Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = flavonoid biosynthesis enzyme

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1313 KiB  
Article
Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought
by Lei Liu and Hong-Na Mu
Horticulturae 2025, 11(8), 910; https://doi.org/10.3390/horticulturae11080910 (registering DOI) - 4 Aug 2025
Abstract
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis [...] Read more.
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis mosseae or not, and subjected to well-watered (70–75% of field maximum water-holding capacity) or drought stress (50–55% field maximum water-holding capacity) conditions for 10 weeks. Plant growth performance, photosynthetic physiology, leaf flavonoid content and their antioxidant capacity, reactive oxygen species levels, and activities and gene expression of key flavonoid biosynthesis enzymes were analyzed. Although drought stress significantly reduced root colonization and soil hyphal length, inoculation with F. mosseae consistently enhanced the biomass of leaves, stems, and roots, as well as root surface area and diameter, irrespective of soil moisture. Despite drought suppressing photosynthesis in mycorrhizal plants, F. mosseae substantially improved photosynthetic capacity (measured via gas exchange) and optimized photochemical efficiency (assessed by chlorophyll fluorescence) while reducing non-photochemical quenching (heat dissipation). Inoculation with F. mosseae elevated the total flavonoid content in leaves by 46.67% (well-watered) and 14.04% (drought), accompanied by significantly enhanced activities of key synthases such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), 4-coumarate:coA ligase (4CL), and cinnamate 4-hydroxylase (C4H), with increases ranging from 16.90 to 117.42% under drought. Quantitative real-time PCR revealed that both mycorrhization and drought upregulated the expression of PtPAL1, PtCHI, and Pt4CL genes, with soil moisture critically modulating mycorrhizal regulatory effects. In vitro assays showed that flavonoid extracts scavenged radicals at rates of 30.07–41.60% in hydroxyl radical (•OH), 71.89–78.06% in superoxide radical anion (O2•−), and 49.97–74.75% in 2,2-diphenyl-1-picrylhydrazyl (DPPH). Mycorrhizal symbiosis enhanced the antioxidant capacity of flavonoids, resulting in higher scavenging rates of •OH (19.07%), O2•− (5.00%), and DPPH (31.81%) under drought. Inoculated plants displayed reduced hydrogen peroxide (19.77%), O2•− (23.90%), and malondialdehyde (17.36%) levels. This study concludes that mycorrhizae promote the level of total flavonoids in trifoliate orange by accelerating the flavonoid biosynthesis pathway, hence reducing oxidative damage under drought. Full article
Show Figures

Figure 1

24 pages, 3523 KiB  
Article
Mechanistic Elucidation and Establishment of Drying Kinetic Models of Differential Metabolite Regulation in Rheum palmatum During Natural Sun Drying: An Integrated Physiology, Untargeted Metabolomics, and Enzymology Study
by Wen Luo, Jinrong Guo, Jia Zhou, Mingjun Yang and Yonggang Wang
Biology 2025, 14(8), 963; https://doi.org/10.3390/biology14080963 (registering DOI) - 1 Aug 2025
Viewed by 192
Abstract
Rhubarb, a medicinal herb in Gansu Province, China, undergoes significant quality changes during sun-drying. This study investigated color changes, drying kinetics, anthraquinone (AQ) content, metabolic profiles, and enzyme activity during the process. Results showed that drying induced enzymatic browning, with the browning index [...] Read more.
Rhubarb, a medicinal herb in Gansu Province, China, undergoes significant quality changes during sun-drying. This study investigated color changes, drying kinetics, anthraquinone (AQ) content, metabolic profiles, and enzyme activity during the process. Results showed that drying induced enzymatic browning, with the browning index (BI) progressively increasing over extended drying periods (4–16 h) and with greater slice thickness (2–8 mm). Catalase (CAT) activity first decreased and then increased, while polyphenol oxidase (PPO) activity decreased throughout drying. Slice thickness significantly affected AQ content, with the highest in 2 mm slices and the lowest in 4 mm slices. The drying process followed a logarithmic model (R2 = 0.99418, RMSE = 0.02310, and χ2 = 0.0005). Metabolomics analysis identified 631 differential metabolites, with 8 key metabolites linked to flavonoid biosynthesis, phenylalanine biosynthesis, and tyrosine metabolism. Fifteen enzymes were involved in metabolite synthesis and decomposition, though some enzyme activity trends contradicted metabolite changes. This study provides insight into rhubarb drying mechanisms and a basis for optimizing the drying process. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

