. A modified graph attention network (MGAT)-based deep reinforcement learning (DRL) algorithm is used for optimization, balancing economic and reliability objectives. The simulation results show that the modified algorithm outperforms traditional algorithm in terms of both training efficiency and stability, with a faster convergence and lower fluctuation in cumulative rewards. Additionally, the proposed algorithm consistently achieves higher cumulative rewards, demonstrating its effectiveness in optimizing the expansion planning of AC/DC-HDNs. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 8435 KiB  
Article
Method for Network-Wide Characteristics in Multi-Terminal DC Distribution Networks During Asymmetric Short-Circuit Faults
by Xinhao Li, Qianmin Li, Hanwei Li, Xinze Zhou and Zhihui Dai
Electronics 2025, 14(6), 1120; https://doi.org/10.3390/electronics14061120 - 12 Mar 2025
Viewed by 567
Abstract
With the widespread integration of distributed energy resources and novel loads, the DC attributes of distribution networks are becoming increasingly pronounced. Multi-terminal flexible DC distribution networks have emerged as a trend for future distribution grids due to lower line losses, better power quality, [...] Read more.
With the widespread integration of distributed energy resources and novel loads, the DC attributes of distribution networks are becoming increasingly pronounced. Multi-terminal flexible DC distribution networks have emerged as a trend for future distribution grids due to lower line losses, better power quality, etc. However, owing to their low damping and inertia, the multi-terminal flexible DC distribution network is vulnerable to DC faults. Analyzing the fault characteristics and calculating the fault current level is of great significance for the design of relay protection systems and the optimization of associated parameters. Throughout the fault process, the discharge paths of multiple converters are mutually coupled, and the fault characteristics are complex, which poses a great challenge to short-circuit calculations. This paper proposes a method for calculating the characteristic quantities of the whole network throughout the asymmetric short-circuit fault in a multi-terminal flexible DC distribution network. During the capacitor discharge stage, an equivalent model of the fault port is established before the control response. During the fault ride-through stage, a transfer matrix that takes into account the electrical constraints on both the AC and DC sides of the converters is proposed by combining the equivalent circuit of fully controlled converters. Finally, a simulation model of a six-terminal flexible DC distribution network is developed in PSCAD/EMTDC, and the simulation results demonstrate that the proposed method expands the calculation range from faulty branch to network-wide characteristic quantities throughout the process of asymmetric short-circuit faults, with the maximum relative error remaining below 5%. Full article
(This article belongs to the Special Issue Efficient and Resilient DC Energy Distribution Systems)
Show Figures

Figure 1

26 pages, 8468 KiB  
Article
DC-Link Capacitance Estimation for Energy Storage with Active Power Filter Based on 2-Level or 3-Level Inverter Topologies
by Maksim Dybko, Sergey Brovanov and Aleksey Udovichenko
Electricity 2025, 6(1), 13; https://doi.org/10.3390/electricity6010013 - 7 Mar 2025
Viewed by 1047
Abstract
Energy storage systems (ESSs) and active power filters (APFs) are key power electronic technologies for FACTS (Flexible AC Transmission Lines). Battery energy storage has a structure similar to a shunt active power filter, i.e., a storage element and a voltage source inverter (VSI) [...] Read more.
Energy storage systems (ESSs) and active power filters (APFs) are key power electronic technologies for FACTS (Flexible AC Transmission Lines). Battery energy storage has a structure similar to a shunt active power filter, i.e., a storage element and a voltage source inverter (VSI) connected to the grid using a PWM filter and/or transformer. This similarity allows for the design of an ESS with the ability to operate as a shunt APF. One of the key milestones in ESS or APF development is the DC-link design. The proper choice of the capacitance of the DC-link capacitors and their equivalent resistance ensures the proper operation of the whole power electronic system. In this article, it is proposed to estimate the required minimum DC-link capacitance using a spectral analysis of the DC-link current for different operating modes, battery charge mode and harmonic compensation mode, for a nonlinear load. It was found that the AC component of the DC-link current is shared between the DC-link capacitors and the rest of the DC stage, including the battery. This relation is described analytically. The main advantage of the proposed approach is its universality, as it only requires calculating the harmonic spectrum using the switching functions. This approach is demonstrated for DC-link capacitor estimation in two-level and three-level NPC inverter topologies. Moreover, an analysis of the AC current component distribution between the DC-link capacitors and the other elements of the DC-link stage was carried out. This part of the analysis is especially important for battery energy storage systems. The obtained results were verified using a simulation model. Full article
Show Figures

