Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (179)

Search Parameters:
Keywords = first-order deformation theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3392 KB  
Article
Free Vibration Analysis of Wind-Tunnel Stiffened Plates Considering Stiffeners’ Transverse Deformation
by Yueyin Ma, Zhenhua Chen, Wanhua Chen, Bin Ma, Xinyu Gao, Xutao Nie and Daokui Li
Vibration 2026, 9(1), 5; https://doi.org/10.3390/vibration9010005 - 14 Jan 2026
Abstract
The free vibration of stiffened plates analyzed using classical plate–beam theoretical theory (PBM) simplified the vibrations of stiffeners parallel to the plane of the stiffened plate as the first-order torsional vibration of the stiffener cross-section. This simplification introduces errors in both the natural [...] Read more.
The free vibration of stiffened plates analyzed using classical plate–beam theoretical theory (PBM) simplified the vibrations of stiffeners parallel to the plane of the stiffened plate as the first-order torsional vibration of the stiffener cross-section. This simplification introduces errors in both the natural frequencies and mode shapes of the structure for stiffened plates with relatively tall stiffeners. To mitigate the issue previously described, this paper proposes an enhanced plate–beam theoretical model (EPBM). The EBPM decouples stiffener deformation into two components: (1) bending deformation along the transverse direction of the stiffened plate, governed by Euler–Bernoulli beam theory, and (2) transverse deformation of the stiffeners, modeled using thin plate theory. Virtual torsional springs are introduced at the stiffener–plate and stiffener–stiffener interfaces via penalty function method to enforce rotational continuity. These constraints are transformed into energy functionals and integrated into the system’s total energy. Displacement trial functions constructed from Chebyshev polynomials of the first kind are solved using the Ritz method. Numerical validation demonstrates that the EBPM significantly improves accuracy over the BPM: errors in free-vibration frequency decrease from 2.42% to 0.63% for the first mode and from 9.79% to 1.34% for the second mode. For constrained vibration, the second-mode error is reduced from 4.22% to 0.03%. This approach provides an effective theoretical framework for the vibration analysis of structures with high stiffeners. Full article
Show Figures

Figure 1

52 pages, 716 KB  
Article
Quantum Anomalies as Intrinsic Algebraic Curvature: A Unified AQFT Interpretation of Renormalization Ambiguities
by Andrei T. Patrascu
Quantum Rep. 2026, 8(1), 3; https://doi.org/10.3390/quantum8010003 - 7 Jan 2026
Viewed by 140
Abstract
Quantum anomalies are traditionally understood as classical symmetries that fail to survive quantization, while experimental “anomalies” denote deviations between theoretical predictions and measured values. In this work, we develop a unified framework in which both phenomena can be interpreted through the lens of [...] Read more.
Quantum anomalies are traditionally understood as classical symmetries that fail to survive quantization, while experimental “anomalies” denote deviations between theoretical predictions and measured values. In this work, we develop a unified framework in which both phenomena can be interpreted through the lens of algebraic quantum field theory (AQFT). Building on the renormalization group viewed as an extension problem, we show that renormalization ambiguities correspond to nontrivial elements of Hochschild cohomology, giving rise to a deformation of the observable algebra AB=AB+εω(A,B), where ω is a Hochschild 2-cocycle. We interpret ω as an intrinsic algebraic curvature of the net of local algebras, namely the (local) Hochschild class that measures the obstruction to trivializing infinitesimal scheme changes by inner redefinitions under locality and covariance constraints. The transported product is associative; its first-order expansion is associative up to O(ε2) while preserving the ∗-structure and Ward identities to the first order. We prove the existence of nontrivial cocycles in the perturbative AQFT setting, derive the conditions under which the deformed product respects positivity and locality, and establish the compatibility with current conservation. The construction provides a direct algebraic bridge to standard cohomological anomalies (chiral, trace, and gravitational) and yields correlated deformations of physical amplitudes. Fixing the small deformation parameter ε from the muon (g2) discrepancy, we propagate the framework to predictions for the electron (g2), charged lepton EDMs, and other low-energy observables. This approach reduces reliance on ad hoc form-factor parametrizations by organizing first-order scheme-induced deformations into correlation laws among low-energy observables. We argue that interpreting quantum anomalies as manifestations of algebraic curvature opens a pathway to a unified, testable account of renormalization ambiguities and their phenomenological consequences. We emphasize that the framework does not eliminate renormalization or quantum anomalies; rather, it repackages the finite renormalization freedom of pAQFT into cohomological data and relates it functorially to standard anomaly classes. Full article
Show Figures

