A Non-Stop Ice-Melting Method for Icing Lines in Distribution Network Based on a Flexible Grounding Device
Abstract
:1. Introduction
2. Topology and Principle of Ice-Melting Scheme for Distribution Network Based on Flexible Grounding Device
3. The Strategy for Flexible Control of Zero-Sequence Reactive Melting Ice Current
3.1. The Selection of Reference Current
3.2. The Selection of Modulation Strategy
4. Simulation and Verification of Flexible Control Strategy
4.1. Simulation Verification of the Control Strategy of Voltage Equalization
4.2. Simulation Verification of the Output Ice-Melting Current
4.3. High-Current Test
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, C.X.; Sima, W.X.; Shu, L.C. Atmospheric Environment and Electrical External Insulation, 1st ed.; China Electric Power Press: Beijing, China, 2002. [Google Scholar]
- Jiang, X.L.; Yi, H. Icing and Protection of Transmission Lines, 1st ed.; China Electric Power Press: Beijing, China, 2002. [Google Scholar]
- Huang, X.; Liu, J.; Cai, W.; Wang, X. Present Research Situation of Icing and Snowing of Overhead Transmission Lines in China and Foreign Countries. Power. Syst Technol. 2008, 27–32. [Google Scholar]
- Tomaszewski, M.; Ruszczak, B.; Michalski, P.; Zator, S. The study of weather conditions favorable to the accretion of icing that pose a threat to transmission power lines. Int. J. Crit. Infrastruct. Prot. 2019, 25, 139–151. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, X.; Liang, W.; Zhang, W.X.; He, J.Q.; Wang, J.X.; Li, H.; Wen, Y.; Mao, X.; Wu, J.R.; et al. Ice types identification and prediction of overhead transmission lines driven by micro-meteorological data of three consecutive days icing. Southern Power Syst. Technol. 2023, 17, 107–116. [Google Scholar]
- Zhang, D.; Liu, J.; Huang, X.; Zhang, Z. Non-contact icing monitoring method for composite insulators based on spatial electric field. Southern Power Syst. Technol. 2021, 15, 99–106. [Google Scholar]
- Li, Y.; Yang, J.; Zheng, W.; Liu, B.; Gao, Z. Conductor galloping distribution map of Liaoning Province developed with specific return period. China Electr. Power 2022, 55, 129–134. [Google Scholar]
- Han, Y.; Su, G.; Yuan, H.; Ma, W. Early-warning model for icing power grid accident based on rough set. J. Tsinghua Univ. (Nat. Sci. Ed.) 2010, 50, 1930–1933. [Google Scholar]
- Wang, C. Research on DC Ice-Melting Technology for Transmission Lines. Master’s Thesis, North China Electric Power University, Beijing, China, 2011. [Google Scholar]
- Wu, S.Y.; Jing, P. Key Technologies of DC Ice-Melting for Transmission Lines; China Electric Power Press: Beijing, China, 2014. [Google Scholar]
- Guizhou Power Grid Co., Ltd. Engineering Application of Key Technologies for Power Grid Anti-Icing; China Electric Power Press: Beijing, China, 2014. [Google Scholar]
- Tang, A.; Yang, Y.; Yang, H.; Song, J.; Qiu, P.; Chen, Q. Research on Topology and Control Method of Uninterrupted Ice Melting Device Based on Non-contact Coupling Power Flow Controller. Proc. CSEE 2023, 43, 8666–8674. [Google Scholar]
