Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = flexible AC transmission systems (FACTS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8468 KiB  
Article
DC-Link Capacitance Estimation for Energy Storage with Active Power Filter Based on 2-Level or 3-Level Inverter Topologies
by Maksim Dybko, Sergey Brovanov and Aleksey Udovichenko
Electricity 2025, 6(1), 13; https://doi.org/10.3390/electricity6010013 - 7 Mar 2025
Viewed by 1010
Abstract
Energy storage systems (ESSs) and active power filters (APFs) are key power electronic technologies for FACTS (Flexible AC Transmission Lines). Battery energy storage has a structure similar to a shunt active power filter, i.e., a storage element and a voltage source inverter (VSI) [...] Read more.
Energy storage systems (ESSs) and active power filters (APFs) are key power electronic technologies for FACTS (Flexible AC Transmission Lines). Battery energy storage has a structure similar to a shunt active power filter, i.e., a storage element and a voltage source inverter (VSI) connected to the grid using a PWM filter and/or transformer. This similarity allows for the design of an ESS with the ability to operate as a shunt APF. One of the key milestones in ESS or APF development is the DC-link design. The proper choice of the capacitance of the DC-link capacitors and their equivalent resistance ensures the proper operation of the whole power electronic system. In this article, it is proposed to estimate the required minimum DC-link capacitance using a spectral analysis of the DC-link current for different operating modes, battery charge mode and harmonic compensation mode, for a nonlinear load. It was found that the AC component of the DC-link current is shared between the DC-link capacitors and the rest of the DC stage, including the battery. This relation is described analytically. The main advantage of the proposed approach is its universality, as it only requires calculating the harmonic spectrum using the switching functions. This approach is demonstrated for DC-link capacitor estimation in two-level and three-level NPC inverter topologies. Moreover, an analysis of the AC current component distribution between the DC-link capacitors and the other elements of the DC-link stage was carried out. This part of the analysis is especially important for battery energy storage systems. The obtained results were verified using a simulation model. Full article
Show Figures

Figure 1

37 pages, 11067 KiB  
Article
Multi-Objective Optimal Power Flow Analysis Incorporating Renewable Energy Sources and FACTS Devices Using Non-Dominated Sorting Kepler Optimization Algorithm
by Mokhtar Abid, Messaoud Belazzoug, Souhil Mouassa, Abdallah Chanane and Francisco Jurado
Sustainability 2024, 16(21), 9599; https://doi.org/10.3390/su16219599 - 4 Nov 2024
Cited by 2 | Viewed by 1547
Abstract
In the rapidly evolving landscape of electrical power systems, optimal power flow (OPF) has become a key factor for efficient energy management, especially with the expanding integration of renewable energy sources (RESs) and Flexible AC Transmission System (FACTS) devices. These elements introduce significant [...] Read more.
In the rapidly evolving landscape of electrical power systems, optimal power flow (OPF) has become a key factor for efficient energy management, especially with the expanding integration of renewable energy sources (RESs) and Flexible AC Transmission System (FACTS) devices. These elements introduce significant challenges in managing OPF in power grids. Their inherent variability and complexity demand advanced optimization methods to determine the optimal settings that maintain efficient and stable power system operation. This paper introduces a multi-objective version of the Kepler optimization algorithm (KOA) based on the non-dominated sorting (NS) principle referred to as NSKOA to deal with the optimal power flow (OPF) optimization in the IEEE 57-bus power system. The methodology incorporates RES integration alongside multiple types of FACTS devices. The model offers flexibility in determining the size and optimal location of the static var compensator (SVC) and thyristor-controlled series capacitor (TCSC), considering the associated investment costs. Further enhancements were observed when combining the integration of FACTS devices and RESs to the network, achieving a reduction of 6.49% of power production cost and 1.31% from the total cost when considering their investment cost. Moreover, there is a reduction of 9.05% in real power losses (RPLs) and 69.5% in voltage deviations (TVD), while enhancing the voltage stability index (VSI) by approximately 26.80%. In addition to network performance improvement, emissions are reduced by 22.76%. Through extensive simulations and comparative analyses, the findings illustrate that the proposed approach effectively enhances system performance across a variety of operational conditions. The results underscore the significance of employing advanced techniques in modern power systems enhance overall grid resilience and stability. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