Figure 1

23 pages, 8148 KiB  
Article
Flexible On-Grid and Off-Grid Control for Electric–Hydrogen Coupling Microgrids
by Zhengyao Wang, Fulin Fan, Hang Zhang, Kai Song, Jinhai Jiang, Chuanyu Sun, Rui Xue, Jingran Zhang and Zhengjian Chen
Energies 2025, 18(4), 985; https://doi.org/10.3390/en18040985 - 18 Feb 2025
Viewed by 759
Abstract
With the widespread integration of renewable energy into distribution networks, energy storage systems are playing an increasingly critical role in maintaining grid stability and sustainability. Hydrogen, as a key zero-carbon energy carrier, offers unique advantages in the transition to low-carbon energy systems. To [...] Read more.
With the widespread integration of renewable energy into distribution networks, energy storage systems are playing an increasingly critical role in maintaining grid stability and sustainability. Hydrogen, as a key zero-carbon energy carrier, offers unique advantages in the transition to low-carbon energy systems. To facilitate the coordination between hydrogen and renewables, this paper proposes a flexible on-grid and off-grid control method for an electric–hydrogen hybrid AC-DC microgrid which integrates photovoltaic panels, battery energy storage, electrolysers, a hydrogen storage tank, and fuel cells. The flexible control method proposed here employs a hierarchical structure. The upper level adopts a power management strategy (PMS) that allocates power to each component based on the states of energy storage. The lower level utilises the master–slave control where master and slave converters are regulated by virtual synchronous generator (VSG) and active and reactive power (PQ) control, respectively. In addition, a pre-synchronisation control strategy which does not rely on traditional phase-locked loops is introduced to enable a smooth transition from the off-grid to on-grid mode. The electric–hydrogen microgrid along with the proposed control method is modelled and tested under various operating modes and scenarios. The simulation results demonstrate that the proposed control method achieves an effective power dispatch within microgrid and maintains microgrid stability in on- and off-grid modes as well as in the transition between the two modes. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

22 pages, 15716 KiB  
Article
Research on the Design and Application of Multi-Port Energy Routers
by Xianping Zhu, Weibo Li, Kangzheng Huang, Shuai Cao, Boyu Lin, Rentai Li and Wei Xu
Energies 2025, 18(4), 866; https://doi.org/10.3390/en18040866 - 12 Feb 2025
Viewed by 845
Abstract
At present, the development of the global energy internet is occurring in depth and the construction of a distributed power supply is rapid, and the energy router (ER), as a key device for integrating energy flow and information flow, has important application value [...] Read more.
At present, the development of the global energy internet is occurring in depth and the construction of a distributed power supply is rapid, and the energy router (ER), as a key device for integrating energy flow and information flow, has important application value in microgrids. In this paper, a multi-port energy router based on a 710 V DC bus is designed and developed with a modular structure design, including core components such as a total controller, a power converter, a hybrid energy storage system, and an auxiliary power supply. Flexible access and the management of multiple-voltage-level ports (690 V AC, 380 V AC, 220 V DC, and 24 V DC) are realized through rational topology design. The test results of the device show that the system performance indexes meet the design requirements. The operation is stable and reliable, displaying strong practical engineering value, and at the same time provides a technical solution that can be borrowed for other special scenarios such as the microgrid system. Full article
(This article belongs to the Special Issue Advancements in Power Electronics for Power System Applications)
Show Figures

Figure 1

14 pages, 2421 KiB  
Article
Coordinated Optimization Method of Electric Buses and Voltage Source Converters for Improving the Absorption Capacity of New Energy Sources and Loads in Distribution Networks
by Yang Liu, Min Huang, Yujing Zhang, Lu Zhang, Wenbin Liu, Haidong Yu, Feng Wang and Lisheng Li
Energies 2025, 18(4), 832; https://doi.org/10.3390/en18040832 - 11 Feb 2025
Cited by 1 | Viewed by 563
Abstract
The large-scale integration of renewable energy sources and new loads, such as distributed photovoltaics and electric vehicles, has resulted in frequent power quality issues within distribution networks. Traditional AC distribution networks lack the necessary flexibility and have limited capacity to accommodate these new [...] Read more.
The large-scale integration of renewable energy sources and new loads, such as distributed photovoltaics and electric vehicles, has resulted in frequent power quality issues within distribution networks. Traditional AC distribution networks lack the necessary flexibility and have limited capacity to accommodate these new energy sources and loads. Transforming the conventional distribution network into an AC-DC hybrid network using flexible interconnection devices like Voltage Source Converters can enhance the network’s flexibility, mitigating the power quality challenges arising from the integration of renewable energy and new loads. Electric buses, with their substantial capacity, mobility, and centralized management, offer potential as mobile energy storage. They can participate in the dispatching of the distribution network, thereby improving the network’s flexibility in power regulation. This paper proposes a coordinated optimization approach that integrates electric buses and VSCs for distribution network dispatch. This method enables electric buses to assist in power dispatch without interfering with their primary public transport duties, thus enhancing the network’s capacity to absorb new energy sources and loads. Firstly, considering the mobility characteristics of electric buses, a multi-layer stochastic Time–Space Network model is developed for bus dispatching. Secondly, an optimization model is constructed that accounts for the coordination of charging and discharging power between VSCs and electric buses, with the objective of minimizing the network losses in the distribution system. Finally, the proposed model is transformed into a second-order cone programming formulation, facilitating its solution through convex optimization techniques. The effectiveness of the proposed approach is demonstrated through a case study. Full article
Show Figures

Figure 1

Back to TopTop