20 pages, 7947 KiB  
Article
Integrated Transcriptomic and Metabolomic Analyses Reveal Key Antioxidant Mechanisms in Dendrobium huoshanense Under Combined Salt and Heat Stress
by Xingen Zhang, Guohui Li, Jun Dai, Peipei Wei, Binbin Du, Fang Li, Yulu Wang and Yujuan Wang
Plants 2025, 14(15), 2303; https://doi.org/10.3390/plants14152303 - 25 Jul 2025
Viewed by 283
Abstract
Combined abiotic stresses often impose greater challenges to plant survival than individual stresses. In this study, we focused on elucidating the physiological and molecular mechanisms underlying the response of Dendrobium huoshanense to combined salt and heat stress by integrating physiological, transcriptomic, and metabolomic [...] Read more.
Combined abiotic stresses often impose greater challenges to plant survival than individual stresses. In this study, we focused on elucidating the physiological and molecular mechanisms underlying the response of Dendrobium huoshanense to combined salt and heat stress by integrating physiological, transcriptomic, and metabolomic analyses. Our results demonstrated that high temperature plays a dominant role in the combined stress response. Physiological assays showed increased oxidative damage under combined stress, accompanied by significant activation of antioxidant enzyme systems (SOD, POD, CAT). Metabolomic analysis revealed significant enrichment of glutathione metabolism and flavonoid biosynthesis pathways, with key antioxidants such as glutathione and naringenin chalcone accumulating under combined stress. Transcriptomic data supported these findings, showing differential regulation of stress-related genes, including those involved in reactive oxygen species scavenging and secondary metabolism. These results highlight a coordinated defense strategy in D. huoshanense, involving both enzymatic and non-enzymatic antioxidant systems to maintain redox homeostasis under combined stress. This study provides novel insights into the molecular mechanisms underlying combined stress tolerance and lays the foundation for improving stress resilience in medicinal orchids. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

21 pages, 1285 KiB  
Article
Stage-Specific Transcriptomic Insights into Seed Germination and Early Development in Camellia oleifera Abel.
by Zhen Zhang, Caixia Liu, Ying Zhang, Zhilong He, Longsheng Chen, Chengfeng Xun, Yushen Ma, Xiaokang Yuan, Yanming Xu and Rui Wang
Plants 2025, 14(15), 2283; https://doi.org/10.3390/plants14152283 - 24 Jul 2025
Viewed by 228
Abstract
Seed germination is a critical phase in the plant lifecycle of Camellia oleifera (oil tea), directly influencing seedling establishment and crop reproduction. In this study, we examined transcriptomic and physiological changes across five defined germination stages (G0–G4), from radicle dormancy to cotyledon emergence. [...] Read more.
Seed germination is a critical phase in the plant lifecycle of Camellia oleifera (oil tea), directly influencing seedling establishment and crop reproduction. In this study, we examined transcriptomic and physiological changes across five defined germination stages (G0–G4), from radicle dormancy to cotyledon emergence. Using RNA sequencing (RNA-seq), we assembled 169,652 unigenes and identified differentially expressed genes (DEGs) at each stage compared to G0, increasing from 1708 in G1 to 10,250 in G4. Functional enrichment analysis revealed upregulation of genes associated with cell wall organization, glucan metabolism, and Photosystem II assembly. Key genes involved in cell wall remodeling, including cellulose synthase (CESA), phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), caffeoyl-CoA O-methyltransferase (COMT), and peroxidase (POD) showed progressive activation during germination. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed dynamic regulation of phenylpropanoid and flavonoid biosynthesis, photosynthesis, carbohydrate metabolism, and hormone signaling pathways. Transcription factors such as indole-3-acetic acid (IAA), ABA-responsive element binding factor (ABF), and basic helix–loop–helix (bHLH) were upregulated, suggesting hormone-mediated regulation of dormancy release and seedling development. Physiologically, cytokinin (CTK) and IAA levels peaked in G4, antioxidant enzyme activities were highest in G2, and starch content increased toward later stages. These findings provide new insights into the molecular mechanisms underlying seed germination in C. oleifera and identify candidate genes relevant to rootstock breeding and nursery propagation. Full article
Show Figures