- Yan, G.; Wang, J.; Huang, H.; Chen, H.; Li, Y.; Yu, B. Research on the Resonance Mechanism and Suppression Measures of Modular Multilevel DC Ice-Melting Devices. Power Syst. Prot. Control 2022, 50, 180–187. [Google Scholar]
- Cinieri, E.; Fumi, A. Deicing of The Contact Lines of the High-Speed Electric Railways: Deicing Configurations. Experimental Test Results. IEEE Trans. Power Deliv. 2014, 29, 2580–2587. [Google Scholar]
- Kollar, L.E.; Farzaneh, M. Modeling Sudden Ice Shedding From Conductor Bundles. Modeling Sudden Ice Shedding From Conductor Bundles. IEEE Trans. Power Deliv. 2013, 28, 604–611. [Google Scholar]
- Li, Z.H.; Bai, X.M.; Zhou, Z.G.; Hu, Z.J.; Xu, J.; Li, X.J. Prevention Methods and Research Progress of Power-Grid Ice Accretion. Power Grid Technol. 2008, 32, 7–13. [Google Scholar]
- Yuan, X.L.; Zhou, Y.S.; Wang, Y.A.; Xiong, Q.; Wang, X.J.; Ma, X.H.; Dai, Z. Analysis and Calculation of High-frequency Excitation Ice-melting for Transmission Lines Based on Electromagnetic-Thermal Coupling Field. Power Syst. Prot. Control 2019, 47, 103–109. [Google Scholar]
- Zou, L. Research on AC Ice-melting Devices for Transmission Lines in Baishan Area. Master’s Thesis, North China Electric Power University, Beijing, China, 2019; pp. 7–11. [Google Scholar]
- Zhou, Y.; Tang, X.; Hou, Y.; Yang, F.; Wang, H.; Wang, T. Research on on-line ice-melting technology based on zero sequence reactance integrated device. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Lu, J. Grid Icing Disasters and Prevention Technology, 1st ed.; China Electric Power Press: Beijing, China, 2016; p. 221. [Google Scholar]
- Zhang, Y.K.; Li, B.T.; Li, B.; Wang, T. Ground-fault Location Technology for Extra-high Voltage Transmission Lines during DC De-icing Process. Autom. Electr. Power Syst. 2017, 41, 105–111. [Google Scholar]
- Guo, Y.Q.; Zhou, Y.B.; Xu, J.Z.; Xu, S.K.; Zhao, C.Y.; Fu, C. Control Strategies of DC Ice-melting Equipments for Full-bridge Modular Multilevel Converters. Autom. Electr. Power Syst. 2017, 41, 106–113. [Google Scholar]
- Xu, K.; Ma, X.H.; Rao, C.L.; Chen, P.L.; Liu, J.; Liang, Y.Q. Research and Comparison of DC Deicing Technologies Based on Full Bridge MMC and Thyristor Rectifier. South. Power Syst. Technol. 2020, 14, 45–53. [Google Scholar]
Line Parameter | Value |
---|---|
OL-[/km] | 0.1700 |
OL-[/km] | 0.2300 |
OL-[mH/km] | 1.2100 |
OL-[mH/km] | 5.4780 |
OL-[μF/km] | 0.0097 |
OL-[μF/km] | 0.0080 |
CL-[/km] | 0.2700 |
CL-[/km] | 2.700 |
CL-[mH/km] | 0.2550 |
CL-[mH/km] | 1.0190 |
CL-[μF/km] | 0.3390 |
OL-[μF/km] | 0.2810 |
Load Parameter | Value |
---|---|
L1-P [MW] | 1 |
L1-Q [Mvar] | 0 |
L2-P [MW] | 0.6 |
L2-Q [Mvar] | 1.19 |
L3-P [MW] | 0.75 |
L3-Q [Mvar] | 0 |
L4-P [MW] | 0.75 |
L4-Q [Mvar] | 1.19 |
L5-P [MW] | 0.6 |
L5-Q [Mvar] | 0 |
L6-P [MW] | 0.5 |
L6-Q [Mvar] | 0.25 |
L7-P [MW] | 0.375 |
L7-Q [Mvar] | 1.19 |
L8-P [MW] | 0.375 |
L8-Q [Mvar] | 0 |
Parameter | Value |
---|---|