18 pages, 7643 KiB  
Article
Intelligent Control Framework for Improving Energy System Stability Through Deep Learning-Based Modal Optimization Scheme
by Arman Fathollahi
Sustainability 2024, 16(21), 9392; https://doi.org/10.3390/su16219392 - 29 Oct 2024
Cited by 5 | Viewed by 1395
Abstract
Ensuring the stability of power systems is essential to promote energy sustainability. The integrated operation of these systems is critical in sustaining modern societies and economies, responding to the increasing demand for electricity and curbing environmental consequences. This study focuses on the optimization [...] Read more.
Ensuring the stability of power systems is essential to promote energy sustainability. The integrated operation of these systems is critical in sustaining modern societies and economies, responding to the increasing demand for electricity and curbing environmental consequences. This study focuses on the optimization of energy system stability through the coordination of power system stabilizers (PSSs) and power oscillation dampers (PODs) in a single-machine infinite bus energy grid configuration that has flexible AC alternating current transmission system (FACTS) devices. Intelligent control strategies using PSS and POD techniques are suggested to increase power system stability and generate supplementary control signals for both the generator excitation system and FACTS device switching control. An intelligent optimal modal control framework equipped with deep learning methods is introduced to control the generator excitation system and thyristor-controlled series capacitor (TCSC). By optimally choosing the weighting matrix Q and implementing close-loop pole shifting, an optimal modal control approach is formulated. To harness its adaptive potential in fine-tuning controller parameters, an auxiliary deep learning-based optimization algorithm with actor–critic architecture is implemented. This comprehensive technique provides a promising path to effectively reduce electromechanical oscillations, thereby enhancing voltage regulation and transient stability in power systems. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

15 pages, 2888 KiB  
Article
SVC Control Strategy for Transient Stability Improvement of Multimachine Power System
by Anica Šešok and Ivica Pavić
Energies 2024, 17(17), 4224; https://doi.org/10.3390/en17174224 - 23 Aug 2024
Viewed by 1305
Abstract
The increase in renewable energy sources (RESs) in power systems is causing significant changes in their dynamic behavior. To ensure the safe operation of these systems, it is necessary to develop new methods for preserving transient stability that follow the new system dynamics. [...] Read more.
The increase in renewable energy sources (RESs) in power systems is causing significant changes in their dynamic behavior. To ensure the safe operation of these systems, it is necessary to develop new methods for preserving transient stability that follow the new system dynamics. Fast-response devices such as flexible AC transmission systems (FACTSs) can improve the dynamic response of power systems. One of the most frequently used FACTS devices is the Static Var Compensator (SVC), which can improve a system’s transient stability with a proper control strategy. This paper presents a reactive power control strategy for an SVC using synchronized voltage phasor measurements and particle swarm optimization (PSO) to improve the transient stability of a multimachine power system. The PSO algorithm is based on the sensitivity analysis of bus voltage amplitudes and angles to the reactive power of the SVC. It determines the SVC reactive power required for damping active power oscillations of synchronous generators in fault conditions. The sensitivity coefficients can be determined in advance for the characteristic switching conditions of the influential part of the transmission network, and with the application of the PSO algorithm, enable quick and efficient finding of a satisfactory solution. This relatively simple and fast algorithm can be applied in real time. The proposed control strategy is tested on the IEEE 14-bus system using DIgSILENT PowerFactory. The simulation results show that an SVC with the proposed control strategy effectively minimizes the rotor angle oscillations of generators after large disturbances. Full article
Show Figures