Figure 1

14 pages, 991 KiB  
Article
Zinc Sulfate Stress Enhances Flavonoid Content and Antioxidant Capacity from Finger Millet Sprouts for High-Quality Production
by Xin Tian, Jing Zhang, Zhangqin Ye, Weiming Fang, Xiangli Ding and Yongqi Yin
Foods 2025, 14(15), 2563; https://doi.org/10.3390/foods14152563 - 22 Jul 2025
Viewed by 273
Abstract
The enhancement of flavonoid content and antioxidant capacity in plants remains a significant area of focus in the investigation of plant-derived functional foods. This study systematically investigated the impact of exogenous zinc sulfate (5 mM ZnSO4) stress on flavonoid content and [...] Read more.
The enhancement of flavonoid content and antioxidant capacity in plants remains a significant area of focus in the investigation of plant-derived functional foods. This study systematically investigated the impact of exogenous zinc sulfate (5 mM ZnSO4) stress on flavonoid content and antioxidant capacity in finger millet (Eleusine coracana L.) sprouts, along with its underlying molecular mechanisms. The results demonstrated that treatment with 5 mM ZnSO4 significantly increased the flavonoid content in sprouts, reaching a maximum value of 5.59 μg/sprout on the 6th day of germination. ZnSO4 stress significantly enhanced the activities of PAL, 4CL, and C4H, while also considerably upregulating the expression levels of flavonoid-biosynthesis-related genes. Physiological indicators revealed that ZnSO4 stress increased the contents of malondialdehyde, hydrogen peroxide, and superoxide anion in the sprouts, while inhibiting sprout growth. As a stress response, ZnSO4 stress enhances the antioxidant system by increasing antioxidant capacity (ABTS, DPPH, and FRAP), antioxidant enzyme activity (POD and SOD), and related gene expression (POD, CAT, and APX) in sprouts. This study provides experimental evidence for ZnSO4 stress to improve flavonoid accumulation and antioxidant capacity in finger millet sprouts and provides important theoretical and practical guidance for the development of high-quality functional foods. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

14 pages, 1196 KiB  
Article
Effects of Methyl Jasmonate on Flavonoid Accumulation and Physiological Metabolism in Finger Millet (Eleusine coracana L.) Sprouts
by Zhangqin Ye, Jing Zhang, Xin Tian, Zhengfei Yang, Jiangyu Zhu and Yongqi Yin
Plants 2025, 14(14), 2201; https://doi.org/10.3390/plants14142201 - 16 Jul 2025
Viewed by 320
Abstract
Finger millet (Eleusine coracana L.) is a nutrient-dense cereal with high flavonoid content, yet the mechanisms regulating its secondary metabolite biosynthesis remain underexplored. Various exogenous stimuli can readily activate the enzymatic pathways and gene expression associated with flavonoid biosynthesis in plants, which [...] Read more.
Finger millet (Eleusine coracana L.) is a nutrient-dense cereal with high flavonoid content, yet the mechanisms regulating its secondary metabolite biosynthesis remain underexplored. Various exogenous stimuli can readily activate the enzymatic pathways and gene expression associated with flavonoid biosynthesis in plants, which are regulated by developmental cues. Research has established that methyl jasmonate (MeJA) application enhances secondary metabolite production in plant systems. This investigation examined MeJA’s influence on flavonoid accumulation and physiological responses in finger millet sprouts to elucidate the molecular mechanisms underlying MeJA-mediated flavonoid accumulation. The findings revealed that MeJA treatment significantly suppressed sprout elongation while enhancing the biosynthesis of total flavonoids and phenolic compounds. MeJA treatment triggered oxidative stress responses, with hydrogen peroxide and superoxide anion concentrations increasing 1.84-fold and 1.70-fold compared to control levels at 4 days post-germination. Furthermore, the antioxidant defense mechanisms in finger millet were upregulated following treatment, resulting in significant enhancement of catalase and peroxidase enzymatic activities and corresponding transcript abundance. MeJA application augmented the activities of key phenylpropanoid pathway enzymes—phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H)—and upregulated their respective gene expression. At 4 days post-germination, EcPAL and EcC4H transcript levels were elevated 3.67-fold and 2.61-fold, respectively, compared to untreated controls. MeJA treatment significantly induced the expression of downstream structural genes and transcriptional regulators. This study provides a deeper understanding of the mechanism of flavonoid accumulation in foxtail millet induced by MeJA, and lays a foundation for exogenous conditions to promote flavonoid biosynthesis in plants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