Grid-side voltage | 50 V |
Grid-side frequency | 50 Hz |
Inverter-side inductance | 4 mH |
DC side voltage | 100 V |
DC side capacitors , | 330 × 8 μF |
Switching frequency | 10 kHz |
Condition | Critical Ice-Melting Current/A |
---|---|
LGJ-95, −5 °C, 5 m/s | 305.75 |
LGJ-95, −3 °C, 3 m/s | 228.63 |
LGJ-120, −5 °C, 5 m/s | 348.29 |
LGJ-120, −3 °C, 3 m/s | 260.17 |
LGJ-150, −5 °C, 5 m/s | 388.82 |
LGJ-150, −3 °C, 3 m/s | 290.19 |
LGJ-185, −5 °C, 5 m/s | 454.61 |
LGJ-185, −3 °C, 3 m/s | 338.9 |
LGJ-240, −5 °C, 5 m/s | 562.72 |
LGJ-150, −3 °C, 3 m/s | 392.14 |
Parameter | Value | ||
---|---|---|---|
Melting Current Setting Is 290 A. | Melting Current Setting Is 300 A. | Melting Current Setting Is 310 A. | |
Phase A current (A) | 287.6 | 300.2 | 309.8 |
Phase B current (A) | 1.1 | 1.1 | 1.1 |
Phase C current (A) | 1.0 | 1.0 | 1.0 |
Line voltage on the load side URAB (kV) | 9.27 | 9.26 | 9.22 |
Line voltage on the load side URCA (kV) | 8.91 | 8.90 | 8.87 |
Line voltage on the load side URBC (kV) | 9.83 | 9.83 | 9.83 |
Comparative Indicators | Scheme 1 [21] | Scheme 2 [22] | Scheme 3 [23] | This Paper |
---|---|---|---|---|
Type of ice-melting current | DC | DC | AC | AC |
Topology of the device | Three-phase modular multilevel converter | Three-phase cascaded H-bridge converter | Mechanical Switch | Three-Phase T-Type Inverter |
Can the current be regulated? | Yes | Yes | Yes | Yes |
Is there a power outage? | Yes | Yes | No | No |
Voltage level endured | Phase voltage | Phase voltage | Phase voltage | Neutral voltage |
The number of switch tubes | 144 | 72 | 0 | 8 |
Efficiency (%) | 92–94 | 93–95 | 85–88 | 95–97 |
Current control accuracy | Moderate | High | Low | Very High |
Adaptability to load variations | Limited | Moderate | Good | Excellent |
Grid stability impact | Medium (voltage dips 3–5%) | Medium (voltage dips 2–4%) | High (voltage dips 5–8%) | Low (voltage dips < 0.5%) |
Comprehensive cost | High | A bit high | Low | A bit low |
Overall performance | Good | Good | ordinary | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Yang, F.; Xu, J.; Tang, X.; Wang, J.; Li, D. A Non-Stop Ice-Melting Method for Icing Lines in Distribution Network Based on a Flexible Grounding Device. Energies 2025, 18, 1886. https://doi.org/10.3390/en18081886
Zhou Y, Yang F, Xu J, Tang X, Wang J, Li D. A Non-Stop Ice-Melting Method for Icing Lines in Distribution Network Based on a Flexible Grounding Device. Energies. 2025; 18(8):1886. https://doi.org/10.3390/en18081886
Chicago/Turabian StyleZhou, Yabing, Fang Yang, Jiaxin Xu, Xiaoliang Tang, Jiangyun Wang, and Dayi Li. 2025. "A Non-Stop Ice-Melting Method for Icing Lines in Distribution Network Based on a Flexible Grounding Device" Energies 18, no. 8: 1886. https://doi.org/10.3390/en18081886
APA StyleZhou, Y., Yang, F., Xu, J., Tang, X., Wang, J., & Li, D. (2025). A Non-Stop Ice-Melting Method for Icing Lines in Distribution Network Based on a Flexible Grounding Device. Energies, 18(8), 1886. https://doi.org/10.3390/en18081886