Figure 1

19 pages, 3260 KiB  
Article
Basic Circuit Model of Voltage Source Converters: Methodology and Modeling
by Christian Bipongo Ndeke, Marco Adonis and Ali Almaktoof
AppliedMath 2024, 4(3), 889-907; https://doi.org/10.3390/appliedmath4030048 - 29 Jul 2024
Cited by 1 | Viewed by 2254
Abstract
Voltage source converters (VSCs) have emerged as the key components in modern power systems, facilitating efficient energy conversion and flexible power flow control. Understanding the fundamental circuit model of VSCs is essential for their accurate modeling and analysis in power system studies. A [...] Read more.
Voltage source converters (VSCs) have emerged as the key components in modern power systems, facilitating efficient energy conversion and flexible power flow control. Understanding the fundamental circuit model of VSCs is essential for their accurate modeling and analysis in power system studies. A basic voltage source converter circuit model connected to an LC filter is essential because it lowers the harmonic distortions and enhances the overall power quality of the micro-grid. This guarantees a clean and steady power supply, which is necessary for the integration of multiple renewable energy sources and sensitive loads. A comprehensive methodology for developing a basic circuit model of VSCs, focusing on the key components and principals involved, is presented in this paper. The methodology includes the modeling of space vector pulse-width modulation (SVPWM) as well as the direct quadrature zero synchronous reference frame. Different design controls, including the design of current control loop in the S-domain, the design of the direct current (DC) bus voltage control loop in the S-domain, and the design of the alternating current (AC) voltage control loop in the S-domain, are explored to capture the dynamic behavior and control strategies of VSCs accurately. The proposed methodology provides a systematic framework for modeling VSCs, enabling engineers and researchers to analyze their performance and assess their impact on power system stability and operation. Future studies can be conducted by using case studies and simulation scenarios to show the efficiency and applicability of the developed models in analyzing VSC-based power electronics applications, including high-voltage direct current (HVDC) transmission systems and flexible alternating current transmission systems (FACTS). The significance of this work lies in its potential to advance the understanding and application of VSCs, contributing to more resilient and efficient power systems. By providing a solid foundation for future research and development, this study supports the ongoing integration of renewable energy sources and the advancement of modern electrical infrastructure. Full article
Show Figures

Figure 1

25 pages, 9219 KiB  
Article
An Efficient Shunt Modulated AC Green Plug–Switched Filter Compensation Scheme for Nonlinear Loads
by Albe M. Bloul, Mohamad Abuhamdah, Adel M. Sharaf, Hamed H. Aly and Jason Gu
Energies 2024, 17(10), 2426; https://doi.org/10.3390/en17102426 - 18 May 2024
Cited by 3 | Viewed by 1448
Abstract
Nonlinear loads, crucial components of power system grids, pose a challenge due to harmonics injection. This work tackles this issue with a novel modified green plug–switched filter compensation scheme using fuzzy logic controllers. This innovative scheme presented in this paper utilizes dual action [...] Read more.
Nonlinear loads, crucial components of power system grids, pose a challenge due to harmonics injection. This work tackles this issue with a novel modified green plug–switched filter compensation scheme using fuzzy logic controllers. This innovative scheme presented in this paper utilizes dual action pulse width modulation to ensure switching functions from harmonics reduction and capacitive compensation for inrush nonlinear-type AC loads. The scheme’s multi-loop regulations and online switching effectively handle dynamic-type slow-acting inrush, motorized- and other rectifier-type nonlinear loads, enhancing the power factor, power quality at source and load buses, and reducing the total harmonics distortion at the key source and sensitive nonlinear load buses. A simulation model in the MATLAB/SIMULINK-2023b software environment demonstrates the efficiency of the proposed FACTS technique. The modulated dual mode switched filter-capacitive compensation scheme controlled by a fuzzy logic controller ensures less harmonics distortion and improved voltage stabilization. The results show that voltage, current, active power, reactive power, power factor regulation, and effective energy utilization are achievable with the designed Flexible AC Transmission System-Modulated Filter Capacitor Compensation–Switched Filter Compensator (FACTS-MFCC-SFC). The switched modulated AC green plug filter significantly improves power quality and enhances power factor in cases of inrush and nonlinear loads. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