17 pages, 2952 KiB  
Article
Comparative Metabolomic Analysis of Three Medicinal Paphiopedilum Species Reveals Divergence in Antioxidant Capacity and Functional Compound Profiles
by Jinhan Sang, Yishan Yang, Kanghua Xian, Jiang Su, Jianmin Tang, Chuanming Fu, Fengluan Tang and Xiao Wei
Molecules 2025, 30(14), 2961; https://doi.org/10.3390/molecules30142961 - 14 Jul 2025
Viewed by 240
Abstract
This study explores the metabolite diversity and potential medicinal value of three Paphiopedilum species—P. dianthum, P. micranthum, and P. barbigerum—using widely targeted metabolomics via HPLC-MS/MS in conjunction with in vitro antioxidant assays. A total of 2201 metabolites were detected [...] Read more.
This study explores the metabolite diversity and potential medicinal value of three Paphiopedilum species—P. dianthum, P. micranthum, and P. barbigerum—using widely targeted metabolomics via HPLC-MS/MS in conjunction with in vitro antioxidant assays. A total of 2201 metabolites were detected across the three species, with flavonoids emerging as the dominant class (480 compounds, accounting for 21.8% of total metabolites). Comparative metabolomic analysis showed that flavonoid levels varied most prominently among the species. Notably, the metabolic profile of P. barbigerum (PB) diverged substantially from those of P. dianthum (PD) and P. micranthum (PM), which shared a higher degree of similarity with each other. Quantitative evaluation of antioxidant-associated metabolites revealed that PB exhibited the greatest enrichment in compounds with antioxidant potential, particularly flavonoids and phenolic acids, followed by PM and PD. These results were corroborated by antioxidant assays, in which PB demonstrated the highest free radical scavenging activity, with PM and PD displaying progressively lower effects. Differences in flavonoid content likely underpin these variations in antioxidant capacity. KEGG pathway enrichment analysis indicated that differentially expressed metabolites were primarily involved in flavonoid-associated biosynthetic routes, notably flavonoid biosynthesis (ko00941) and isoflavonoid biosynthesis (ko00943), with ko00941 being the most enriched. Within this pathway, PB showed eight significantly upregulated flavonoid metabolites, while PM and PD had seven and five, respectively. The observed differences may stem from species-specific expression of key biosynthetic enzymes such as flavonoid 3′-hydroxylase (F3′H) in PM and flavonoid 3′,5′-hydroxylase (F3′5′H) in PB, which influence both flavonoid composition and antioxidant potential. Full article
Show Figures

Graphical abstract

18 pages, 4535 KiB  
Article
Selenium Alleviates Low-Temperature Stress in Rice by Regulating Metabolic Networks and Functional Genes
by Naixin Liu, Qingtao Yu, Baicui Chen, Chengxin Li, Fanshan Bu, Jingrui Li, Xianlong Peng and Yuncai Lu
Agriculture 2025, 15(14), 1489; https://doi.org/10.3390/agriculture15141489 - 11 Jul 2025
Viewed by 295
Abstract
Low temperature is a major abiotic stress affecting rice productivity. Selenium (Se) treatment has been shown to enhance plant resilience to cold stress. In this study, low concentrations of selenium (ColdSe1) alleviated the adverse effects of cold stress on rice seedlings, improving fresh [...] Read more.
Low temperature is a major abiotic stress affecting rice productivity. Selenium (Se) treatment has been shown to enhance plant resilience to cold stress. In this study, low concentrations of selenium (ColdSe1) alleviated the adverse effects of cold stress on rice seedlings, improving fresh weight, plant height, and chlorophyll content by 36.9%, 24.3%, and 8.4%, respectively, while reducing malondialdehyde (MDA) content by 29.1%. Se treatment also increased the activities of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), by 25.2%, 42.7%, and 33.3%, respectively, and upregulated flavonoids, soluble sugars, cysteine (Cys), glutathione (GSH), and oxidized glutathione (GSSG). Transcriptome analysis revealed that ColdSe1 treatment upregulated genes associated with amino and nucleotide sugar metabolism, glutathione metabolism, and fructose and mannose metabolism. It also alleviated cold stress by modulating the MAPK signaling pathway, phytohormone signaling, and photosynthesis-related pathways, enriching genes and transcription factors linked to antioxidant metabolism and photosynthesis. Metabolomic analyses showed that ColdSe1 positively influenced amino acid glucose metabolism, glycerolipid metabolism, hormonal pathways, and alanine/glutamate pathways under cold stress, while also upregulating metabolites associated with plant secondary metabolites (e.g., flavonoids, phenolic compounds) and antioxidant metabolism (e.g., α-linolenic acid metabolism). In contrast, high selenium concentrations (ColdSe2) disrupted phenylpropanoid biosynthesis, α-linolenic acid metabolism, and ABC transporter function, exacerbating cold-stress injury. This study highlights the critical role of Se in mitigating cold stress in rice, offering a theoretical basis for its application as an agricultural stress reliever. Full article
(This article belongs to the Special Issue Genetic Research and Breeding to Improve Stress Resistance in Rice)
Show Figures