Figure 1

30 pages, 2661 KB  
Article
Symmetry-Aware Simulation and Experimental Study of Thin-Wall AA7075 End Milling: From Tooth-Order Force Symmetry to Symmetry-Breaking Dynamic Response and Residual Stress
by Dongpeng Shu and S. S. A. Shah
Symmetry 2026, 18(1), 74; https://doi.org/10.3390/sym18010074 - 1 Jan 2026
Viewed by 285
Abstract
Symmetry and asymmetry jointly govern the dynamics and surface integrity of thin-wall AA7075 end milling. In this work, a symmetry-aware simulation and experimental framework is developed to connect process parameters with milling forces, dynamic response, surface quality, and through-thickness residual stress. A mechanistic [...] Read more.
Symmetry and asymmetry jointly govern the dynamics and surface integrity of thin-wall AA7075 end milling. In this work, a symmetry-aware simulation and experimental framework is developed to connect process parameters with milling forces, dynamic response, surface quality, and through-thickness residual stress. A mechanistic milling-force model is first established for multi-tooth end milling, where the periodically repeated tooth-order excitation provides a nominally symmetric load pattern along the tool path. The predicted forces are then used as input for finite-element modal and harmonic-response analysis of a thin-walled component, revealing how symmetric and anti-symmetric mode shapes interact with the tooth-order excitation to generate locally amplified, asymmetric vibration of the compliant wall. Orthogonal and single-factor milling experiments on AA7075 thin-wall specimens are performed to calibrate and validate the force model, and to quantify the influence of feed per tooth, axial depth of cut, spindle speed, and radial width of cut on deformation, surface roughness, and geometric accuracy. Finally, a thermo-mechanically coupled finite-element model is employed to evaluate the residual-stress field, showing a characteristic pattern in which an initially symmetric thermal–mechanical loading produces depth-wise symmetry breaking between tensile surface layers and compressive subsurface zones. The proposed symmetry-aware framework, which combines milling-force theory, finite-element simulation, and systematic experiments, provides practical guidance for selecting parameter windows that suppress vibration, control residual stress, and improve the machining quality of thin-wall AA7075 components. Full article
Show Figures

Figure 1

19 pages, 3205 KB  
Article
Multi-Directional Vibration Energy Harvesting Based on a Compliant Parallel Mechanism
by Shuang Zhang and Xiuyuan Ge
Energies 2026, 19(1), 76; https://doi.org/10.3390/en19010076 - 23 Dec 2025
Viewed by 206
Abstract
A compliant parallel multi-directional piezoelectric vibration energy harvester (C-MVEH) is proposed based on a 3-RRR compliant parallel mechanism. The energy harvester structure consists of three identical L-shaped beams, whose bending deformation can be equivalent to the rotations of the three joints. In order [...] Read more.
A compliant parallel multi-directional piezoelectric vibration energy harvester (C-MVEH) is proposed based on a 3-RRR compliant parallel mechanism. The energy harvester structure consists of three identical L-shaped beams, whose bending deformation can be equivalent to the rotations of the three joints. In order to achieve greater bending deformation for composite beams, motion flexibility optimization of the mechanism theory is applied to structure the synthesis of the C-MVEH. Meanwhile, to reduce the natural frequencies corresponding to the working modes, the length of the elastic beam is optimized with the maximum natural frequency among the first three modes. In order to verify the excellent performance of the C-MVEH, an electromechanical model, finite element simulations, and experimental studies are carried out. Analysis of the studies reveals that the C-MVEH has three resonance peaks of output voltage within a bandwidth of 7–13 Hz and can output a total voltage of at least 20 V under a small excitation of 0.2 g. The energy harvester can achieve multiple peak output voltages under small excitations in different directions and a wide frequency range. With its outstanding stability, the proposed C-MVEH demonstrates considerable application value in the supplying of power to microenergy electronic devices, such as smart sensors and microactuators. Full article
(This article belongs to the Special Issue Innovations and Applications in Piezoelectric Energy Harvesting)
Show Figures