19 pages, 3758 KiB  
Article
Optimised Congestion Management Using Curative Measures in Combined AC/DC Systems with Flexible AC Transmission Systems
by Denis Mende and Lutz Hofmann
Energies 2024, 17(9), 2157; https://doi.org/10.3390/en17092157 - 30 Apr 2024
Cited by 1 | Viewed by 1124
Abstract
Due to the increasing demand for transport of electrical energy, measures for power flow control, congestion management, and higher utilisation of the existing grid play a decisive role in the transformation of the power system. Hence, enormous efforts must be undertaken using measures [...] Read more.
Due to the increasing demand for transport of electrical energy, measures for power flow control, congestion management, and higher utilisation of the existing grid play a decisive role in the transformation of the power system. Hence, enormous efforts must be undertaken using measures of congestion management. Modelling and integration of corresponding measures in optimisation tools to support grid and system operation and therewith reduce the resulting efforts become more important. This is especially true because of the high intermittency and decentralisation of renewable generation leading to increased complexity of the power system, higher loading of assets, and a growing need for control over flexible alternating current transmission systems (FACTS) and high-voltage direct current (HVDC) converters. This work therefore describes the implementation of optimised congestion management in an A Mathematical Programming Language (AMPL)-based nonlinear optimisation problem. AMPL is an effective tool to deal with highly complex problems of optimisation and scheduling. Therefore, the modelling of assets and flexibilities for power flow control in AC/DC systems in combination with an innovative grid operation strategy using predefined curative measures for the optimised use of the existing grid is introduced. The nonlinear mathematical optimisation aims at the optimal cost selection of flexibility measures. The application of the optimisation technique in a combined AC/DC system shows the optimal preventive and curative use of measures in operational congestion management. Simulation results prove that, by using predefined curative measures, the volume of cost-intensive preventive measures can significantly be reduced, especially in association with power flow control. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

16 pages, 728 KiB  
Article
Enhancing Loadability of Transmission Lines Using Static Synchronous Series Compensator Devices: A Case Study of the Syrian Network
by Hussam Asper, Faisal Shabaan, Tarek Kherbek and Nabil Mohammed
Energies 2024, 17(2), 390; https://doi.org/10.3390/en17020390 - 12 Jan 2024
Cited by 1 | Viewed by 1822
Abstract
In response to global energy demand, the enhancement of transport capacity in electrical transmission lines is deemed essential. The conventional method of constructing new lines is considered costly, time-consuming, and subject to constraints imposed by economic and environmental factors. Among various emerging solutions [...] Read more.
In response to global energy demand, the enhancement of transport capacity in electrical transmission lines is deemed essential. The conventional method of constructing new lines is considered costly, time-consuming, and subject to constraints imposed by economic and environmental factors. Among various emerging solutions aimed at enhancing the passive capacity of transmission lines, the technology of flexible AC transmission systems (FACTS) has been demonstrated to be highly effective. This paper proposes the utilization of the static synchronous series compensator (SSSC), a closed-loop control system and a type of FACTS, to alleviate the overloading of transmission lines in the Syrian electrical network. To achieve this objective, the network is first modeled to identify the overloaded transmission lines. Subsequently, the particle swarm optimization (PSO) algorithm is employed for the optimal sizing and allocation of SSSCs within the network. The findings showcase the significant reduction in loads on critically overloaded transmission lines subsequent to the successful implementation of SSSC devices. This serves to validate the improvements made to the existing infrastructure of the Syrian electrical network’s transmission lines, without necessitating the construction of new transmission lines. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