Figure 1

16 pages, 1601 KiB  
Article
Longan Flower Ethanol Extract, Dimocarpus longan Lour, Mitigates Oxidative Damage and Inflammatory Responses While Promoting Sleep-Related Enzymes in Cell Models
by Chao-Chun Ma, Ming-Chang Hsieh, Wei-Lun Chiang, Yi-Wen Chen, Pin-Chao Huang, Chin-Hsiu Yu, Shao-Yu Lee, Tin-Ching Chung, Hsi-Chi Lu and Yu-Wei Chang
Biomedicines 2025, 13(7), 1588; https://doi.org/10.3390/biomedicines13071588 - 29 Jun 2025
Viewed by 661
Abstract
Objectives: Modern lifestyles factors such as digital overload, aging, and poor sleep hygiene have led to increasing cases of sleep disturbances and inflammation-related disorders. These conditions are often associated with oxidative stress and immune dysregulation. Longan flower extract (LFE), traditionally used in East [...] Read more.
Objectives: Modern lifestyles factors such as digital overload, aging, and poor sleep hygiene have led to increasing cases of sleep disturbances and inflammation-related disorders. These conditions are often associated with oxidative stress and immune dysregulation. Longan flower extract (LFE), traditionally used in East Asian medicine, has shown potential health benefits but remains scientifically underexplored. This study aims to investigate the chemical composition and bioactive effects of LFE on inflammation, oxidative stress, and melatonin biosynthesis in relevant cellular models. Methods: LFE was prepared using ethanol extraction and characterized for its total polyphenols, flavonoids, oligomeric proanthocyanidins (OPCs), and corilagin content via HPLC. Its anti-inflammatory, antioxidant, and neuroregulatory activities were assessed in LPS-stimulated RAW 264.7 macrophages and BV-2 microglial cells. Key assays included quantification of cytokines (TNF-α, IL-6), detection of nitric oxide (NO) and reactive oxygen species (ROS), and measurement of antioxidant enzyme activities (GPx, SOD). Gene expression of melatonin biosynthesis enzymes was evaluated using quantitative PCR. Results: LFE treatment significantly reduced LPS-induced TNF-α, IL-6, NO, and ROS production in both cell models. It enhanced GPx and SOD activity and increased intracellular glutathione levels. Moreover, LFE upregulated the expression of TPH1, DDC, AANAT, and ASMT, genes involved in melatonin biosynthesis, and promoted serotonin secretion. Conclusions: These findings suggest that LFE holds significant potential as a natural therapeutic supplement, particularly for alleviating sleep disturbances, reducing oxidative stress, and modulating inflammatory responses associated with modern lifestyle-related health conditions. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