Figure 1

29 pages, 5026 KB  
Article
A Unified Framework for Free Vibration Analysis of Variable-Angle Tow Composite Shells with Spatially Varying Curvature
by Domenico Andrea Iannotta, Gaetano Giunta and Marco Montemurro
J. Compos. Sci. 2025, 9(12), 672; https://doi.org/10.3390/jcs9120672 - 4 Dec 2025
Viewed by 422
Abstract
The combination of variable-angle tow composites with shell geometries presents significant potential in various engineering and technical applications, particularly with regard to structural performance. Nevertheless, the numerical modeling of these structures can be challenging, as the larger number of unknowns significantly increases computational [...] Read more.
The combination of variable-angle tow composites with shell geometries presents significant potential in various engineering and technical applications, particularly with regard to structural performance. Nevertheless, the numerical modeling of these structures can be challenging, as the larger number of unknowns significantly increases computational effort. The Carrera’s unified formulation has demonstrated promising results in the analysis of plates and shells reinforced with curvilinear fibers, offering an effective balance between numerical accuracy and the number of variables. This paper extends the unified formulation to more complex variable-angle tow shell structures characterized by variable curvature radii within their physical domain. The governing equations of the dynamic problem are derived using a displacement-based variational method, and the results are validated through comparisons with reference solutions from Abaqus 3D models. The First-Order Shear Deformation Theory (FSDT) is presented for a broader comparison of the proposed models. The maximum percentage error in terms of frequency shift observed for the FSDT model is 3.44%, whereas the corresponding error for the most refined model is only 0.19%. Across all examined cases, the computed fundamental frequencies and mode shapes closely match the reference results, demonstrating the reliability and effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

26 pages, 9287 KB  
Article
Tooth Surface Contact Characteristics of Non-Circular Gear Based on Ease-off Modification
by Shukai Liu and Yanzhong Wang
Appl. Sci. 2025, 15(23), 12707; https://doi.org/10.3390/app152312707 - 1 Dec 2025
Viewed by 274
Abstract
To address edge contact in non-circular gears arising from installation errors, a modification strategy represented by elliptical gears and driven by an ease-off topological surface is proposed. A tooth surface model for non-circular gears was first derived from meshing theory. The modification magnitude [...] Read more.
To address edge contact in non-circular gears arising from installation errors, a modification strategy represented by elliptical gears and driven by an ease-off topological surface is proposed. A tooth surface model for non-circular gears was first derived from meshing theory. The modification magnitude was defined using a second-order ease-off differential surface, and the modified surface is represented through non-uniform rational B-spline (NURBS) fitting. A tooth contact analysis (TCA) model is then built to evaluate how installation errors and modification amount influence contact behavior. The results indicate that an increase in center distance error reduces the contact ratio. For equal perturbations of axial horizontal and axial vertical mounting angles, the horizontal error has the stronger impact on the size and location of the contact patch. As the longitudinal modification coefficient grows, the contact path and peak pressure position shift from the tooth edge toward the mid-width; the contact ellipse first enlarges and then shrinks, while the contact pressure shows the opposite trend. The elastic deformation of the tooth surface increases with the mounting angle. Transmission tests confirm that the proposed modification lowers the transmission error relative to the unmodified gear pair. Full article
(This article belongs to the Special Issue Structural Mechanics in Materials and Construction—2nd Edition)
Show Figures