17 pages, 3943 KiB  
Article
Improving Interarea Mode Oscillation Damping in Multi-Machine Energy Systems through a Coordinated PSS and FACTS Controller Framework
by Meysam Zamani, Ghazanfar Shahgholian, Arman Fathollahi, Amir Mosavi and Imre Felde
Sustainability 2023, 15(22), 16070; https://doi.org/10.3390/su152216070 - 17 Nov 2023
Cited by 11 | Viewed by 2341
Abstract
Power system stability is of paramount importance in the context of energy sustainability. The reliable and efficient operation of power systems is crucial for supporting modern societies, economies, and the growing demand for electricity while minimizing environmental impact and increasing sustainability. Due to [...] Read more.
Power system stability is of paramount importance in the context of energy sustainability. The reliable and efficient operation of power systems is crucial for supporting modern societies, economies, and the growing demand for electricity while minimizing environmental impact and increasing sustainability. Due to the insufficient effect of power system stabilizers (PSSs) on damping the inter-area mode oscillations, Flexible AC Transmission System (FACTS) devices are utilized for damping this mode and stabilizing power systems. In the present study, a novel optimization framework considering different and variable weight coefficients based on eigenvalue locations is presented, and the parameters of PSS and variable impedance devices, including static Volt-Ampere Reactive (VAR) compensator (SVC) and Thyristor-Controlled Series Compensator (TCSC) (comprising amplifying gain factor and time constants of phase-compensating blocks), are optimized in a coordinated manner using the proposed optimization framework built based on genetic algorithm (GA). Moreover, in the suggested optimization framework, the locations of FACTS devices and control signals are considered optimization parameters. Numerical results for the IEEE 69-bus power system demonstrated an effective improvement in the damping of inter-area modes utilizing the offered approach. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

6 pages, 1407 KiB  
Proceeding Paper
Multi-Objective ABC Algorithm to Optimally Place UPFC and Its Parameter Settings for Transmission Efficiency Enhancement
by Muzamil Rajper, Aneel Kumar, Amna Qaimuddin and Faraz Ullah
Eng. Proc. 2023, 46(1), 33; https://doi.org/10.3390/engproc2023046033 - 26 Sep 2023
Cited by 1 | Viewed by 793
Abstract
The increasing demand for electricity has put a strain on existing power transmission and distribution systems. As a result, utilities are often forced to overload their existing systems, which can lead to voltage instability, transmission line congestion, and even blackouts. To fix these [...] Read more.
The increasing demand for electricity has put a strain on existing power transmission and distribution systems. As a result, utilities are often forced to overload their existing systems, which can lead to voltage instability, transmission line congestion, and even blackouts. To fix these problems, flexible AC transmission system controllers (FACTs) can be used. This paper deals with two objectives: minimizing voltage deviation and real power losses, and the minimization has been performed using the multi-objective artificial bee colony algorithm (MOABC). UPFC has been optimally placed on the IEEE bus-39 system. The proposed work is implemented through MATLAB coding. Full article
(This article belongs to the Proceedings of The 8th International Electrical Engineering Conference)
Show Figures

Figure 1

29 pages, 5132 KiB  
Review
A Comprehensive Review of Reduced Device Count Multilevel Inverters for PV Systems
by Abdul Jabbar Memon, Mukhtiar Ahmed Mahar, Abdul Sattar Larik and Muhammad Mujtaba Shaikh
Energies 2023, 16(15), 5638; https://doi.org/10.3390/en16155638 - 26 Jul 2023
Cited by 17 | Viewed by 2672
Abstract
This article presents a comprehensive review of reduced device count multilevel inverter (RDC MLI) topologies for PV systems. Multilevel inverters are widely used in medium-voltage and high-power applications such as wireless power transform applications, flexible AC transmission (FACT), active filters, AC motor drives, [...] Read more.
This article presents a comprehensive review of reduced device count multilevel inverter (RDC MLI) topologies for PV systems. Multilevel inverters are widely used in medium-voltage and high-power applications such as wireless power transform applications, flexible AC transmission (FACT), active filters, AC motor drives, high-voltage DC transmission (HVDC), and renewable energy sources due to their high modularity and high-power quality output. Multilevel inverters have the ability to diminish the harmonics content in the output voltage by applying various modulation techniques. The literature in this field showed that the high-power quality and high modularity of the output demand an undeniable need for multilevel inverter topology. Research in this field has identified various multilevel inverter topologies, each possessing their own merits and demerits. The ubiquitous availability of multilevel inverter topologies illustrates the complexity of their accurate selection. To avoid such complexity, this review shows the state of the art of various reduced device count (RDC) multilevel inverter (MLI) topologies. Details of the various RDC MLIs, along with their comparisons, are provided in this paper. This review will be an important reference tool for future work on RDC MLI for photovoltaic (PV) systems. Full article
Show Figures