19 pages, 1144 KiB  
Article
Antifungal Efficacy of Ethanolic Extracts from Four Medicinal Plants Against Major Postharvest Fungal Pathogens of Apple Fruit
by Khadija Benamar, Rachid Lahlali, Rachid Ezzouggari, Mohammed El Ouassete, Ilham Dehbi, Mohammed Khadiri, Mohammed Radi, Lhoussain Ait Haddou, Saad Ibnsouda Koraichi, Saad Benamar, Abdellatif Boukir, Essaid Ait Barka and Kawtar Fikri-Benbrahim
Agronomy 2025, 15(7), 1577; https://doi.org/10.3390/agronomy15071577 - 27 Jun 2025
Viewed by 377
Abstract
The apple tree (Malus domestica), a member of the Rosaceae family, holds significant economic value but faces postharvest challenges, like blue mold caused by Penicillium expansum and gray mold caused by Botrytis cinerea. While synthetic fungicides are widely used, their [...] Read more.
The apple tree (Malus domestica), a member of the Rosaceae family, holds significant economic value but faces postharvest challenges, like blue mold caused by Penicillium expansum and gray mold caused by Botrytis cinerea. While synthetic fungicides are widely used, their limitations highlight the need for sustainable alternatives. This study explores the antifungal properties of extracts from Celtis australis, Olea europea var. sylvestris, Chamaerops humilis, and Asparagus albus against these pathogens. In vitro tests assessed mycelial growth inhibition, whereas in vivo trials consisted of measurement of weight loss, firmness, total soluble solids, titratable acidity, and maturity index. Moreover, the phytochemical traits of the extracts were determined using the Folin–Ciocalteu method and HPLC. The results revealed notable antifungal activity, particularly for Celtis australis extract at a concentration of 300 g L−1, which led to significant mycelial growth inhibition (61% for P. expansum and 41% for B. cinerea), a reduction in diseases’ severity (39% and 50%), and a notable decrease in diseases’ incidence (43% and 48%), respectively. Phytochemical analysis reflected the presence of phenols and flavonoids in the tested extracts. Importantly, the natural treatments helped preserve the apples’ quality during storage. Molecular docking studies further revealed that major compounds in Celtis australis extract inhibit the 14α-demethylase enzyme, a key target in fungal sterols biosynthesis. Full article
Show Figures

Figure 1

27 pages, 3732 KiB  
Review
Occurrence, Biosynthesis, and Health Benefits of Anthocyanins in Rice and Barley
by Essam A. ElShamey, Xiaomeng Yang, Jiazhen Yang, Xiaoying Pu, Li’E Yang, Changjiao Ke and Yawen Zeng
Int. J. Mol. Sci. 2025, 26(13), 6225; https://doi.org/10.3390/ijms26136225 - 27 Jun 2025
Viewed by 431
Abstract
The occurrence of anthocyanins in rice (Oryza sativa) and barley (Hordeum vulgare) varies among cultivars, with pigmented varieties (e.g., black rice and purple barley) accumulating higher concentrations due to genetic and environmental factors. The biosynthesis of anthocyanins is regulated [...] Read more.
The occurrence of anthocyanins in rice (Oryza sativa) and barley (Hordeum vulgare) varies among cultivars, with pigmented varieties (e.g., black rice and purple barley) accumulating higher concentrations due to genetic and environmental factors. The biosynthesis of anthocyanins is regulated by a complex network of structural and regulatory genes. Key enzymes in the pathway include chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT). These genes are tightly controlled by transcription factors (TFs) from the MYB, bHLH (basic helix–loop–helix), and WD40 repeat families, which form the MBW (MYB-bHLH-WD40) regulatory complex. In rice, OsMYB transcription factors such as OsMYB3, OsC1, and OsPL (Purple Leaf) interact with OsbHLH partners (e.g., OsB1, OsB2) to activate anthocyanin biosynthesis. Similarly, in barley, HvMYB genes (e.g., HvMYB10) coordinate with HvbHLH TFs to regulate pigment accumulation. Environmental cues, such as light, temperature, and nutrient availability, further modulate these TFs, influencing the production of anthocyanin. Understanding the genetic and molecular mechanisms behind the biosynthesis of anthocyanins in rice and barley provides opportunities for the development of biofortification strategies that enhance their nutritional value. Full article
Show Figures