Figure 1

23 pages, 10702 KB  
Article
A Versatile SPH Approach for Modelling Very Flexible and Modularized Floating Structures in Moored Configurations
by Rafail Ioannou, Vasiliki Stratigaki, Eva Loukogeorgaki and Peter Troch
J. Mar. Sci. Eng. 2025, 13(12), 2283; https://doi.org/10.3390/jmse13122283 - 30 Nov 2025
Cited by 1 | Viewed by 448
Abstract
A variety of Offshore Floating Photovoltaics (OFPVs) applications rely on the capacity of their floating support structures displacing in the shape of surface waves to reduce extreme wave-induced loads exerted on their floating-mooring system. This wave-adaptive displacement behaviour is typically realized through two [...] Read more.
A variety of Offshore Floating Photovoltaics (OFPVs) applications rely on the capacity of their floating support structures displacing in the shape of surface waves to reduce extreme wave-induced loads exerted on their floating-mooring system. This wave-adaptive displacement behaviour is typically realized through two principal design approaches, either by employing slender and continuously deformable structures composed of highly elastic materials or by decomposing the structure into multiple floating rigid pontoons interconnected via flexible connectors. The hydrodynamic behaviour of these structures is commonly analyzed in the literature using potential flow theory, to characterize wave loading, whereas in order to deploy such OFPV prototypes in realistic marine environments, a high-fidelity numerical fluid–structure interaction model is required. Thus, a versatile three-dimensional numerical scheme is herein presented that is capable of handling non-linear fluid-flexible structure interactions for Very Flexible Floating Structures (VFFSs): Multibody Dynamics (MBD) for modularized floating structures and floating-mooring line interactions. In the present study, this is achieved by employing the Smoothed Particles Hydrodynamics (SPH) fluid model of DualSPHysics, coupled both with the MBD module of Project Chrono and the MoorDyn+ lumped-mass mooring model. The SPH-MBD coupling enables modelling of large and geometrically non-linear displacements of VFFS within an Applied Element Method (AEM) plate formulation, as well as rigid body dynamics of modularized configurations. Meanwhile, the SPH-MoorDyn+ captures the fully coupled three-dimensional response of floating-mooring and floating-floating dynamics, as it is employed to model both moorings and flexible interconnectors between bodies. The coupled SPH-based numerical scheme is herein validated against physical experiments, capturing the hydroelastic response of VFFS, rigid body hydrodynamics, mooring line dynamics, and flexible connector behaviour under wave loading. The demonstrated numerical methodology represents the first validated Computational Fluid Dynamics (CFD) application of moored VFFS in three-dimensional domains, while its robustness is further confirmed using modular floating systems, enabling OFPV engineers to comparatively assess these two types of wave-adaptive designs in a unified numerical framework. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

32 pages, 2559 KB  
Article
Thermomechanical Stability of Hyperbolic Shells Incorporating Graphene Origami Auxetic Metamaterials on Elastic Foundation: Applications in Lightweight Structures
by Ehsan Arshid
J. Compos. Sci. 2025, 9(11), 594; https://doi.org/10.3390/jcs9110594 - 2 Nov 2025
Cited by 1 | Viewed by 735
Abstract
This study presents an analytical investigation of the thermomechanical stability of hyperbolic doubly curved shells reinforced with graphene origami auxetic metamaterials (GOAMs) and resting on a Pasternak elastic foundation. The proposed model integrates shell geometry, thermal–mechanical loading, and architected auxetic reinforcement to capture [...] Read more.
This study presents an analytical investigation of the thermomechanical stability of hyperbolic doubly curved shells reinforced with graphene origami auxetic metamaterials (GOAMs) and resting on a Pasternak elastic foundation. The proposed model integrates shell geometry, thermal–mechanical loading, and architected auxetic reinforcement to capture their coupled influence on buckling behavior. Stability equations are derived using the First-Order Shear Deformation Theory (FSDT) and the principle of virtual work, while the effective thermoelastic properties of the GOAM phase are obtained through micromechanical homogenization as functions of folding angle, mass fraction, and spatial distribution. Closed-form eigenvalue solutions are achieved with Navier’s method for simply supported boundaries. The results reveal that GOAM reinforcement enhances the critical buckling load at low folding angles, whereas higher folding induces compliance that diminishes stability. The Pasternak shear layer significantly improves buckling resistance up to about 46% with pronounced effects in asymmetrically graded configurations. Compared with conventional composite shells, the proposed GOAM-reinforced shells exhibit tunable, folding-dependent stability responses. These findings highlight the potential of origami-inspired graphene metamaterials for designing lightweight, thermally stable thin-walled structures in aerospace morphing skins and multifunctional mechanical systems. Full article
(This article belongs to the Special Issue Lattice Structures)
Show Figures