Figure 1

25 pages, 4049 KiB  
Article
Optimal Deployment in Moving Target Defense against Coordinated Cyber–Physical Attacks via Game Theory
by Jian Yu and Qiang Li
Electronics 2023, 12(11), 2484; https://doi.org/10.3390/electronics12112484 - 31 May 2023
Cited by 6 | Viewed by 1822
Abstract
This work proposes a method for the intelligent deployment of distributed flexible AC transmission system (D-FACTS) devices. In recent years, in the field of moving target defense (MTD) strategies to detect coordinated cyber–physical attacks (CCPAs), establishing how to deploy D-FACTS devices has become [...] Read more.
This work proposes a method for the intelligent deployment of distributed flexible AC transmission system (D-FACTS) devices. In recent years, in the field of moving target defense (MTD) strategies to detect coordinated cyber–physical attacks (CCPAs), establishing how to deploy D-FACTS devices has become an important research point. Although some research results have been proposed, the obtained deployment solutions are unintelligent due to not carefully considering smart attackers’ behaviors. A method for achieving the intelligent deployment of D-FACTS devices is proposed in this paper. First, the basic concept of corrupting CCPAs is summarized; second, based on considering practical constraints and the basic concept, a protected transmission line set is confirmed; and third, a zero-sum game model is formulated, and a robust Nash equilibrium solution is computed. Due to the game’s characteristics, this solution reflects the smart attackers’ sense of action. Relying on the solution, those lines that are most likely to be tripped form a new protected transmission line set. Finally, a comprehensive algorithm using a metric proposed in previous studies is proposed for finding an intelligent solution for the deployment of D-FACTS devices. We validated our results through extensive simulations using IEEE 14-bus, 30-bus, and 118-bus power systems provided by MATPOWER and the real-world load profiles from New York State. Our work, in tracking the targets that attackers are most likely to attack, opens up new ideas for the intelligent deployment of D-FACTS devices. Full article
Show Figures

Figure 1

23 pages, 4706 KiB  
Article
DE-Based Design of an Intelligent and Conventional Hybrid Control System with IPFC for AGC of Interconnected Power System
by Solomon Feleke, Balamurali Pydi, Raavi Satish, Degarege Anteneh, Kareem M. AboRas, Hossam Kotb, Mohammed Alharbi and Mohamed Abuagreb
Sustainability 2023, 15(7), 5625; https://doi.org/10.3390/su15075625 - 23 Mar 2023
Cited by 7 | Viewed by 1723
Abstract
In this study, a fuzzy proportional integral derivative controller (FPID) was adjusted using the differential evolution (DE) method to enhance the automated generation control (AGC) of a three-zone reheat-type power system. The objective function used in this study was an integral of the [...] Read more.
In this study, a fuzzy proportional integral derivative controller (FPID) was adjusted using the differential evolution (DE) method to enhance the automated generation control (AGC) of a three-zone reheat-type power system. The objective function used in this study was an integral of the time-weighted absolute error (ITAE). In the optimization, the gain control parameters of the proportional integral (PI), the integral (I), and FPID were optimized and compared to improve the limitations drawn by the controller over a few parameters. To demonstrate that FPID controllers with IPFC produce better and more accurate optimization results than integral and PI controllers optimized by DE, the interline power flow control (IPFC) of a flexible AC transmission system (FACTS) device with suitable connections and control parameter optimization was used. Also, the particle swarm optimization (PSO) PID with IPFC was compared with the proposed DEFPID + IPFC, and better results were achieved by using the DE technique. Similarly, to demonstrate the suggested technology’s strong control capacity, random load changes were applied to the system in various conditions, and it was demonstrated that the suggested control unit easily tolerated random load perturbations and returned the system to a stable functioning state. Full article
(This article belongs to the Special Issue Intelligence and Sustainability in Electrical Engineering)
Show Figures