Figure 1

19 pages, 2690 KiB  
Article
Integrated Metabolomics and Proteomics Analyses of the Grain-Filling Process and Differences in the Quality of Tibetan Hulless Barleys
by Yanrong Pang, Yuping Yang, Kaifeng Zheng, Xiaozhuo Wu, Yanfen Zhang, Jinyuan Chen, Guigong Geng, Feng Qiao and Shengcheng Han
Plants 2025, 14(13), 1946; https://doi.org/10.3390/plants14131946 - 25 Jun 2025
Viewed by 416
Abstract
Tibetan hulless barley (qingke) grains are becoming more popular because of their high nutritional benefits. Comparative metabolomics and proteomics analyses of qingke grains (at 16, 20, 36, and 42 days after flowering) were conducted to explore the metabolic dynamics during grain filling and [...] Read more.
Tibetan hulless barley (qingke) grains are becoming more popular because of their high nutritional benefits. Comparative metabolomics and proteomics analyses of qingke grains (at 16, 20, 36, and 42 days after flowering) were conducted to explore the metabolic dynamics during grain filling and compare the differences in quality among three different varieties, Dulihuang, Kunlun 14, and Heilaoya. A total of 728 metabolites and 4864 proteins were identified. We first found that both the metabolite and protein profiles were more closely associated with the grain developmental stage in each cultivar than across different stages in a single cultivar. Next, we focused on the energy metabolism and biosynthesis pathways of key quality components, such as flavonoids, starch, and β-glucans in qingke grains. Quantitative analysis revealed significant variation in the abundance of cellulose synthase-like enzyme (CslF) among the three cultivars. Notably, Heilaoya displayed substantially lower CslF6 levels at 36 and 42 DAF than Kunlun 14 and Dulihuang did. These observed differences in CslF6 abundance may represent a key regulatory mechanism underlying the distinct β-glucan biosynthesis patterns among the three cultivars. Collectively, our results enhance the understanding of metabolic networks involved in qingke grain development and serve as a foundation for advancing breeding studies. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Figure 1

27 pages, 5775 KiB  
Article
Genome-Wide Analysis of the FNSII Gene Family and the Role of CitFNSII-1 in Flavonoid Synthesis in Citrus
by Xinya Liu, Beibei Chen, Ling Luo, Qi Zhong, Chee How Teo and Shengjia Huang
Plants 2025, 14(13), 1936; https://doi.org/10.3390/plants14131936 - 24 Jun 2025
Viewed by 1223
Abstract
Flavonoid synthases (FNSs) are key enzymes catalyzing the conversion of flavanones to flavonoids, yet their functions in citrus remain functionally uncharacterized. In this study, we identified three FNSII genes in the citrus genome. Phylogenetic analysis revealed that citrus FNSII genes share the closest [...] Read more.
Flavonoid synthases (FNSs) are key enzymes catalyzing the conversion of flavanones to flavonoids, yet their functions in citrus remain functionally uncharacterized. In this study, we identified three FNSII genes in the citrus genome. Phylogenetic analysis revealed that citrus FNSII genes share the closest evolutionary distance with apple FNSII genes. Chromosomal localization demonstrated that the three FNSII genes are distributed across two out of nine chromosomes. Gene structure analysis indicated that the majority of motifs within these three FNSII genes are highly conserved. We cloned a gene called CitFNSII-1 from citrus. Transient overexpression of CitFNSII-1 in citrus leaves significantly increased flavonoid content, while simultaneous virus-induced silencing of CitFNSII-1 led to synchronously and significantly reduced gene expression levels and flavonoid content in citrus seedlings. Through the Agrobacterium rhizogenes-mediated genetic transformation system, overexpression of CitFNSII-1 was found to markedly enhance flavonoid accumulation in hairy roots, whereas knockout of CitFNSII-1 resulted in a significant decrease in flavonoid content in hairy roots. Further experiments verified an interaction between CitFNSII-1 and the Chalcone isomerase-1 (CHI-1) protein. The results demonstrated that the flavonoid accumulation patterns of CHI-1 and CitFNSII-1 are highly similar. In conclusion, this study advances the understanding of the flavonoid biosynthesis pathway in citrus and provides a theoretical foundation for molecular breeding strategies in citrus. Full article
(This article belongs to the Special Issue Innovative Techniques for Citrus Cultivation)
Show Figures