Figure 1

17 pages, 1807 KB  
Article
Free Vibration of FML Beam Considering Temperature-Dependent Property and Interface Slip
by Like Pan, Yingxin Zhao, Tong Xing and Yuan Yuan
Buildings 2025, 15(19), 3575; https://doi.org/10.3390/buildings15193575 - 3 Oct 2025
Viewed by 424
Abstract
This paper presents an analytical investigation of the free vibration behavior of fiber metal laminate (FML) beams with three types of boundary conditions, considering the temperature-dependent properties and the interfacial slip. In the proposed model, the non-uniform temperature field is derived based on [...] Read more.
This paper presents an analytical investigation of the free vibration behavior of fiber metal laminate (FML) beams with three types of boundary conditions, considering the temperature-dependent properties and the interfacial slip. In the proposed model, the non-uniform temperature field is derived based on one-dimensional heat conduction theory using a transfer formulation. Subsequently, based on the two-dimensional elasticity theory, the governing equations are established. Compared with shear deformation theories, the present solution does not rely on a shear deformation assumption, enabling more accurate capture of interlaminar shear effects and higher-order vibration modes. The relationship of stresses and displacements is determined by the differential quadrature method, the state-space method and the transfer matrix method. Since the corresponding matrix is singular due to the absence of external loads, the natural frequencies are determined using the bisection method. The comparison study indicates that the present solutions are consistent with experimental results, and the errors of finite element simulation and the solution based on the first-order shear deformation theory reach 3.81% and 3.96%, respectively. At last, the effects of temperature, the effects of temperature degree, interface bonding and boundary conditions on the vibration performance of the FML beams are investigated in detail. The research results provide support for the design and analysis of FML beams under high-temperature and vibration environments in practical engineering. Full article
Show Figures

Figure 1

27 pages, 10626 KB  
Article
Meshless Time–Frequency Stochastic Dynamic Analysis for Sandwich Trapezoidal Plate–Shell Coupled Systems in Supersonic Airflow
by Ningze Sun, Guohua Gao, Dong Shao and Weige Liang
Aerospace 2025, 12(10), 880; https://doi.org/10.3390/aerospace12100880 - 29 Sep 2025
Viewed by 338
Abstract
In this paper, a full-domain stochastic response analysis is performed based on the meshless method to reveal the time–frequency dynamic characteristics, including the power spectral density (PSD) responses in the frequency domain and the evolving PSD distribution in the time domain for a [...] Read more.
In this paper, a full-domain stochastic response analysis is performed based on the meshless method to reveal the time–frequency dynamic characteristics, including the power spectral density (PSD) responses in the frequency domain and the evolving PSD distribution in the time domain for a sandwich trapezoidal plate–shell coupled system. The general governing equations are derived based on the first-order shear deformation theory (FSDT), linear piston theory and Hamilton’s principle, and the stochastic excitation is integrated into the meshless framework based on the pseudo-excitation method (PEM). By constructing the meshless shape function covering the entire structural domain from Chebyshev polynomials and discretizing the continuous domain into a series of nodes within a square definition domain, the points are assembled according to the sequence number and the equilibrium relationship on the coupling edge to obtain the overall vibration equations. The validity is demonstrated by matching the mode shapes, PSD responses, time history displacement and critical flutter boundaries with FEM simulation and reported data. Finally, the time–frequency characteristics of each substructure under global and single stochastic excitation, and the effect of aerodynamic pressure on full-domain stochastic vibration, are revealed. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