Figure 1

20 pages, 1367 KiB  
Article
Enhanced Control Designs to Abate Frequency Oscillations in Compensated Power System
by Saqib Yousuf, Viqar Yousuf, Neeraj Gupta, Talal Alharbi and Omar Alrumayh
Energies 2023, 16(5), 2308; https://doi.org/10.3390/en16052308 - 27 Feb 2023
Cited by 1 | Viewed by 2264
Abstract
The interconnection of transmission, distribution, and generation lines has established a structure for the power system that is intricate. Uncertainties in the active power flow are caused by changes in load and a growing dependence on renewable energy sources. The study presented in [...] Read more.
The interconnection of transmission, distribution, and generation lines has established a structure for the power system that is intricate. Uncertainties in the active power flow are caused by changes in load and a growing dependence on renewable energy sources. The study presented in this paper employs several controlling strategies to reduce frequency variations in series-compensated two-area power systems. Future power systems will require the incorporation of flexible AC transmission system (FACTS) devices, since the necessity for compensation in the power system is unavoidable. Therefore, a static synchronous series compensator (SSSC) is installed in both areas of our study to make it realistic and futuristic. This makes it easier to comprehend how series compensation works in a load–frequency model. With the integration of electrical vehicles (EVs) and solar photovoltaic (PV) systems, several control strategies are presented to reduce the frequency oscillations in this power system. Particle swarm optimization (PSO) is used to obtain the best PI control. To improve results, this work also covers the design of fuzzy logic control. In addition, the adoption of neural network control architecture is proposed for even better outcomes. The outcomes clearly show how well the proposed control techniques succeeded. Full article
Show Figures

Figure 1

25 pages, 7699 KiB  
Article
Significance of Harmonic Filters by Computation of Short-Time Fourier Transform-Based Time–Frequency Representation of Supply Voltage
by M. S. Priyadarshini, D. Krishna, Kurakula Vimala Kumar, K. Amaresh, B. Srikanth Goud, Mohit Bajaj, Torki Altameem, Walid El-Shafai and Mostafa M. Fouda
Energies 2023, 16(5), 2194; https://doi.org/10.3390/en16052194 - 24 Feb 2023
Cited by 15 | Viewed by 3279
Abstract
The nonlinear characteristics of power electronic-based loads in a power system contribute a major role in the harmonics’ injection and other power quality disturbances. This affects the quality of the power supplied to consumers by distribution systems. Flexible AC transmission system (FACTS) devices [...] Read more.
The nonlinear characteristics of power electronic-based loads in a power system contribute a major role in the harmonics’ injection and other power quality disturbances. This affects the quality of the power supplied to consumers by distribution systems. Flexible AC transmission system (FACTS) devices at the transmission level and custom power devices at the distribution level are used for an effective power transfer. In addition to these devices, filters play a prominent role in distribution systems. This paper aims to analyze the supply voltage in the time–frequency domain to perceive the variations in signal strength, explaining the role and significance of filters in mitigating or reducing harmonics. This paper presents the significance of harmonic filters in terms of signal-processing terminology. This depicts the prominent role of filters in improving the power quality by harmonic reduction or elimination, depending upon the requirement. The mathematical transform used in this approach is the short-time Fourier transform, which results in transforming the signal into a domain giving information about time and frequency. A MATLAB Simulink environment and ‘spectrogram’ were used to simulate harmonic signals, and we analyzed them using a short-time Fourier transform. Different windows were used with varying window size lengths. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

Back to TopTop