Figure 1

15 pages, 2674 KiB  
Article
Transcriptome of Two-Hybrid Poplar (Populus alba × P. tomentiglandulosa) During Adventitious Root Formation After Stem Cutting
by Siyeon Byeon and Il Hwan Lee
Biology 2025, 14(7), 751; https://doi.org/10.3390/biology14070751 - 23 Jun 2025
Viewed by 341
Abstract
Poplar (Populus spp.) is an economically and ecologically important temperate tree species known for its rapid growth. Clonal propagation has facilitated genetic advancements, but it remains challenging due to substantial variations in rooting capacity among poplar species and clones. Poplar clones were [...] Read more.
Poplar (Populus spp.) is an economically and ecologically important temperate tree species known for its rapid growth. Clonal propagation has facilitated genetic advancements, but it remains challenging due to substantial variations in rooting capacity among poplar species and clones. Poplar clones were divided into two groups based on their rooting ability (high or low), and their transcriptome was analyzed for 3 weeks following stem-cutting propagation to investigate the rooting mechanisms of a hybrid of two fast-growing poplar species (Populus alba × P. tomentiglandulosa). The root length and area of the high-rooting group were 668.7% and 198.4% greater than those of the low-rooting ability group, respectively (maximum p < 0.001). Compared to week 0, genes involved in auxin signaling, cell wall organization, and secondary metabolite biosynthesis were consistently upregulated at 1, 2, and 3 weeks after planting, respectively. The expression of genes associated with cell wall differentiation and flavonoid biosynthesis was greater in the high- than in the low-rooting group at week 2. MYB and AP2/ERF transcription factors, which regulate flavonoid biosynthesis, as well as chalcone isomerase, a key enzyme in early flavonoid biosynthesis and root formation, were upregulated in the high-rooting group. The flavonoid biosynthesis pathway is important in rooting after stem cutting of Populus alba × P. tomentiglandulosa hybrids. Full article
(This article belongs to the Special Issue Molecular Biology of Plants)
Show Figures

Figure 1

15 pages, 2520 KiB  
Article
Cloning and Functional Analysis of Flavonol Synthase Gene ZjFLS from Chinese Jujube (Ziziphus jujuba Mill.)
by Xiaofang Xue, Ailing Zhao, Le Fu, Yongkang Wang, Haiyan Ren, Wanlong Su, Meijuan Shi, Li Liu, Yi Li and Dengke Li
Horticulturae 2025, 11(7), 729; https://doi.org/10.3390/horticulturae11070729 - 23 Jun 2025
Viewed by 306
Abstract
Flavonoids are an important type of bioactive substance contained in jujubes. Flavonol synthase (FLS) is a key enzyme for the synthesis of flavonoids such as flavonols and anthocyanins. To study the biological functions of FLS in jujubes, we cloned the ZjFLS gene; analyzed [...] Read more.
Flavonoids are an important type of bioactive substance contained in jujubes. Flavonol synthase (FLS) is a key enzyme for the synthesis of flavonoids such as flavonols and anthocyanins. To study the biological functions of FLS in jujubes, we cloned the ZjFLS gene; analyzed its physicochemical properties and evolutionary relationships; and then conducted an expression characteristic analysis, subcellular localization, prokaryotic expression and heterologous overexpression in Arabidopsis thaliana. The results showed that the length of ZjFLS is 951 bp, and it encodes 316 amino acids. A sequence analysis revealed that ZjFLS exhibited a high degree of conservation in evolution. The results of a qRT-PCR analysis indicated that the ZjFLS gene could be expressed in different tissues of jujube: the expression level was the highest in the leaves, followed by the flowers, and the lowest was in the fruits. Within these expression levels, it was higher in young leaves than in mature leaves and higher in the white-ripe-stage fruits than in the semi-red-stage fruits. Subcellular localization indicated that the ZjFLS gene was located in the nucleus, cytoplasmic matrix, and cytoplasmic membrane. Our research findings show that the ZjFLS protein can be induced and obtained in the prokaryotic expression system and successfully purified. It mainly exists in the form of inclusion bodies and has a relatively low content in the soluble supernatant. The total flavonoid content of Arabidopsis thaliana strains with a heterologous overexpression of the ZjFLS gene was significantly higher than that of the wild type, confirming that the ZjFLS gene can promote the biosynthesis of flavonoid substances. Full article
(This article belongs to the Special Issue Emerging Insights into Horticultural Crop Ecophysiology)
Show Figures

Figure 1

Back to TopTop