27 pages, 6795 KB  
Article
Dynamic Analysis of Variable-Stiffness Laminated Composite Plates with an Arbitrary Damaged Area in Supersonic Airflow
by Pingan Zou, Dong Shao, Ningze Sun and Weige Liang
Aerospace 2025, 12(9), 802; https://doi.org/10.3390/aerospace12090802 - 5 Sep 2025
Viewed by 720
Abstract
In response to the urgent need for performance predictions of damaged aerospace structures, this study undertakes a comprehensive investigation into the flutter characteristics of damaged variable-stiffness composite laminate (VSCL) plates. The governing boundary value problem for the dynamics of damaged VSCL plates is [...] Read more.
In response to the urgent need for performance predictions of damaged aerospace structures, this study undertakes a comprehensive investigation into the flutter characteristics of damaged variable-stiffness composite laminate (VSCL) plates. The governing boundary value problem for the dynamics of damaged VSCL plates is formulated using first-order shear deformation theory (FSDT). Additionally, the first-order piston theory is utilized to model the aerodynamic pressure in supersonic airflow. A novel coupling methodology is developed through the integration of penalty function methods and irregular mapping techniques, which effectively establishes the interaction between damaged and undamaged plate elements. The vibration characteristics and aeroelastic responses are systematically analyzed using the Chebyshev differential quadrature method (CDQM). The validity of the proposed model is thoroughly demonstrated through comparative analyses with the existing literature and finite element simulations, confirming its computational accuracy and broad applicability. A notable characteristic of this research is its ability to accommodate arbitrary geometric configurations within damaged regions. The numerical results unequivocally demonstrate that accurately predicting the flutter characteristics of damaged VSCL plates constitutes an effective strategy for mitigating structural stability degradation. This approach provides valuable insights for aerospace structural design and maintenance. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 4660 KB  
Article
Development of Fault Similar Material for Model Test of Fault Water Inrush Disaster
by Zhipeng Li, Deming Wang, Kai Wang, Qingsong Zhang, Lianzhen Zhang, Yang Gao and Yongqi Dai
Materials 2025, 18(16), 3745; https://doi.org/10.3390/ma18163745 - 11 Aug 2025
Viewed by 614
Abstract
The applicability of similar materials is a key factor affecting the results of geomechanical model tests. In order to investigate the multi-physical field evolution mechanism of surrounding rocks during water inrush disasters in tunnels crossing fault zones, based on the similarity theory of [...] Read more.
The applicability of similar materials is a key factor affecting the results of geomechanical model tests. In order to investigate the multi-physical field evolution mechanism of surrounding rocks during water inrush disasters in tunnels crossing fault zones, based on the similarity theory of geomechanical model tests, the physical–mechanical parameters of a prototype rock’s mass were first analyzed for similarity, and the target values of similar materials were determined. Secondly, using sand as coarse aggregate, talcum powder as fine aggregate, gypsum and clay as binders, and Vaseline as a regulator, a fault-simulating material suitable for model tests was developed through extensive laboratory experiments. Finally, with material deformation characteristics and strength failure characteristics as key control indicators, parameters such as uniaxial compressive strength, permeability coefficient, unit weight, and elastic modulus are synergistically regulated to determine the influence of different component ratios on material properties. The experimental results show that the uniaxial compressive strength and permeability coefficient of similar materials are mainly controlled by gypsum and Vaseline. Cohesion is mainly controlled by clay and Vaseline. The application of this similar material in the model test of the tunnel fault water inrush disaster successfully reproduced the disaster evolution process of fault water inrush, meeting the requirements of the model test for similar materials of faults. Furthermore, it provides valuable guidance for the selection of similar materials and the optimization of mix proportions for fault disaster model tests involving similar characteristics. Full article
Show Figures

Figure 1

24 pages, 59662 KB  
Article
Numerical Analysis of Composite Stiffened NiTiNOL-Steel Wire Ropes and Panels Undergoing Nonlinear Vibrations
by Teguh Putranto, Totok Yulianto, Septia Hardy Sujiatanti, Dony Setyawan, Ahmad Fauzan Zakki, Muhammad Zubair Muis Alie and Wibowo Wibowo
Modelling 2025, 6(3), 77; https://doi.org/10.3390/modelling6030077 - 4 Aug 2025
Viewed by 759
Abstract
This research explores the application of NiTiNOL-steel (NiTi–ST) wire ropes as nonlinear damping devices for mitigating vibrations in composite stiffened panels. A dynamic model is formulated by coupling the composite panel with a modified Bouc–Wen hysteresis representation and employing the first-order shear deformation [...] Read more.
This research explores the application of NiTiNOL-steel (NiTi–ST) wire ropes as nonlinear damping devices for mitigating vibrations in composite stiffened panels. A dynamic model is formulated by coupling the composite panel with a modified Bouc–Wen hysteresis representation and employing the first-order shear deformation theory (FSDT), based on Hamilton’s principle. Using the Galerkin truncation method (GTM), the model is converted into a system of nonlinear ordinary differential equations. The dynamic response to axial harmonic excitations is analyzed, emphasizing the vibration reduction provided by the embedded NiTi–ST ropes. Finite element analysis (FEA) validates the model by comparing natural frequencies and force responses with and without ropes. A newly developed experimental apparatus demonstrates that NiTi–ST cables provide outstanding vibration damping while barely affecting the system’s inherent frequency. The N3a configuration of NiTi–ST ropes demonstrates optimal vibration reduction, influenced by excitation frequency, amplitude, length-to-width ratio, and composite layering. Full article
(This article belongs to the Section Modelling in Engineering Structures)
Show Figures

Figure 1

28 pages, 5048 KB  
Article
Voxel-Based Finite Element Investigation of Micromechanics Models for Stiffness Prediction of Cross-Ply Laminates
by Darya Forooghi and Yunhua Luo
J. Compos. Sci. 2025, 9(6), 288; https://doi.org/10.3390/jcs9060288 - 4 Jun 2025
Viewed by 1101
Abstract
Laminate plate and shell structures with symmetric cross-ply configurations are widely used due to their high stiffness-to-weight ratio. However, conventional lamination theories rely on simplifying assumptions that may introduce inaccuracies. This study evaluates the predictive capability of such theories by integrating multiple micromechanics [...] Read more.
Laminate plate and shell structures with symmetric cross-ply configurations are widely used due to their high stiffness-to-weight ratio. However, conventional lamination theories rely on simplifying assumptions that may introduce inaccuracies. This study evaluates the predictive capability of such theories by integrating multiple micromechanics models with First-Order Shear Deformation Theory (FSDT), and comparing the results against voxel-based finite element modeling (VB-FEM), which serves as a high-fidelity numerical reference. A range of models—including Voigt–Reuss, Chamis, Halpin–Tsai, Bridging, and two iterative isotropized formulations—are assessed for unidirectional laminae with fiber volume fractions from 40% to 73%. Quantitative comparison reveals that while all models predict the longitudinal modulus accurately, significant deviations arise in predicting transverse and shear properties. The Bridging Model consistently yields the closest agreement with VB-FEM across all five elastic constants, maintaining accuracy even at high volume fractions where the modified Halpin–Tsai model begins to fail. Discrepancies in micromechanics-based lamina properties propagate to laminate-level stiffness predictions, highlighting the critical role of model selection. These findings establish VB-FEM as a valuable tool for validating analytical models and guide improved modeling strategies for laminated composite design. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

25 pages, 5020 KB  
Article
Geometrically Nonlinear Dynamic Analysis of an Imperfect, Stiffened, Functionally Graded, Doubly Curved Shell
by Boutros Azizi, Habib Eslami and Kais Jribi
Dynamics 2025, 5(2), 18; https://doi.org/10.3390/dynamics5020018 - 16 May 2025
Viewed by 1128
Abstract
An analytical study of the nonlinear response of imperfect stiffened doubly curved shells made of functionally graded material (FGM) is presented. The formulation of the problem is based on the first-order shear deformation shell theory in conjunction with the von Kármán geometrical nonlinear [...] Read more.
An analytical study of the nonlinear response of imperfect stiffened doubly curved shells made of functionally graded material (FGM) is presented. The formulation of the problem is based on the first-order shear deformation shell theory in conjunction with the von Kármán geometrical nonlinear strain–displacement relationships. The nonlinear equations of the motion of stiffened double-curved shells based on the extended Sanders’s theory were derived using Galerkin’s method. The material properties vary in the direction of thickness according to the linear rule of mixture. The effect of both longitudinal and transverse stiffeners was considered using Lekhnitsky’s technique. The fundamental frequencies of the stiffened shell are compared with the FE solutions obtained by using the ABAQUS 6.14 software. A stepwise approximation technique is applied to model the functionally graded shell. The resulting nonlinear ordinary differential equations were solved numerically by using the fourth-order Runge–Kutta method. Closed-form solutions for nonlinear frequency–amplitude responses were obtained using He’s energy method. The effect of power index, functionally graded stiffeners, geometrical parameters, and initial imperfection on the nonlinear response of the stiffened shell are considered and discussed. Full article
Show Figures

Figure 1

Back to TopTop